Go to the first, previous, next, last section, table of contents.

11 Replication in MySQL

11.1 Introduction

One way replication can be used is to increase both robustness and speed. For robustness you can have two systems and can switch to the backup if you have problems with the master. The extra speed is achieved by sending a part of the non-updating queries to the replica server. Of course this only works if non-updating queries dominate, but that is the normal case.

Starting in Version 3.23.15, MySQL supports one-way replication internally. One server acts as the master, while the other acts as the slave. Note that one server could play the roles of master in one pair and slave in the other. The master server keeps a binary log of updates (See section 22.4 The Binary Log.) and an index file to binary logs to keep track of log rotation. The slave, upon connecting, informs the master where it left off since the last successfully propagated update, catches up on the updates, and then blocks and waits for the master to notify it of the new updates.

Note that if you are replicating a database, all updates to this database should be done through the master!

On older servers one can use the update log to do simple replication. See section 21.1 Database Replication with Update Log.

Another benefit of using replication is that one can get live backups of the system by doing a backup on a slave instead of doing it on the master. See section 21.2 Database Backups.

11.2 Replication Implementation Overview

MySQL replication is based on the server keeping track of all changes to your database (updates, deletes, etc) in the binary log. (See section 22.4 The Binary Log.) and the slave server(s) reading the saved queries from the master server's binary log so that the slave can execute the same queries on its copy of the data.

It is very important to realize that the binary log is simply a record starting from a fixed point in time (the moment you enable binary logging). Any slaves which you set up will need copies of all the data from your master as it existed the moment that you enabled binary logging on the master. If you start your slaves with data that doesn't agree with what was on the master when the binary log was started, your slaves may fail.

A future version (4.0) of MySQL will remove the need to keep a (possibly large) snapshot of data for new slaves that you might wish to set up through the live backup functionality with no locking required. However, at this time, it is necessary to block all writes either with a global read lock or by shutting down the master while taking a snapshot.

Once a slave is properly configured and running, it will simply connect to the master and wait for updates to process. If the master goes away or the slave loses connectivity with your master, it will keep trying to connect every master-connect-retry seconds until it is able to reconnect and resume listening for updates.

Each slave keeps track of where it left off. The master server has no knowledge of how many slaves there are or which ones are up-to-date at any given time.

The next section explains the master/slave setup process in more detail.

11.3 HOWTO

Below is a quick description of how to set up complete replication on your current MySQL server. It assumes you want to replicate all your databases and have not configured replication before. You will need to shutdown your master server briefly to complete the steops outlined below.

  1. Make sure you have a recent version of MySQL installed on the master and slave(s). Use Version 3.23.29 or higher. Previous releases used a different binary log format and had bugs which have been fixed in newer releases. Please, do not report bugs until you have verified that the problem is present in the latest release.
  2. Set up special a replication user on the master with the FILE privilege and permission to connect from all the slaves. If the user is only doing replication (which is recommended), you don't need to grant any additional privileges. For example, to create a user named repl which can access your master from any host, you might use this command:
    GRANT FILE ON *.* TO repl@"%" IDENTIFIED BY '<password>';
  3. Shut down MySQL on the master.
    mysqladmin -u root -p<password> shutdown
  4. Snapshot all the data on your master server. The easiest way to do this (on Unix) is to simply use tar to produce an archvie of your entrie data directory. The exact data directory location depends on your installation.
    tar -cvf /tmp/mysql-snapshot.tar /path/to/data-dir
    Windows users can use WinZip or similar software to create an archive of the data directory.
  5. In my.cnf on the master add log-bin and server-id=unique number to the [mysqld] section and restart it. It is very important that the id of the slave is different from the id of the master. Think of server-id as something similar to the IP address - it uniquely identifies the server instance in the comminity of replication partners.
  6. Restart MySQL on the master.
  7. Add the following to my.cnf on the slave(s):
    master-host=<hostname of the master>
    master-user=<replication user name>
    master-password=<replication user password>
    master-port=<TCP/IP port for master>
    server-id=<some unique number between 2 and 2^32-1>
    replacing the values in <> with what is relevant to your system. server-id must be different for each server participating in replication. If you don't specify a server-id, it will be set to 1 if you have not defined master-host, else it will be set to 2. Note that in the case of server-id omission the master will refuse connections from all slaves, and the slave will refuse to connect to a master. Thus, omitting server-id is only good for backup with a binary log.
  8. Copy the snapshot data into your data directory on your slave(s). Make sure that the privileges on the files and directories are correct. The user which MySQL runs as needs to be able to read and write to them, just as on the master.
  9. Restart the slave(s).

After you have done the above, the slave(s) should connect to the master and catch up on any updates which happened since the snapshot was taken.

If you have forgotten to set server-id for the slave you will get the following error in the error log file:

Warning: one should set server_id to a non-0 value if master_host is set.
The server will not act as a slave.

If you have forgot to do this for the master, the slaves will not be able to connect to the master.

If a slave is not able to replicate for any reason, you will find error messages in the error log on the slave.

Once a slave is replicating, you will find a file called master.info in the same directory as your error log. The master.info file is used by the slave to keep track of how much of the master's binary log is has processed. Do not remove or edit the file, unless you really know what you are doing. Even in that case, it is preferred that you use CHANGE MASTER TO command.

11.4 Replication Features and known problems

Below is an explanation of what is supported and what is not:

11.5 Replication Options in my.cnf

If you are using replication, we recommend you to use MySQL Version 3.23.30 or later. Older versions work, but they do have some bugs and are missing some features.

On both master and slave you need to use the server-id option. This sets an unique replication id. You should pick a unique value in the range between 1 to 2^32-1 for each master and slave. Example: server-id=3

The following table has the options you can use for the MASTER:

Option Description
log-bin=filename Write to a binary update log to the specified location. Note that if you give it a parameter with an extension (for example, log-bin=/mysql/logs/replication.log ) versions up to 3.23.24 will not work right during replication if you do FLUSH LOGS . The problem is fixed in Version 3.23.25. If you are using this kind of log name, FLUSH LOGS will be ignored on binlog. To clear the log, run FLUSH MASTER, and do not forget to run FLUSH SLAVE on all slaves. In Version 3.23.26 and in later versions you should use RESET MASTER and RESET SLAVE
log-bin-index=filename Because the user could issue the FLUSH LOGS command, we need to know which log is currently active and which ones have been rotated out and in what sequence. This information is stored in the binary log index file. The default is `hostname`.index. You can use this option if you want to be a rebel. (Example: log-bin-index=db.index)
sql-bin-update-same If set, setting SQL_LOG_BIN to a value will automatically set SQL_LOG_UPDATE to the same value and vice versa.
binlog-do-db=database_name Tells the master it should log updates for the specified database, and exclude all others not explicitly mentioned. (Example: binlog-do-db=some_database)
binlog-ignore-db=database_name Tells the master that updates to the given database should not be logged to the binary log (Example: binlog-ignore-db=some_database)

The following table has the options you can use for the SLAVE:

Option Description
master-host=host Master hostname or IP address for replication. If not set, the slave thread will not be started. (Example: master-host=db-master.mycompany.com)
master-user=username The user the slave thread will us for authentication when connecting to the master. The user must have FILE privilege. If the master user is not set, user test is assumed. (Example: master-user=scott)
master-password=password The password the slave thread will authenticate with when connecting to the master. If not set, an empty password is assumed. (Example: master-password=tiger)
master-port=portnumber The port the master is listening on. If not set, the compiled setting of MYSQL_PORT is assumed. If you have not tinkered with configure options, this should be 3306. (Example: master-port=3306)
master-connect-retry=seconds The number of seconds the slave thread will sleep before retrying to connect to the master in case the master goes down or the connection is lost. Default is 60. (Example: master-connect-retry=60)
master-info-file=filename The location of the file that remembers where we left off on the master during the replication process. The default is master.info in the data directory. Sasha: The only reason I see for ever changing the default is the desire to be rebelious. (Example: master-info-file=master.info)
replicate-do-table=db_name.table_name Tells the slave thread to restrict replication to the specified database. To specify more than one table, use the directive multiple times, once for each table. . (Example: replicate-do-table=some_db.some_table)
replicate-ignore-table=db_name.table_name Tells the slave thread to not replicate to the specified table. To specify more than one table to ignore, use the directive multiple times, once for each table.(Example: replicate-ignore-table=db_name.some_table)
replicate-wild-do-table=db_name.table_name Tells the slave thread to restrict replication to the tables that match the specified wildcard pattern. . To specify more than one table, use the directive multiple times, once for each table. . (Example: replicate-do-table=foo%.bar% will replicate only updates to tables in all databases that start with foo and whose table names start with bar)
replicate-wild-ignore-table=db_name.table_name Tells the slave thread to not replicate to the tables that match the given wild card pattern. To specify more than one table to ignore, use the directive multiple times, once for each table.(Example: replicate-ignore-table=foo%.bar% - will not upates to tables in all databases that start with foo and whose table names start with bar)
replicate-ignore-db=database_name Tells the slave thread to not replicate to the specified database. To specify more than one database to ignore, use the directive multiple times, once for each database. This option will not work if you use cross database updates. If you need cross database updates to work, make sure you have 3.23.28 or later, and use replicate-wild-ignore-table=db_name.%(Example: replicate-ignore-db=some_db)
replicate-do-db=database_name Tells the slave thread to restrict replication to the specified database. To specify more than one database, use the directive multiple times, once for each database. Note that this will only work if you do not use cross-database queries such as UPDATE some_db.some_table SET foo='bar' while having selected a different or no database. If you need cross database updates to work, make sure you have 3.23.28 or later, and use replicate-wild-do-table=db_name.% (Example: replicate-do-db=some_db)
log-slave-updates Tells the slave to log the updates from the slave thread to the binary log. Off by default. You will need to turn it on if you plan to daisy-chain the slaves.
replicate-rewrite-db=from_name->to_name Updates to a database with a different name than the original (Example: replicate-rewrite-db=master_db_name->slave_db_name
skip-slave-start Tells the slave server not to start the slave on the startup. The user can start it later with SLAVE START.

11.6 SQL Commands Related to Replication

Replication can be controlled through the SQL interface. Below is the summary of commands:

Command Description
SLAVE START Starts the slave thread. (Slave)
SLAVE STOP Stops the slave thread. (Slave)
SET SQL_LOG_BIN=0 Disables update logging if the user has process privilege. Ignored otherwise. (Master)
SET SQL_LOG_BIN=1 Re-enables update logging if the user has process privilege. Ignored otherwise. (Master)
SET SQL_SLAVE_SKIP_COUNTER=n Skip the next n events from the master. Only valid when the slave thread is not running, otherwise, gives an error. Useful for recovering from replication glitches.
RESET MASTER Deletes all binary logs listed in the index file, resetting the binlog index file to be empty. In pre-3.23.26 versions, FLUSH MASTER (Master)
RESET SLAVE Makes the slave forget its replication position in the master logs. In pre 3.23.26 versions the command was called FLUSH SLAVE(Slave)
LOAD TABLE tblname FROM MASTER Downloads a copy of the table from master to the slave. (Slave)
CHANGE MASTER TO master_def_list Changes the master parameters to the values specified in master_def_list and restarts the slave thread. master_def_list is a comma-separated list of master_def where master_def is one of the following: MASTER_HOST, MASTER_USER, MASTER_PASSWORD, MASTER_PORT, MASTER_CONNECT_RETRY, MASTER_LOG_FILE, MASTER_LOG_POS. Example:


You only need to specify the values that need to be changed. The values that you omit will stay the same with the exception of when you change the host or the port. In that case, the slave will assume that since you are connecting to a different host or a different port, the master is different. Therefore, the old values of log and position are not applicable anymore, and will automatically be reset to an empty string and 0, respectively (the start values). Note that if you restart the slave, it will remember its last master. If this is not desirable, you should delete the `master.info' file before restarting, and the slave will read its master from my.cnf or the command line. (Slave)
SHOW MASTER STATUS Provides status information on the binlog of the master. (Master)
SHOW SLAVE STATUS Provides status information on essential parameters of the slave thread. (Slave)
SHOW MASTER LOGS Only available starting in Version 3.23.28. Lists the binary logs on the master. You should use this command prior to PURGE MASTER LOGS TO to find out how far you should go.
PURGE MASTER LOGS TO 'logname' Available starting in Version 3.23.28. Deletes all the replication logs that are listed in the log index as being prior to the specified log, and removed them from the log index, so that the given log now becomes first. Example:
PURGE MASTER LOGS TO 'mysql-bin.010'
This command will do nothing and fail with an error if you have an active slave that is currently reading one of the logs you are trying to delete. However, if you have a dormant slave, and happen to purge one of the logs it wants to read, the slave will be unable to replicate once it comes up. The command is safe to run while slaves are replicating - you do not need to stop them. You must first check all the slaves with SHOW SLAVE STATUS to see which log they are on, then do a listing of the logs on the master with SHOW MASTER LOGS, find the earliest log among all the slaves (if all the slaves are up to date, this will be the last log on the list), backup all the logs you are about to delete (optional) and purge up to the target log.

11.7 Replication FAQ

Q: Why do I sometimes see more than one Binlog_Dump thread on the master after I have restarted the slave?

A: Binlog_Dump is a continuous process that is handled by the server in the following way:

So if the slave thread stops on the slave, the corresponding Binlog_Dump thread on the master will not notice it until after at least one update to the master (or a kill), which is needed to wake it up from pthread_cond_wait(). In the meantime, the slave could have opened another connection, which resulted in another Binlog_Dump thread.

The above problem should not be present in Version 3.23.26 and later versions. In Version 3.23.26 we added server-id to each replication server, and now all the old zombie threads are killed on the master when a new replication thread connects from the same slave

Q: How do I rotate replication logs?

A: In Version 3.23.28 you should use PURGE MASTER LOGS TO command after determining which logs can be deleted, and optionally backing them up first. In earlier versions the process is much more painful, and cannot be safely done without stopping all the slaves in the case that you plan to re-use log names. You will need to stop the slave threads, edit the binary log index file, delete all the old logs, restart the master, start slave threads,and then remove the old log files.

Q: How do I upgrade on a hot replication setup?

A: If you are upgrading pre-3.23.26 versions, you should just lock the master tables, let the slave catch up, then run FLUSH MASTER on the master, and FLUSH SLAVE on the slave to reset the logs, then restart new versions of the master and the slave. Note that the slave can stay down for some time - since the master is logging all the updates, the slave will be able to catch up once it is up and can connect.

After 3.23.26, we have locked the replication protocol for modifications, so you can upgrade masters and slave on the fly to a newer 3.23 version and you can have different versions of MySQL running on the slave and the master, as long as they are both newer than 3.23.26.

Q: What issues should I be aware of when setting up two-way replication?

A: MySQL replication currently does not support any locking protocol between master and slave to guarantee the atomicity of a distributed (cross-server) update. In in other words, it is possible for client A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client B could make an update to co-master 2 that will make the update of client A work differently than it did on co-master 1. Thus when the update of client A will make it to co-master 2, it will produce tables that will be different than what you have on co-master 1, even after all the updates from co-master 2 have also propagated. So you should not co-chain two servers in a two-way replication relationship, unless you are sure that you updates can safely happen in any order, or unless you take care of mis-ordered updates somehow in the client code.

You must also realize that two-way replication actually does not improve performance very much, if at all, as far as updates are concerned. Both servers need to do the same amount of updates each, as you would have one server do. The only difference is that there will be a little less lock contention, because the updates originating on another server will be serialized in one slave thread. This benefit, though, might be offset by network delays.

Q: How can I use replication to improve performance of my system?

A: You should set up one server as the master, and direct all writes to it, and configure as many slaves as you have the money and rackspace for, distributing the reads among the master and the slaves. You can also start the slaves with --skip-bdb, --low-priority-updates and --delay-key-write-for-all-tables to get speed improvements for the slave. In this case the slave will use non-transactional MyISAM tables instead of BDB tables to get more speed.

Q: What should I do to prepare my client code to use performance-enhancing replication?

A: If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with the replicated setup should be very smooth and easy - just change the implementation of your database access to read from some slave or the master, and to awlays write to the master. If your code does not have this level of abstraction, setting up a replicated system will give you an opportunity/motivation to it clean up. You should start by creating a wrapper library /module with the following functions:

safe_ means that the function will take care of handling all the error conditions.

You should then convert your client code to use the wrapper library. It may be a painful and scary process at first, but it will pay off in the long run. All applications that follow the above pattern will be able to take advantage of one-master/many slaves solution. The code will be a lot easier to maintain, and adding troubleshooting options will be trivial. You will just need to modify one or two functions, for example, to log how long each query took, or which query, among your many thousands, gave you an error. If you have written a lot of code already, you may want to automate the conversion task by using Monty's replace utility, which comes with the standard distribution of MySQL, or just write your own Perl script. Hopefully, your code follows some recognizable pattern. If not, then you are probably better off re-writing it anyway, or at least going through and manually beating it into a pattern.

Note that, of course, you can use different names for the functions. What is important is having unified interface for connecting for reads, connecting for writes, doing a read, and doing a write.

Q: When and how much can MySQL replication improve the performance of my system?

A: MySQL replication is most beneficial for a system with frequent reads and not so frequent writes. In theory, by using a one master/many slaves setup you can scale by adding more slaves until you either run out of network bandwidth, or your update load grows to the point that the master cannot handle it.

In order to determine how many slaves you can get before the added benefits begin to level out, and how much you can improve performance of your site, you need to know your query patterns, and empirically (by benchmarking) determine the relationship between the throughput on reads (reads per second, or max_reads) and on writes max_writes) on a typical master and a typical slave. The example below will show you a rather simplified calculation of what you can get with replication for our imagined system.

Let's say our system load consists of 10% writes and 90% reads, and we have determined that max_reads = 1200 - 2 * max_writes, or in other words, our system can do 1200 reads per second with no writes, our average write is twice as slow as average read, and the relationship is linear. Let us suppose that our master and slave are of the same capacity, and we have N slaves and 1 master. Then we have for each server (master or slave):

reads = 1200 - 2 * writes (from bencmarks)

reads = 9* writes / (N + 1) (reads split, but writes go to all servers)

9*writes/(N+1) + 2 * writes = 1200

writes = 1200/(2 + 9/(N+1)

So if N = 0, which means we have no replication, our system can handle 1200/11, about 109 writes per second (which means we will have 9 times as many reads due to the nature of our application).

If N = 1, we can get up to 184 writes per second.

If N = 8, we get up to 400.

If N = 17, 480 writes.

Eventually as N approaches infinity (and our budget negative infinity), we can get very close to 600 writes per second, increasing system throughput about 5.5 times. However, with only 8 servers, we increased it almost 4 times already.

Note that our computations assumed infinite network bandwidth, and neglected several other factors that could turn out to be signficant on your system. In many cases, you may not be able to make a computation similar to the one above that will accurately predict what will happen on your system if you add N replication slaves. However, answering the following questions should help you decided whether and how much, if at all, the replication will improve the performance of your system:

Q: How can I use replication to provide redundancy/high availability?

A: With the currently available features, you would have to set up a master and a slave (or several slaves), and write a script that will monitor the master to see if it is up, and instruct your applications and the slaves of the master change in case of failure. Some suggestions:

We are currently working on intergrating an automatic master election system into MySQL, but until it is ready, you will have to create your own monitoring tools.

11.8 Troubleshooting Replication

If you have followed the instructions, and your replication setup is not working, first elliminate the user error factor by checking the following:

When you have determined that there is no user error involved, and replication still either does not work at all or is unstable, it is time to start working on a bug report. We need to get as much info as possible from you to be able to track down the bug. Please do spend some time and effort preparing a good bug report. Ideally, we would like to have a test case in the format found in mysql-test/t/rpl* directory of the source tree. If you submit a test case like that, you can expect a patch within a day or two in most cases, although, of course, you mileage may vary depending on a number of factors.

Second best option is a just program with easily configurable connection arguments for the master and the slave that will demonstrate the problem on our systems. You can write one in Perl or in C, depending on which language you know better.

If you have one of the above ways to demonstrate the bug, use mysqlbug to prepare a bug report and send it to bugs@lists.mysql.com. If you have a phantom - a problem that does occur but you cannot duplicate "at will":

Once you have collected the evidence on the phantom problem, try hard to isolate it into a separate test case first. Then report the problem to bugs@lists.mysql.com with as much info as possible.

Go to the first, previous, next, last section, table of contents.