
Oracle® Label Security
Administrator’s Guide

10g Release 1 (10.1)

Part No. B10774-01

December 2003

Oracle Label Security Administrator’s Guide, 10g Release 1 (10.1)

Part No. B10774-01

Copyright © 2000, 2003 Oracle Corporation. All rights reserved.

Primary Author: Jeffrey E. Levinger

Contributors: Paul Needham, Vikram Pesati, Srividya Tata

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle8i, Oracle9i, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments ... xxiii

Preface... xxv

Audience .. xxv
Documentation Accessibility ... xxvi
Organization... xxvi
Related Documentation .. xxix
Conventions... xxx

1 Introduction to Oracle Label Security

Computer Security and Data Access Controls .. 1-2
Oracle Label Security and Security Standards ... 1-3
Security Policies .. 1-4
Access Control... 1-4

Discretionary Access Control .. 1-4
Oracle Label Security .. 1-4
How Oracle Label Security Works with Discretionary Access Control 1-5

Oracle Label Security Architecture ... 1-6
Features of Oracle Label Security .. 1-6

Overview of Oracle Label Security Policy Functionality.. 1-7
Oracle Enterprise Edition: Virtual Private Database Technology ... 1-8
Oracle Label Security: An Out-of-the-Box Virtual Private Database.................................... 1-9
Label Policy Features ... 1-9

Data Labels ... 1-10

iv

Label Authorizations... 1-11
Policy Privileges... 1-11
Policy Enforcement Options .. 1-12
Summary: Four Aspects of Label-Based Row Access .. 1-12

Oracle Label Security Integration with Oracle Internet Directory ... 1-12

2 Understanding Data Labels and User Labels

Introduction to Label-Based Security ... 2-1
Label Components .. 2-2

Label Component Definitions and Valid Characters .. 2-2
Levels .. 2-4
Compartments... 2-5
Groups .. 2-7
Industry Examples of Levels, Compartments, and Groups ... 2-9

Label Syntax and Type ... 2-10
How Data Labels and User Labels Work Together... 2-12
Administering Labels... 2-15

3 Understanding Access Controls and Privileges

Introducing Access Mediation ... 3-1
Understanding Session Label and Row Label .. 3-2

The Session Label.. 3-2
The Row Label... 3-3
Session Label Example ... 3-3

Understanding User Authorizations ... 3-4
Authorizations Set by the Administrator.. 3-5

Authorized Levels ... 3-5
Authorized Compartments .. 3-6
Authorized Groups ... 3-7

Computed Session Labels.. 3-8
Evaluating Labels for Access Mediation ... 3-9

Introducing Read/Write Access... 3-9
Difference Between Read and Write Operations .. 3-10
Propagation of Read/Write Authorizations on Groups.. 3-10

The Oracle Label Security Algorithm for Read Access ... 3-11

v

The Oracle Label Security Algorithm for Write Access .. 3-13
Using Oracle Label Security Privileges .. 3-15

Privileges Defined by Oracle Label Security Policies .. 3-15
Special Access Privileges ... 3-16

READ... 3-16
FULL.. 3-17
COMPACCESS .. 3-17
PROFILE_ACCESS.. 3-19

Special Row Label Privileges .. 3-19
WRITEUP ... 3-20
WRITEDOWN ... 3-20
WRITEACROSS ... 3-20

System Privileges, Object Privileges, and Policy Privileges... 3-20
Access Mediation and Views .. 3-21
Access Mediation and Program Unit Execution .. 3-21
Access Mediation and Policy Enforcement Options ... 3-23

Working with Multiple Oracle Label Security Policies .. 3-23
Multiple Oracle Label Security Policies in a Single Database....................................... 3-23
Multiple Oracle Label Security Policies in a Distributed Environment 3-24

4 Working with Labeled Data

The Policy Label Column and Label Tags ... 4-2
The Policy Label Column .. 4-2

Hiding the Policy Label Column... 4-2
Example 1: Numeric Column Datatype (NUMBER).. 4-3
Example 2: Numeric Column Datatype with Hidden Column...................................... 4-3

Label Tags .. 4-3
Manually Defining Label Tags to Order Labels.. 4-4
Manually Defining Label Tags to Manipulate Data... 4-5
Automatically Generated Label Tags ... 4-5

Assigning Labels to Data Rows ... 4-6
Presenting the Label... 4-6

Converting a Character String to a Label Tag, with CHAR_TO_LABEL 4-7
Converting a Label Tag to a Character String, with LABEL_TO_CHAR 4-7

LABEL_TO_CHAR Examples ... 4-7

vi

Retrieving All Columns from a Table When Policy Label Column Is Hidden 4-9
Filtering Data Using Labels .. 4-9

Using Numeric Label Tags in WHERE Clauses... 4-10
Ordering Labeled Data Rows.. 4-11
Ordering by Character Representation of Label .. 4-11
Determining Upper and Lower Bounds of Labels... 4-11

Finding Least Upper Bound with LEAST_UBOUND.. 4-12
Finding Greatest Lower Bound with GREATEST_LBOUND....................................... 4-12

Merging Labels with the MERGE_LABEL Function ... 4-13
Inserting Labeled Data... 4-15

Inserting Labels Using CHAR_TO_LABEL .. 4-16
Inserting Labels Using Numeric Label Tag Values ... 4-16
Inserting Data Without Specifying a Label ... 4-16
Inserting Data When the Policy Label Column Is Hidden ... 4-17
Inserting Labels Using TO_DATA_LABEL .. 4-17

Changing Your Session and Row Labels with SA_SESSION.. 4-18
SA_SESSION Functions to Change Session and Row Labels... 4-18
Changing the Session Label with SA_SESSION.SET_LABEL.. 4-19
Changing the Row Label with SA_SESSION.SET_ROW_LABEL....................................... 4-20
Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS................. 4-21
Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS 4-21
Viewing Session Attributes with SA_SESSION Functions... 4-22

USER_SA_SESSION View to Return All Security Attributes 4-22
Functions to Return Individual Security Attributes... 4-22

5 Oracle Label Security Using Oracle Internet Directory

Introducing Label Management on Oracle Internet Directory .. 5-2
Configuring Oracle Internet Directory-Enabled Label Security.. 5-5

Registering a Database and Configuring OID-enabled OLS.. 5-6
Task 1. Configure Your Oracle Home for Directory Usage... 5-6
Task 2 : Configure the Database for OID-Enabled OLS... 5-6
Alternate Method for Task 2, Configuring Database for OID-Enabled OLS................ 5-7
Task3: Set the DIP Password and Connect Data... 5-8

Unregistering a Database with OID-enabled OLS... 5-8
Oracle Label Security Profiles .. 5-9

vii

Integrated Capabilities When Label Security Uses the Directory .. 5-9
Oracle Label Security Policy Attributes in Oracle Internet Directory 5-10
Restrictions on New Data Label Creation.. 5-12
 Two Types of Administrators .. 5-12
Bootstrapping Databases... 5-13
Synchronizing the Database and Oracle Internet Directory .. 5-14

Directory Integration Platform (DIP) Provisioning Profiles .. 5-15
Disabling, Changing, and Enabling a Provisioning Profile.. 5-17

Security Roles and Permitted Actions .. 5-18
Superseded PL/SQL Statements .. 5-20
Procedures for Policy Administrators Only .. 5-21

6 Creating an Oracle Label Security Policy

Oracle Label Security Administrative Task Overview.. 6-1
Step 1: Create the Policy .. 6-2
Step 2: Define the Components of the Labels... 6-2
Step 3: Identify the Set of Valid Data Labels .. 6-2
Step 4: Apply the Policy to Tables and Schemas.. 6-3
Step 5: Authorize Users ... 6-3
Step 6: Create and Authorize Trusted Program Units (Optional)... 6-4
Step 7: Configure Auditing (Optional) .. 6-4

Organizing the Duties of Oracle Label Security Administrators.. 6-4
Choosing an Oracle Label Security Administrative Interface ... 6-5

Oracle Label Security Packages .. 6-5
Oracle Label Security Demonstration File ... 6-6

Oracle Policy Manager... 6-6
Using the SA_SYSDBA Package to Manage Security Policies .. 6-8

Who Can Use the SA_SYSDBA Package... 6-8
Who Can Administer a Policy .. 6-8
Valid Characters for Policy Specifications .. 6-9
Creating a Policy with SA_SYSDBA.CREATE_POLICY .. 6-9
Modifying Policy Options with SA_SYSDBA.ALTER_POLICY ... 6-10
Disabling a Policy with SA_SYSDBA.DISABLE_POLICY ... 6-10
Enabling a Policy with SA_SYSDBA.ENABLE_POLICY ... 6-11
Removing a Policy with SA_SYSDBA.DROP_POLICY.. 6-11

viii

Using the SA_COMPONENTS Package to Define Label Components 6-12
Using Overloaded Procedures.. 6-12
Creating a Level with SA_COMPONENTS.CREATE_LEVEL .. 6-13
Modifying a Level with SA_COMPONENTS.ALTER_LEVEL.. 6-14
Removing a Level with SA_COMPONENTS.DROP_LEVEL .. 6-14
Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT 6-15
Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT......... 6-15
Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT 6-16
Creating a Group with SA_COMPONENTS.CREATE_GROUP... 6-17
Modifying a Group with SA_COMPONENTS.ALTER_GROUP.. 6-17
Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT 6-18
Removing a Group with SA_COMPONENTS.DROP_GROUP .. 6-19

Using the SA_LABEL_ADMIN Package to Specify Valid Labels ... 6-19
Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL 6-19
Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL... 6-21
Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL .. 6-22

7 Administering User Labels and Privileges

Introduction to User Label and Privilege Management .. 7-1
Managing User Labels by Component, with SA_USER_ADMIN .. 7-2

SA_USER_ADMIN.SET_LEVELS .. 7-2
SA_USER_ADMIN.SET_COMPARTMENTS... 7-3
SA_USER_ADMIN.SET_GROUPS... 7-4
SA_USER_ADMIN.ALTER_COMPARTMENTS .. 7-5
SA_USER_ADMIN.ADD_COMPARTMENTS .. 7-6
SA_USER_ADMIN.DROP_COMPARTMENTS .. 7-7
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS .. 7-7
SA_USER_ADMIN.ADD_GROUPS .. 7-8
SA_USER_ADMIN.ALTER_GROUPS .. 7-9
SA_USER_ADMIN.DROP_GROUPS .. 7-10
SA_USER_ADMIN.DROP_ALL_GROUPS .. 7-10

Managing User Labels by Label String, with SA_USER_ADMIN ... 7-11
SA_USER_ADMIN.SET_USER_LABELS.. 7-11
SA_USER_ADMIN.SET_DEFAULT_LABEL ... 7-12
SA_USER_ADMIN.SET_ROW_LABEL .. 7-13

ix

SA_USER_ADMIN.DROP_USER_ACCESS... 7-14
 Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS 7-14
Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE........................... 7-15
Returning User Name with SA_SESSION.SA_USER_NAME .. 7-16
Using Oracle Label Security Views... 7-16

View to Display All User Security Attributes: DBA_SA_USERS .. 7-17
Views to Display User Authorizations by Component .. 7-18

8 Implementing Policy Enforcement Options and Labeling Functions

Choosing Policy Options... 8-1
Overview of Policy Enforcement Options .. 8-2
The HIDE Policy Column Option .. 8-6
The Label Management Enforcement Options .. 8-6

LABEL_DEFAULT: Using the Session's Default Row Label .. 8-7
LABEL_UPDATE: Changing Data Labels ... 8-7
CHECK_CONTROL: Checking Data Labels ... 8-7

The Access Control Enforcement Options .. 8-8
READ_CONTROL: Reading Data .. 8-8
WRITE_CONTROL: Writing Data.. 8-8
INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL...................... 8-9

The Overriding Enforcement Options... 8-9
Guidelines for Using the Policy Enforcement Options... 8-10
Exemptions from Oracle Label Security Policy Enforcement .. 8-11
Viewing Policy Options on Tables and Schemas... 8-12

Using a Labeling Function .. 8-12
Labeling Data Rows under Oracle Label Security... 8-13
Understanding Labeling Functions in Oracle Label Security Policies................................ 8-13
Creating a Labeling Function for a Policy... 8-14
Specifying a Labeling Function in a Policy... 8-15

Inserting Labeled Data Using Policy Options and Labeling Functions 8-15
Evaluating Enforcement Control Options and INSERT ... 8-16
Inserting Labels When a Labeling Function is Specified .. 8-16
Inserting Child Rows into Tables with Declarative Referential Integrity Enabled 8-16

Updating Labeled Data Using Policy Options and Labeling Functions 8-17
Updating Labels Using CHAR_TO_LABEL... 8-17

x

Evaluating Enforcement Control Options and UPDATE ... 8-17
Updating Labels When a Labeling Function Is Specified... 8-18
Updating Child Rows in Tables with Declarative Referential Integrity Enabled 8-19

Deleting Labeled Data Using Policy Options and Labeling Functions 8-19
Using a SQL Predicate with an Oracle Label Security Policy .. 8-20

Modifying an Oracle Label Security Policy with a SQL Predicate 8-20
Affecting Oracle Label Security Policies with Multiple SQL Predicates 8-21

9 Applying Policies to Tables and Schemas

Policy Administration Terminology.. 9-1
Subscribing Policies in Directory-Enabled Label Security .. 9-2

Subscribing to a Policy with SA_POLICY_ADMIN.POLICY_SUBSCRIBE......................... 9-2
Syntax.. 9-2

Unsubscribing to a Policy with SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE 9-3
Syntax .. 9-3

Policy Administration Functions for Tables and Schemas ... 9-3
Administering Policies on Tables Using SA_POLICY_ADMIN ... 9-4

Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY........................... 9-4
Syntax.. 9-4

Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY 9-5
Syntax .. 9-5

Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY....................... 9-6
Syntax .. 9-6

Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY 9-6
Syntax .. 9-7

Administering Policies on Schemas with SA_POLICY_ADMIN ... 9-7
Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY...................... 9-7

Syntax.. 9-8
Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY 9-8

Syntax.. 9-8
Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY 9-9

Syntax .. 9-9
Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY 9-9

Syntax .. 9-9
Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY 9-10

xi

Syntax.. 9-10
Policy Issues for Schemas .. 9-10

10 Administering and Using Trusted Stored Program Units

Introduction to Trusted Stored Program Units ... 10-1
How a Trusted Stored Program Unit Executes... 10-2
Trusted Stored Program Unit Example.. 10-2

Managing Program Unit Privileges with SET_PROG_PRIVS .. 10-3
Creating and Compiling Trusted Stored Program Units... 10-4

Creating Trusted Stored Program Units ... 10-4
Setting Privileges for Trusted Stored Program Units.. 10-4
Re-Compiling Trusted Stored Program Units.. 10-5
Recreating Trusted Stored Program Units.. 10-5
Executing Trusted Stored Program Units ... 10-5

Using SA_UTL Functions to Set and Return Label Information .. 10-6
Viewing Session Label and Row Label Using SA_UTL.. 10-6

SA_UTL.NUMERIC_LABEL ... 10-6
SA_UTL.NUMERIC_ROW_LABEL ... 10-7
SA_UTL.DATA_LABEL ... 10-7

Setting the Session Label and Row Label Using SA_UTL.. 10-7
SA_UTL.SET_LABEL.. 10-7
SA_UTL.SET_ROW_LABEL.. 10-7

Returning Greatest Lower Bound and Least Upper Bound... 10-8
GREATEST_LBOUND.. 10-8
LEAST_UBOUND ... 10-8

11 Auditing Under Oracle Label Security

Overview of Oracle Label Security Auditing.. 11-1
Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter.......................... 11-2
Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN................................... 11-3

Auditing Options for Oracle Label Security... 11-3
Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT 11-4
Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT 11-5
Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View 11-7

Managing Policy Label Auditing .. 11-7

xii

Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL 11-8
Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL............ 11-8
Finding Label Audit Status with AUDIT_LABEL_ENABLED... 11-8

Creating and Dropping an Audit Trail View for Oracle Label Security 11-8
Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW.. 11-9
Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW... 11-9

Oracle Label Security Auditing Tips... 11-9
Strategy for Setting SA_AUDIT_ADMIN Options .. 11-10
Auditing Privileged Operations ... 11-10

12 Using Oracle Label Security with a Distributed Database

An Oracle Label Security Distributed Configuration.. 12-1
Connecting to a Remote Database Under Oracle Label Security .. 12-3
Establishing Session Label and Row Label for a Remote Session.. 12-3
Setting Up Labels in a Distributed Environment... 12-4

Setting Label Tags in a Distributed Environment.. 12-4
Setting Numeric Form of Label Components in a Distributed Environment.................... 12-5

Using Oracle Label Security Policies in a Distributed Environment 12-6
Using Replication with Oracle Label Security.. 12-7

Introduction to Replication Under Oracle Label Security .. 12-7
Replication Functionality Supported by Oracle Label Security 12-7
Row Level Security Restriction on Replication Under Oracle Label Security............ 12-8

Contents of a Materialized View .. 12-8
How Materialized View Contents Are Determined... 12-9
Complete Materialized Views ... 12-9
Partial Materialized Views ... 12-9

Requirements for Creating Materialized Views Under Oracle Label Security................ 12-10
Requirements for the REPADMIN Account.. 12-10
Requirements for the Owner of the Materialized View... 12-10
Requirements for Creating Partial Multilevel Materialized Views............................ 12-11
Requirements for Creating Complete Multilevel Materialized Views 12-11

How to Refresh Materialized Views .. 12-11

13 Performing DBA Functions Under Oracle Label Security

Using the Export Utility with Oracle Label Security ... 13-1

xiii

Using the Import Utility with Oracle Label Security .. 13-2
Requirements for Import Under Oracle Label Security.. 13-2

Preparing the Import Database ... 13-2
Verifying Import User Authorizations... 13-3

Defining Data Labels for Import .. 13-3
Importing Labeled Data Without Installing Oracle Label Security 13-4
Importing Unlabeled Data .. 13-4
Importing Tables with Hidden Columns.. 13-4

Using SQL*Loader with Oracle Label Security .. 13-5
Requirements for Using SQL*Loader Under Oracle Label Security................................... 13-5
Oracle Label Security Input to SQL*Loader ... 13-5

Performance Tips for Oracle Label Security.. 13-7
Using ANALYZE to Improve Oracle Label Security Performance..................................... 13-7
Creating Indexes on the Policy Label Column... 13-7
Planning a Label Tag Strategy to Enhance Performance.. 13-8
Partitioning Data Based on Numeric Label Tags... 13-10

Creating Additional Databases After Installation ... 13-11

14 Releasability Using Inverse Groups

Introduction to Inverse Groups and Releasability .. 14-1
Comparing Standard Groups and Inverse Groups .. 14-2
How Inverse Groups Work ... 14-3

Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option 14-3
Inverse Groups and Label Components.. 14-4
Computed Labels with Inverse Groups .. 14-5

Computed Session Labels with Inverse Groups... 14-5
Inverse Groups and Computed Max Read Groups and Max Write Groups.............. 14-6

Inverse Groups and Hierarchical Structure.. 14-7
Inverse Groups and User Privileges .. 14-7

Algorithm for Read Access with Inverse Groups... 14-8
Algorithm for Write Access with Inverse Groups .. 14-9
Algorithms for COMPACCESS Privilege with Inverse Groups ... 14-10
Session Labels and Inverse Groups .. 14-12

Setting Initial Session/Row Labels for Standard or Inverse Groups................................ 14-12
Standard Groups: Rules for Changing Initial Session/Row Labels 14-13

xiv

Inverse Groups: Rules for Changing Initial Session/Row Labels.............................. 14-13
Setting Current Session/Row Labels for Standard or Inverse Groups 14-13

Standard Groups: Rules for Changing Current Session/Row Labels 14-13
Inverse Groups: Rules for Changing Current Session/Row Labels 14-14

Examples of Session Labels and Inverse Groups... 14-14
Inverse Groups Example 1 ... 14-14
Inverse Groups Example 2 ... 14-15

Changes in Behavior of Procedures with Inverse Groups.. 14-16
SYSDBA.CREATE_POLICY with Inverse Groups .. 14-17
SYSDBA.ALTER_POLICY with Inverse Groups ... 14-18
SA_USER_ADMIN.ADD_GROUPS with Inverse Groups... 14-18
SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups ... 14-19
SA_USER_ADMIN.SET_GROUPS with Inverse Groups ... 14-19
SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups .. 14-20
SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups.................................. 14-21
SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups... 14-22
SA_COMPONENTS.CREATE_GROUP with Inverse Groups .. 14-22
SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups........................... 14-22
SA_SESSION.SET_LABEL with Inverse Groups ... 14-22
 SA_SESSION.SET_ROW_LABEL with Inverse Groups .. 14-23
LEAST_UBOUND with Inverse Groups ... 14-23
GREATEST_LBOUND with Inverse Groups.. 14-23

Dominance Rules for Labels with Inverse Groups .. 14-24

A Advanced Topics in Oracle Label Security

Analyzing the Relationships Between Labels... A-1
Dominant and Dominated Labels .. A-1
Non-Comparable Labels.. A-2
Using Dominance Functions ... A-2

DOMINATES Standalone Function.. A-3
STRICTLY_DOMINATES Standalone Function... A-3
DOMINATED_BY Standalone Function.. A-4
STRICTLY_DOMINATED_BY Standalone Function... A-4
SA_UTL.DOMINATES ... A-4
SA_UTL.STRICTLY_DOMINATES .. A-4

xv

SA_UTL.DOMINATED_BY... A-5
SA_UTL.STRICTLY_DOMINATED_BY.. A-5

OCI Interface for Setting Session Labels ... A-5
OCIAttrSet ... A-6
OCIAttrGet .. A-6
OCIParamGet .. A-6
OCIAttrSet ... A-6
OCI Example ... A-7

B Command-line Tools for Label Security Using Oracle Internet Directory

Command Explanations .. B-5
Relating Parameters to Commands for olsadmintool.. B-15

Summaries ... B-15
Examples of Using olsadmintool ... B-19

Make Other Users Policy Creators.. B-19
Create Policies With Valid Options .. B-19
Create Policy Administrators .. B-19
Create Some Levels ... B-20
Create Some Compartments .. B-20
Create Some Groups ... B-20
Create Some Labels ... B-21
Create A Profile ... B-21
Add A User To The Above Profile.. B-21
Add Another User To The Above Profile .. B-21
Set Some Audit Options ... B-21

Results of These Examples .. B-21

C Reference

Oracle Label Security Data Dictionary Tables and Views.. C-1
Oracle9i Data Dictionary Tables... C-2
Oracle Label Security Data Dictionary Views .. C-2

ALL_SA_AUDIT_OPTIONS.. C-2
ALL_SA_COMPARTMENTS .. C-2
ALL_SA_DATA_LABELS.. C-3
ALL_SA_GROUPS .. C-3

xvi

ALL_SA_LABELS... C-3
ALL_SA_LEVELS ... C-3
ALL_SA_POLICIES.. C-4
ALL_SA_PROG_PRIVS ... C-4
ALL_SA_SCHEMA_POLICIES .. C-4
ALL_SA_TABLE_POLICIES... C-5
ALL_SA_USERS ... C-5
ALL_SA_USER_LABELS... C-5
ALL_SA_USER_LEVELS... C-6
ALL_SA_USER_PRIVS .. C-6
DBA_SA_AUDIT_OPTIONS .. C-7
DBA_SA_COMPARTMENTS... C-7
DBA_SA_DATA_LABELS .. C-7
DBA_SA_GROUPS... C-8
DBA_SA_GROUP_HIERARCHY .. C-8
DBA_SA_LABELS .. C-8
DBA_SA_LEVELS .. C-8
DBA_SA_POLICIES ... C-9
DBA_SA_PROG_PRIVS... C-9
DBA_SA_SCHEMA_POLICIES.. C-9
DBA_SA_TABLE_POLICIES .. C-9
DBA_SA_USERS... C-10
DBA_SA_USER_COMPARTMENTS .. C-11
DBA_SA_USER_GROUPS .. C-11
DBA_SA_USER_LABELS.. C-11
DBA_SA_USER_LEVELS .. C-12
DBA_SA_USER_PRIVS ... C-12

Oracle Label Security Auditing Views ... C-12
Restrictions in Oracle Label Security... C-13

CREATE TABLE AS SELECT Restriction in Oracle Label Security C-13
Label Tag Restriction... C-13
Export Restriction in Oracle Label Security ... C-13
Oracle Label Security Deinstallation Restriction... C-13
Shared Schema Support .. C-14
Hidden Columns Restriction ... C-14

xvii

Installing Oracle Label Security ... C-14
Oracle Label Security and the SYS.AUD$ Table ... C-15

Removing Oracle Label Security .. C-15

Index

xviii

List of Figures

1–1 Scope of Data Security Needs .. 1-3
1–2 Oracle Label Security Architecture ... 1-6
1–3 Oracle Label Security Label-Based Security .. 1-7
1–4 Oracle9i Enterprise Edition Virtual Private Database Technology................................ 1-9
2–1 Data Categorization with Levels, Compartments, Groups ... 2-3
2–2 Label Matrix .. 2-7
2–3 Group Example .. 2-8
2–4 Example: Data Labels and User Labels .. 2-13
2–5 How Label Components Interrelate ... 2-14
3–1 Relationships Between Users, Data, and Labels ... 3-2
3–2 User Session Label ... 3-4
3–3 Setting Up Authorized Levels ... 3-6
3–4 Setting Up Authorized Compartments .. 3-7
3–5 Setting Up Authorized Groups ... 3-8
3–6 Subgroup Inheritance of Read/Write Access... 3-11
3–7 Label Evaluation Process for Read Access... 3-12
3–8 Label Evaluation Process for Write Access.. 3-14
3–9 Label Evaluation Process for Read Access with COMPACCESS Privilege 3-18
3–10 Label Evaluation Process for Write Access with COMPACCESS Privilege 3-19
3–11 Stored Program Unit Execution... 3-22
5–1 Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory 5-4
5–2 Oracle Label Security Policies Applied through Oracle Internet Directory 5-4
6–1 Oracle Policy Manager Interface ... 6-7
8–1 Label Evaluation Process for LABEL_UPDATE ... 8-18
12–1 Using Oracle Label Security with a Distributed Database .. 12-2
12–2 Label Tags in a Distributed Database ... 12-5
12–3 Label Components in a Distributed Database... 12-6
12–4 Use of Materialized Views for Replication .. 12-8
14–1 Read Access Label Evaluation with Inverse Groups.. 14-9
14–2 Write Access Label Evaluation with Inverse Groups... 14-10
14–3 Read Access Label Evaluation: COMPACCESS Privilege and Inverse Groups....... 14-11
14–4 Write Access Label Evaluation: COMPACCESS Privilege and Inverse Groups...... 14-12

xix

List of Tables

1–1 Access Mediation Factors in Oracle Label Security.. 1-10
2–1 Sensitivity Label Components... 2-2
2–2 Level Example.. 2-4
2–3 Forms of Specifying Levels .. 2-4
2–4 Compartment Example .. 2-5
2–5 Forms of Specifying Compartments ... 2-6
2–6 Group Example.. 2-8
2–7 Forms of Specifying Groups .. 2-9
2–8 Typical Levels, Compartments, and Groups, by Industry.. 2-10
3–1 Authorized Levels Set by the Administrator .. 3-5
3–2 Computed Session Labels .. 3-8
3–3 Oracle Label Security Privileges.. 3-16
3–4 Types of Privilege.. 3-21
4–1 Administratively Defined Label Tags (Example) ... 4-4
4–2 Generated Label Tags (Example) .. 4-5
4–3 Data Returned from Sample SQL Statements re Hidden Column................................. 4-9
4–4 Data Returned from Sample SQL Statements re Least_UBound 4-12
4–5 MERGE_LABEL Format Constants .. 4-13
4–6 Functions to Change Session Labels... 4-19
4–7 Security Attribute Names and Types ... 4-22
4–8 SA_SESSION Functions to View Security Attributes .. 4-22
5–1 Contents of Each Policy .. 5-11
5–2 Elements in a DIP Provisioning Profile.. 5-15
5–3 Tasks That Certain Entities Can Perform... 5-19
5–4 Access Levels Allowed by Users in OID.. 5-19
5–5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory ... 5-20
6–1 Oracle Label Security Administrative Packages... 6-5
6–2 Parameters for SA_SYSDBA.CREATE_POLICY .. 6-9
6–3 Parameters for SA_SYSDBA.ALTER_POLICY ... 6-10
6–4 Parameters for SA_SYSDBA.DISABLE_POLICY ... 6-10
6–5 Parameters for SA_SYSDBA.ENABLE_POLICY .. 6-11
6–6 Parameters for SA_SYSDBA.DROP_POLICY... 6-12
6–7 Parameters for SA_COMPONENTS.CREATE_LEVEL ... 6-13
6–8 Parameters for SA_COMPONENTS.ALTER_LEVEL.. 6-14
6–9 Parameters for SA_COMPONENTS.DROP_LEVEL.. 6-15
6–10 Parameters for SA_COMPONENTS.CREATE_COMPARTMENT 6-15
6–11 Parameters for SA_COMPONENTS.ALTER_COMPARTMENT 6-16
6–12 Parameters for SA_COMPONENTS.DROP_COMPARTMENT.................................. 6-16
6–13 Parameters for SA_COMPONENTS.CREATE_GROUP ... 6-17

xx

6–14 Parameters for SA_COMPONENTS.ALTER_GROUP .. 6-18
6–15 Parameters for SA_COMPONENTS.ALTER_GROUP_PARENT................................ 6-18
6–16 Parameters for SA_COMPONENTS.DROP_GROUP .. 6-19
6–17 Parameters for SA_LABEL_ADMIN.CREATE_LABEL .. 6-20
6–18 Parameters for SA_LABEL_ADMIN.ALTER_LABEL ... 6-21
6–19 Parameters for SA_LABEL_ADMIN.DROP_LABEL ... 6-22
7–1 Parameters for SA_USER_ADMIN.SET_LEVELS .. 7-3
7–2 Parameters for SA_USER_ADMIN.SET_COMPARTMENTS .. 7-4
7–3 Parameters for SA_USER_ADMIN.SET_GROUPS .. 7-4
7–4 Parameters for SA_USER_ADMIN.ALTER_COMPARTMENTS 7-5
7–5 Parameters for SA_USER_ADMIN.ADD_COMPARTMENTS 7-6
7–6 Parameters for SA_USER_ADMIN.DROP_COMPARTMENTS 7-7
7–7 Parameters for SA_USER_ADMIN.DROP_ALL_COMPARTMENTS 7-8
7–8 Parameters for SA_USER_ADMIN.ADD_GROUPS .. 7-8
7–9 Parameters for SA_USER_ADMIN.ALTER_GROUPS .. 7-9
7–10 Parameters for SA_USER_ADMIN.DROP_GROUPS .. 7-10
7–11 Parameters for SA_USER_ADMIN.DROP_ALL_GROUPS .. 7-10
7–12 Parameters for SA_USER_ADMIN.SET_USER_LABELS.. 7-11
7–13 Parameters for SA_USER_ADMIN.SET_DEFAULT_LABEL 7-12
7–14 Parameters for SA_USER_ADMIN.SET_ROW_LABEL .. 7-13
7–15 Parameters for SA_USER_ADMIN.DROP_USER_ACCESS... 7-14
7–16 Parameters for SA_USER_ADMIN.SET_USER_PRIVS ... 7-15
7–17 Parameters for SA_SESSION.SET_ACCESS_PROFILE ... 7-16
7–18 Parameters for SA_SESSION.SA_USER_NAME .. 7-16
7–19 Oracle Label Security Views .. 7-18
8–1 When Policy enforcement Options Take Effect... 8-2
8–2 Policy Enforcement Options .. 8-3
8–3 What Policy Enforcement Options Control ... 8-4
8–4 Suggested Policy Enforcement Option Combinations... 8-11
9–1 Policy Administration Functions .. 9-3
11–1 AUDIT_TRAIL Parameter Settings... 11-2
11–2 Auditing Options for Oracle Label Security.. 11-4
11–3 Columns in the DBA_SA_AUDIT_OPTIONS View... 11-7
11–4 DBA_SA_AUDIT_OPTIONS Sample Output ... 11-7
13–1 Input Choices for Oracle Label Security Input to SQL*Loader 13-6
13–2 Label Tag Performance Example: Correct Values .. 13-9
13–3 Label Tag Performance Example: Incorrect Values.. 13-9
14–1 Access to Standard Groups and Inverse Groups .. 14-3
14–2 Policy Example... 14-4
14–3 Computed Session Labels with Inverse Groups ... 14-5
14–4 Sets of Groups for Evaluating Read and Write Access .. 14-6

xxi

14–5 Read and Write Authorizations for Standard Groups and Inverse Groups............... 14-7
14–6 Labels for Inverse Groups Example 1 .. 14-15
14–7 Labels for Inverse Groups Example 2 .. 14-15
14–8 Access Authorized by Values of access_mode Parameter ... 14-18
14–9 Assigning Groups to a User... 14-19
14–10 Inverse Group Label Definitions... 14-20
A–1 Dominance in the Comparison of Labels... A-1
A–2 Functions to Determine Dominance... A-2
B–1 Oracle Label Security Commands in Categories .. B-2
B–2 olsadmintool Commands Linked to Their Explanations .. B-4
B–3 Summary: olsadmintool Command Parameters .. B-16
B–4 Summary of Profile & Default Command Parameters .. B-18
B–5 Label Component Definitions from Using olsadmintool Commands B-22
B–6 Contents of Profile1 from Using olsadmintool Commands.. B-22

xxii

xxiii

Send Us Your Comments

Oracle Label Security Administrator's Guide 10g Release 1 (10.1)

Part No. B10774-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxiv

xxv

Preface

Oracle Label Security enables access control to reach specific (labeled) rows of a
database. With Oracle Label Security in place, users with varying privilege levels
automatically have (or are excluded from) the right to see or alter labeled rows of
data.

This Oracle Label Security Administrator’s Guide describes how to use Oracle Label
Security to protect sensitive data. It explains the basic concepts behind label-based
security and provides examples to show how it is used.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Audience
The Oracle Label Security Administrator’s Guide is intended for database
administrators (DBAs), application programmers, security administrators, system
operators, and other Oracle users who perform the following tasks:

■ Analyze application security requirements

■ Create label-based security policies

■ Administer label-based security policies

xxvi

■ Use label-based security policies

To use this document, you need a working knowledge of SQL and Oracle
fundamentals. You should also be familiar with Oracle security features described
in "Related Documentation" on page -xxix. To use SQL*Loader, you must know how
to use the file management facilities of your operating system.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

 http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

Organization
This document contains:

Part I: Concepts
This part introduces basic conceptual information about Oracle Label Security.

xxvii

Chapter 1, "Introduction to Oracle Label Security"
This chapter introduces Oracle Label Security in the larger context of data security.
It gives an overview of computer security issues and data access controls, and
outlines the architecture and major features of Oracle Label Security.

Chapter 2, "Understanding Data Labels and User Labels"
This chapter discusses the fundamental concepts of data labels and user
authorizations, and introduces the terminology that will help you understand
Oracle Label Security. It covers label components, label syntax and type, and
explains how data labels and user authorizations work together.

Chapter 3, "Understanding Access Controls and Privileges"
This chapter presents the access controls and privileges that determine the type of
access users can have to the rows affected. It introduces the concepts of session label
and row label, and explains how rows are evaluated for access mediation.

Part II: Using Oracle Label Security Functionality
This part provides the information needed by users of Oracle Label Security
policies.

Chapter 4, "Working with Labeled Data"
This chapter explains how to use Oracle Label Security features to manage labeled
data. It then shows how to view and change the value of security attributes for a
session.

Chapter 5, "Oracle Label Security Using Oracle Internet Directory"
This chapter explains the integration of Oracle Label Security features with those of
Oracle Internet Directory. Enabling Oracle Label Security to take advantage of the
central directory simplifies management of data labels, user labels and privileges,
policies, and enterprise users across multiple databases and domains.

Part III: Administering an Oracle Label Security Application
This part explains how to create and manage an Oracle Label Security application.

Chapter 6, "Creating an Oracle Label Security Policy"
This chapter explains how to create an Oracle Label Security policy, and its
underlying label components and labels.

xxviii

Chapter 7, "Administering User Labels and Privileges"
This chapter explains how you can set authorizations for users, and grant privileges
to users or stored program units by means of the available Oracle Label Security
packages, or Oracle Policy Manager.

Chapter 8, "Implementing Policy Enforcement Options and Labeling
Functions"
This chapter explains how to customize the enforcement of Oracle Label Security
policies, and how to implement labeling functions and SQL predicates.

Chapter 9, "Applying Policies to Tables and Schemas"
This chapter describes the SA_POLICY_ADMIN package, which enables you to
administer policies on tables and schemas.

Chapter 10, "Administering and Using Trusted Stored Program Units"
This chapter explains how to use trusted stored program units to enhance system
security.

Chapter 11, "Auditing Under Oracle Label Security"
This chapter explains how Oracle Label Security supplements the Oracle9i audit
facility by tracking use of its own administrative operations and policy privileges. It
describes the SA_AUDIT_ADMIN package, which enables you to set and change
the policy auditing options.

Chapter 12, "Using Oracle Label Security with a Distributed Database"
This chapter describes special considerations for using Oracle Label Security in a
distributed configuration.

Chapter 13, "Performing DBA Functions Under Oracle Label Security"
The standard Oracle9i utilities can be used under Oracle Label Security, but certain
restrictions apply, and extra steps may be required to get the expected results. This
chapter describes these special considerations.

Chapter 14, "Releasability Using Inverse Groups"
This chapter discusses the Oracle Label Security implementation of releasability
using inverse groups.

xxix

Part IV: Appendices

Appendix A, "Advanced Topics in Oracle Label Security"
This appendix describes dominance relationships, and other ways in which the
relationships between labels can be analyzed. It also describes the OCI interface for
setting session labels.

Appendix C, "Reference"
This appendix documents the MAX_LABEL_POLICIES initialization parameter, the
Oracle Label Security data dictionary tables, and Oracle Label Security restrictions.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Security Overview

■ Oracle Database Concepts

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Reference

■ Oracle Database Reference

■ Oracle Database Advanced Replication

■ Oracle Database Utilities

■ Oracle Database Performance Tuning Guide

Many of the examples in the documentation set use the sample schemas of the seed
database, which is installed by default when you install Oracle. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

xxx

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xxxi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xxxii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example

Part I
Concepts

This part introduces the terms, concepts, and relationships that constitute the basic
elements of Oracle Label Security, and contains the following chapters:

■ Chapter 1, "Introduction to Oracle Label Security"

■ Chapter 2, "Understanding Data Labels and User Labels"

■ Chapter 3, "Understanding Access Controls and Privileges"

Introduction to Oracle Label Security 1-1

1
Introduction to Oracle Label Security

Control of access to sensitive information is of concern to managers, information
officers, DBAs, and application developers, among many others. Selective access
control based on a user's level of security clearance can ensure confidentiality
without overbroad limitations. This level of access control enables confidence that
sensitive information will be unavailable to unauthorized persons even while
general users have access to needed information, sometimes in the same tables.

Data can be viewed as sensitive for many different reasons. Examples include
personal and private matters or communications, professional trade secrets,
company plans for marketing or finance, military information, or government plans
for research, purchases, or other actions.

Allowing information to be seen or used by inappropriate persons can be
embarrassing, damaging, or dangerous to individuals, careers, organizations,
agencies, governments, or countries.

Yet such data is often intermingled with other, less sensitive information that is
legitimately needed by diverse users. Restricting access to entire tables or
segregating sensitive data into separate databases can create an awkward working
environment that is costly in hardware, software, user time, and administration.

Oracle Label Security obviates the need for such measures by enabling row-level
access control, based on the virtual private database technology of Oracle9i
Enterprise Edition. It controls access to the contents of a row by comparing that
row's label with a user's label and privileges. Administrators can easily add
selective row-restrictive policies to existing databases by means of the easy-to-use
graphical interface called Oracle Policy Manager. Developers can readily add
label-based access control to their Oracle9i applications.

Computer Security and Data Access Controls

1-2 Oracle Label Security Administrator’s Guide

This chapter introduces Oracle Label Security in the larger context of data security.
It contains the following sections:

■ Computer Security and Data Access Controls

■ Oracle Label Security Architecture

■ Features of Oracle Label Security

■ Oracle Label Security Integration with Oracle Internet Directory

Computer Security and Data Access Controls
Computer security involves the protection of computerized data and processes from
unauthorized modification, destruction, disclosure, or delay. In the Internet age, the
risks to valuable and sensitive data are greater than ever before. Figure 1–1 shows
the complex computing environment that your data security plan must encompass.

This section introduces basic terms and concepts of computer security as they relate
to Oracle Label Security, in the following topics:

■ Oracle Label Security and Security Standards

■ Security Policies

■ Access Control

Note: This book assumes that you understand the basic concepts
and terminology of Oracle9i database administration and
application development. It supplements core Oracle9i
documentation by focusing on the extra considerations involved in
using, administering, and developing applications for Oracle Label
Security.

See Also: For a complete introduction to Oracle9i features and
terminology, see Oracle Database Concepts

Computer Security and Data Access Controls

Introduction to Oracle Label Security 1-3

Figure 1–1 Scope of Data Security Needs

Security officers, administrators, and application programmers must protect
databases and the servers on which those databases reside; they must administer
and protect the rights of internal database users; and they must guarantee electronic
commerce confidentiality as customers access those databases. Oracle Corporation
provides products to address this full spectrum of computer security issues.

Oracle Label Security and Security Standards
Oracle Corporation is a leader in information assurance. Security evaluation is a
formal assessment process performed by independent bodies against national and
international criteria. It provides external and objective assurance that a system
meets the security criteria for which it was designed. Upon successful completion of
an evaluation, a security rating is assigned to the system or product. This
certification provides confidence in the security of information technology products
and systems to commercial and government users.

The Oracle RDBMS has met the Database Management System Protection Profile
(DBMS PP). Oracle Label Security has been evaluated under the Common Criteria
(ISO 15408) at Evaluation Assurance Level (EAL) 4, the highest level generally
achieved by commercial software vendors.

Database
Server

Clients Application
Web Server

Clients

Intranet

Databases

Internet

Computer Security and Data Access Controls

1-4 Oracle Label Security Administrator’s Guide

Security Policies
A database security policy implements an overall system security policy within a
broad, organizational security policy. The overall security policy can enforce the
following types of rules:

Access Control
Access control defines a user's ability to read, write, update, insert, or delete
information. The following approaches are available to meet access control needs:

■ Discretionary Access Control

■ Oracle Label Security

■ How Oracle Label Security Works with Discretionary Access Control

Discretionary Access Control
Oracle9i provides discretionary access control (DAC) on each table, controlling access
to information through privileges (SELECT, INSERT, UPDATE, and DELETE) that
authorize corresponding SQL operations on the table.

DAC controls access to data in a one-dimensional, binary way, meaning that access
is granted or denied to the entire object. The administrator grants users privileges
that determine the operations they can perform upon data. To access an object, such
as a table or view, a user or process must have the appropriate privilege, such as the
SELECT privilege. To access data in an object, a user or process must first have the
necessary DAC privileges.

Oracle Label Security
Labels enable sophisticated access control rules beyond those of discretionary access
control by using data in the row. When a policy is applied, a new column is added
to each data row. This column will store the label reflecting each row's sensitivity

Type of Rules Purpose

Data Integrity Rules To ensure that information in the system is consistent

Availability Rules To ensure that information in the system is available

Access Control Rules To prevent unauthorized disclosure of information

Oracle Label Security provides a default policy for information
access control, and also enables you to define other, more
customized policies for use at any given site.

Computer Security and Data Access Controls

Introduction to Oracle Label Security 1-5

within that policy. Level access is then determined by comparing the user's identity
and label with that of the row.

Oracle Label Security access control depends first on the basic DAC policy.
Together, DAC and Oracle Label Security dictate the criteria controlling whether
access to a row is permitted or denied.

In most applications, only a relatively small number of tables need the extra
security of label-based access controls. The protection provided by standard DAC is
sufficient for the majority of application tables.

How Oracle Label Security Works with Discretionary Access Control
To be allowed access to a row, a user must first satisfy Oracle9i DAC requirements,
and then satisfy Oracle Label Security requirements.

Oracle9i enforces DAC based on the user's system and object privileges: The user
must be authenticated to the Oracle9i database, and must have the object and
system privileges DAC requires for the requested operation.

If DAC permits access, the user's requested operation must then meet the criteria
added by Oracle Label Security, using all of the following facts:

■ Oracle Label Security label definitions and label hierarchies

■ the labels of the user and row

■ Oracle Label Security enforcement options

■ the user's Oracle Label Security policy privileges

Oracle Label Security's flexibility and functionality supports applications in a wide
variety of production environments. It maintains standard Oracle9i data integrity,
availability, and recovery capabilities, including user accountability and auditing,
while enforcing a site's security policies.

Figure 1–2 illustrates how data is accessed under Oracle Label Security, showing
the sequence of DAC and label security checks. An application user in an Oracle9i
session issues a SQL request. Oracle9i checks the DAC privileges, making sure the
user has SELECT privileges on the table. Then it checks whether a VPD policy has
been attached to the table, finding that the table is protected by Oracle Label
Security. The SQL statement is modified on the fly.

Oracle Label Security is invoked for each row. Access is granted or denied based on
comparing the data label and the user's session label, subject to the user's Oracle
Label Security privileges.

Oracle Label Security Architecture

1-6 Oracle Label Security Administrator’s Guide

Oracle Label Security Architecture
Oracle Label Security is built on the virtual private database (VPD) technology
delivered in the Oracle Enterprise Edition and leverages that product's Application
Context functionality.

Figure 1–2 Oracle Label Security Architecture

Features of Oracle Label Security
Oracle Label Security provides row level security access controls that operate in
addition to the underlying access controls of the Oracle9i database. This section
presents Oracle Label Security features in the following topics:

■ Overview of Oracle Label Security Policy Functionality

■ Oracle Enterprise Edition: Virtual Private Database Technology

■ Oracle Label Security: An Out-of-the-Box Virtual Private Database

■ Label Policy Features

Oracle Data Server

Application

Oracle User / Session

Object Privilege

Access

Check DAC

SQL Request

USER

VPD SQL Modification

Data Record

Data Record
Oracle Label Security

Enforcement

Table

Data Record

Security Policy

Access Control
Tables

User Defined
VPD Policies

Label Security

Fine Grained
Access Mediation

Features of Oracle Label Security

Introduction to Oracle Label Security 1-7

Overview of Oracle Label Security Policy Functionality
A Label Security administrator defines a set of labels for data and users, along with
authorizations for users and program units, that govern access to specified
protected objects. A policy is nothing more than a name associated with these
labels, rules, and authorizations.

For example, assume that a user has SELECT privilege on an application table. As
illustrated in Figure 1–3, when the user executes a SELECT statement, Oracle Label
Security evaluates each row selected to determine whether the user can access it.
The decision is based on the privileges and access labels assigned to the user by the
security administrator. Oracle Label Security can also be configured to perform
security checks on UPDATE, DELETE, and INSERT statements.

Figure 1–3 Oracle Label Security Label-Based Security

■ Oracle Label Security enables a comprehensive set of access authorizations,
explained in Chapter 3, to ensure that the sensitivity label itself can be
protected—separately from the other data contained in the row.

■ Oracle Label Security provides for flexible policy enforcement to handle special
processing requirements. Examples include limiting enforcement to only one
type of Data Manipulation Language statement, limiting label creation by users,
or enabling default labels.

■ Policies can protect individual application tables. Usually not all tables in an
application need to be protected. For example, lookup tables such as zip codes
do not need such protection.

■ Oracle Label Security allows the security administrator to add special labeling
functions and SQL predicates to a policy, possibly simplifying user operations.

■ Administrators or application developers can create multiple Oracle Label
Security policies. For example, a human resources policy can co-exist with a
defense policy in the same database. Each policy can be independently

GRADE 600

600

400

RATE

Manager

Senior

Director

600

450

UNCLASSIFIED

UNCLASSIFIED

SENSITIVE

SENSITIVE

Principal

Senior

ROW LABEL

750 HIGHLY_SENSITIVEUser session label
is UNCLASSIFIED

Features of Oracle Label Security

1-8 Oracle Label Security Administrator’s Guide

configured, with its own unique label definitions and its own column for data
labels.

■ A single policy can be defined and applied to multiple application tables.

Oracle Enterprise Edition: Virtual Private Database Technology
VPD supports policy-driven access control. VPD policies enforce object-level access
control or row-level security. It provides an application program interface (API) that
allows security policies to be assigned to database tables and views. For example,
one can allow access to salary data only for managers in the same facility. Using
PL/SQL, developers and security administrators can create security policies with
stored procedures. These procedures can be bound to a table or view by means of a
call to an RDBMS package. Such policies restrict access by using the content of
application data stored in the Oracle9i database or context variables provided by
Oracle9i, such as user name or IP address. Using VPD policies permits developers
to remove access security mechanisms from applications and centralize them within
Oracle9i.

As illustrated in Figure 1–4, VPD lets you associate security conditions with tables,
views, or synonyms. In this example, when each user selects from the ORDERS
table, the appropriate security condition is automatically enforced. No matter how
the data is accessed, the server automatically enforces security policies, eliminating
the need to use many views to implement security.

Features of Oracle Label Security

Introduction to Oracle Label Security 1-9

Figure 1–4 Oracle9i Enterprise Edition Virtual Private Database Technology

Oracle Label Security: An Out-of-the-Box Virtual Private Database
Oracle Label Security provides a built-in security policy and infrastructure that
easily enforces row-level security. This out-of-the-box solution requires no
programming, dramatically reducing both total cost of ownership and the time to
market for new products and applications.

Oracle Label Security administrators create policies for row-level security by simply
providing a descriptive name, without writing PL/SQL. There is no need to write
additional code; in a single step you can apply a security policy to a given table.
This straightforward, efficient way to implement fine-grained security policies
allows a granularity and flexibility not easily achieved with VPD alone. Oracle
Label Security is thus a generic solution that can be used in many different
circumstances.

Label Policy Features
Oracle Label Security adds label-based access controls to the Oracle9i
object-relational database management system. Access to data is mediated based on
these factors:

SELECT * FROM ORDERS;

Orders

SELECT * FROM ORDERS;

Features of Oracle Label Security

1-10 Oracle Label Security Administrator’s Guide

Consider, for example, a standard Data Manipulation Language operation (such as
SELECT) performed upon a row of data. When evaluating this access request by a
user with the CONFIDENTIAL label, to a data row labeled CONFIDENTIAL,
Oracle Label Security determines that this access can, in fact, be achieved. If the row
label were higher, say TOP SECRET, access would be denied.

In this way, data of different sensitivities—or belonging to different companies—can
be stored and managed on a single system, while preserving data security through
standard Oracle access controls. Likewise, applications from a broad range of
industries can use row labels with policies providing additional highly targeted
access control wherever necessary, without disturbing other existing uses for the
same tables.

Labels and policy enforcement depend on the factors explained in the following
sections:

■ Data Labels

■ Label Authorizations

■ Policy Privileges

■ Policy Enforcement Options

■ Summary: Four Aspects of Label-Based Row Access

Data Labels
In Oracle Label Security, each row of a table can be labeled as to its level of
confidentiality. Every label contains three components:

■ a single level (sensitivity) ranking

■ zero or more horizontal compartments or categories

■ zero or more hierarchical groups

Table 1–1 Access Mediation Factors in Oracle Label Security

Label or Policy Factor
Chapter
Reference

The label of the data row to which access is requested Chapter 3

The label of the user session requesting access Chapter 3

The policy privileges for that user session Chapter 3

The policy enforcement options established for that table Chapter 3

Features of Oracle Label Security

Introduction to Oracle Label Security 1-11

Levels represent a hierarchy of data sensitivity to exposure or corruption, where the
concern is maintaining privacy or security. Levels constitute the primary
mechanism to exclude users who are not authorized to see or alter certain data. A
user with a lower authorization level, represented by a numerically lower number,
is automatically restricted from accessing data labeled with a higher level number.
A typical government organization might define levels CONFIDENTIAL,
SENSITIVE, and HIGHLY_SENSITIVE. A commercial organization might define a
single level for COMPANY_CONFIDENTIAL data.

The compartment component is not hierarchical, but simply designates some useful
categories typically defined to segregate data—such as data related to separate
ongoing strategic initiatives. Some organizations omit using compartments initially.

The group component is hierarchical and is used to reflect ownership. For example,
FINANCE and ENGINEERING groups can be defined as children of the CEO
group, creating an ownership relation. This hierarchy determines that a user labeled
with only ENGINEERING could not view data labeled with FINANCE, but a user
labeled CEO could see data labeled as either subgroup. The full rules for how
groups determine access are described in Chapter 3.

A label can be any one of the following four combinations of components:

■ a single level component, with no groups or compartments, such as U::

■ a level and a set of compartments with no groups, such as U:Alpha, Beta:

■ a level and a set of groups with no compartments, such as U::FIN, ASIA

■ a level with both compartments and groups, such as U:Beta,Psi:ASIA,FIN

Label Authorizations
Users can be granted label authorizations that determine what kind of access (read
or write) they have to the rows that are labeled. When a label has been applied to a
row, only users authorized for access to that label can see it or possibly change it.
No user can access or affect rows for which that user lacks appropriate
authorization. If a row has multiple labels, a user must have appropriate
authorizations for each such label in order to see or alter that row.

Policy Privileges
Policy privileges enable a user or stored program unit to bypass some aspects of the
label-based access control policy. In addition, the administrator can authorize the
user or program unit to perform specific actions, such as the ability of one user to
assume the authorizations of a different user. Chapter 3 explains privileges.

Oracle Label Security Integration with Oracle Internet Directory

1-12 Oracle Label Security Administrator’s Guide

Privileges can be granted to program units, authorizing the procedure, rather than
the user, to perform privileged operations. System security is at its highest when
only stored program units—and not individual users—have Oracle Label Security
privileges. Further, such program units encapsulate the policy, minimizing the
amount of application code that needs to be reviewed for security.

Policy Enforcement Options
In Oracle Label Security, administrators or application developers can apply
different policy enforcement options for maximum flexibility in controlling the Data
Manipulation Language operations users can perform. Chapter 7 explains policy
enforcement options.

Summary: Four Aspects of Label-Based Row Access
When label-based access is enforced within a protected table, access to a row
requires a user's label to meet certain criteria determined by policy definitions.
These access controls act as a secondary access mediation check, after the
discretionary access controls implemented by the application developers.

In summary, Oracle Label Security provides four aspects of label-based access
control:

■ A user's label indicates the information that a user is permitted to access, and
determines the type of access (read or write) the user is allowed to perform.

■ A row's label indicates the sensitivity of the information that the row contains,
and can also indicate its ownership and its affiliation with similar data.

■ A user's policy privileges can enable bypassing some aspects of a label-based
access control policy.

■ A table's policy enforcement options determine various aspects of how access
controls are enforced for read and write operations.

Oracle Label Security Integration with Oracle Internet Directory
Sites that integrate their use of Oracle Label Security with Oracle Internet Directory
gain significant efficiencies of label security operation and administration. Policies
and user authorization profiles are created and managed directly in the directory by
means of the commands described in Appendix B, "Command-line Tools for Label
Security Using Oracle Internet Directory". Changes are automatically propagated to
the associated directories.

Oracle Label Security Integration with Oracle Internet Directory

Introduction to Oracle Label Security 1-13

A complete introduction to this integration is presented in Chapter 5, "Oracle Label
Security Using Oracle Internet Directory".

Note that the graphical user interface for the Oracle Policy Manager (OPM) should
be used for viewing data only when Oracle Label Security is configured to use the
Oracle Internet Directory. OPM can be used to view and modify data only when
Oracle Label Security is configured to use the Oracle9i database as its primary
repository. OPM can be used to manage VPD regardless of the Oracle Label Security
configuration.

Oracle Label Security Integration with Oracle Internet Directory

1-14 Oracle Label Security Administrator’s Guide

Understanding Data Labels and User Labels 2-1

2
Understanding Data Labels and User Labels

This chapter discusses the fundamental concepts of data labels and user labels, and
introduces the terminology that will help you understand Oracle Label Security.

The chapter includes:

■ Introduction to Label-Based Security

■ Label Components

■ Label Syntax and Type

■ How Data Labels and User Labels Work Together

■ Administering Labels

Introduction to Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive data.
Oracle Label Security controls data access based on the identity and label of the
user, and the sensitivity and label of the data. Label security adds protections
beyond the discretionary access controls that determine the operations users can
perform upon data in an object, such as a table or view.

An Oracle Label Security policy controls access to data in three dimensions:

Data Dimension Explanation

Data Labels A data row label indicates the level and nature of the row's
sensitivity and species the additional criteria that a user must
meet to gain access to that row.

Label Components

2-2 Oracle Label Security Administrator’s Guide

Note that the discussion here concerns access to data. The particular type of access,
such as reading or writing the data, is covered in Chapter 3, "Understanding Access
Controls and Privileges". Policy privileges are covered in Chapter 7, "Administering
User Labels and Privileges"

When an Oracle Label Security policy is applied to a database table, a column is
added to the table to contain each row's label. The administrator can choose to
display or hide this column.

Label Components
This section describes the three elements defined for use in labels.

■ Label Component Definitions and Valid Characters

■ Levels

■ Compartments

■ Groups

■ Industry Examples of Levels, Compartments, and Groups

Label Component Definitions and Valid Characters
A sensitivity label is a single attribute with multiple components. All data labels
must contain a level component, but the compartment and group components are
optional. An administrator must define the label components before creating labels.

User Labels A user label specifies that user's sensitivity level plus any
compartments and groups that constrain the user's access to
labeled data. Each user is assigned a range of levels,
compartments, and groups, and each session can operate within
that authorized range to access labeled data within that range.

Policy Privileges Users can be given specific rights (privileges) to perform special
operations or to access data beyond their label authorizations.

Table 2–1 Sensitivity Label Components

Component Description Examples

Level A single specification of the labeled data's
sensitivity within the ordered ranks
established

CONFIDENTIAL (1),
SENSITIVE (2), HIGHLY
SENSITIVE (3)

Data Dimension Explanation (Cont.)

Label Components

Understanding Data Labels and User Labels 2-3

Valid characters for specifying all label component include alphanumeric
characters, underscores, and spaces. (Leading or trailing spaces are ignored.)

The following figure illustrates the three dimensions in which data can be logically
classified, using levels, compartments, and groups.

Figure 2–1 Data Categorization with Levels, Compartments, Groups

Compartments Zero or more categories associated with
the labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers for organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

Table 2–1 Sensitivity Label Components

Component Description Examples

Compartment C

Level 3

Level 2

Level 1

Compartment B
Compartment A

Group 1

Group 2

Group 3

Label Components

2-4 Oracle Label Security Administrator’s Guide

Levels
A level is a ranking that denotes the sensitivity of the information it labels. The more
sensitive the information, the higher its level. The less sensitive the information, the
lower its level.

Every label must include one level. Oracle Label Security permits defining up to
10,000 levels in a policy. For each level, the Oracle Label Security administrator
defines a numeric form and character forms.

For example, you can define a set of levels like the following:

Table 2–2 Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS

30 SENSITIVE S

20 CONFIDENTIAL C

10 PUBLIC P

Table 2–3 Forms of Specifying Levels

Form Explanation

Numeric Form, also
called "tag"

The numeric form of the level can range from 0 to 9999.
Sensitivity is ranked by this numeric value, so you must
assign higher numbers to levels that are more sensitive,
and lower numbers to levels that are less sensitive. In
Table 2–2, 40 (HIGHLY_SENSITIVE) is a higher level
than 30, 20, and 10.

Administrators should avoid using sequential numbers
for the numeric form of levels. A good strategy is to use
even increments (such as 50 or 100) between levels. You
can then insert additional levels between two
pre-existing levels, at a later date.

Long Form The long form of the level name can contain up to 80
characters.

Short Form The short form can contain up to 30 characters.

Label Components

Understanding Data Labels and User Labels 2-5

Although the administrator defines both long and short names for the level (and for
each of the other label components), only the short form of the name is displayed
upon retrieval. When users manipulate the labels, they use only the short form of
the component names.

Other sets of labels that users commonly define include TOP_SECRET, SECRET,
CONFIDENTIAL, and UNCLASSIFIED; or TRADE_SECRET, PROPRIETARY,
COMPANY_CONFIDENTIAL, PUBLIC_DOMAIN.

If only levels are used, a level 40 user (in this example) can access or alter any data
row whose level is 40 or less.

Compartments
Compartments identify areas that describe the sensitivity of the labeled data,
providing a finer level of granularity within a level.

Compartments associate the data with one or more security areas. All data related
to a particular project can be labeled with the same compartment. For example, you
can define a set of compartments like the following:

Note: In this guide, all labels (including "TOP_SECRET,"
"SECRET," "CONFIDENTIAL," and so on) are used as illustrations
only.

Table 2–4 Compartment Example

Numeric Form Long Form Short Form

85 FINANCIAL FINCL

65 CHEMICAL CHEM

45 OPERATIONAL OP

Label Components

2-6 Oracle Label Security Administrator’s Guide

Compartments are optional; a label can contain zero or more compartments. Oracle
Label Security permits defining up to 10,000 compartments.

Not all labels need to have compartments. For example, you can specify HIGHLY_
SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE
level that does contain compartments.

When you analyze your data's sensitivity, you may find that some compartments
are only useful at specific levels. Figure 2–2 shows how compartments can be used
to categorize data.

Table 2–5 Forms of Specifying Compartments

Form Explanation

Numeric Form The numeric form can range from 0 to 9999; it is unrelated to
the numbers used for the levels. The numeric form of the
compartment does not indicate greater or less sensitivity.
Instead, it controls the display order of the short form
compartment name in the label character string. For example,
assume a label is created that has all three compartments listed
in Table 2–4, and a level of SENSITIVE. When this label is
displayed in string format, it looks like this:

S:OP,CHEM,FINCL

The display order follows the order of the numbers assigned to
the compartments: 45 is lower than 65, and 65 is lower than 85.
By contrast, if the number assigned to the FINCL compartment
were 5, the character string format of the label would look like
this:

S:FINCL,OP,CHEM

Long Form The compartment name's long form can have up to 80
characters.

Short Form The short form can contain up to 30 characters.

Label Components

Understanding Data Labels and User Labels 2-7

Figure 2–2 Label Matrix

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_
SENSITIVE (40). The label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of
40 with the two named compartments. Compartment FINCL is not more sensitive
than CHEM, nor is CHEM more sensitive than FINCL. Note also that some data in
the protected table may not belong to any compartment.

If compartments are specified, then a user whose level would normally permit
access to a row's data will nevertheless be prevented from such access unless the
user's label also contains all the compartments appearing in that row's label.

Groups
Groups identify organizations owning or accessing the data, such as EASTERN_
REGION, WESTERN_REGION, WR_SALES. All data pertaining to a certain
department can have that department's group in the label. Groups are useful for the
controlled dissemination of data, and for timely reaction to organizational change.
When a company reorganizes, data access can change right along with the
reorganization.

Groups are hierarchical: you can label data based upon your organizational
infrastructure. A group can thus be associated with a parent group. For example,
you can define a set of groups corresponding to the following organizational
hierarchy:

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Label Components

2-8 Oracle Label Security Administrator’s Guide

Figure 2–3 Group Example

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_
HUMAN_RESOURCES, and WR_FINANCE. The WR_FINANCE subgroup is
further subdivided into WR_ACCOUNTS_RECEIVABLE and WR_ACCOUNTS_
PAYABLE.

Table 2–6 shows how the organizational structure in this example can be expressed
in the form of Oracle Label Security groups. Notice that the numeric form assigned
to the groups affects display order only. The administrator specifies the hierarchy
(that is, the parent-child relationships) separately.

Table 2–6 Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR

1100 WR_SALES WR_SAL WR

1200 WR_HUMAN_RESOURCES WR_HR WR

1300 WR_FINANCE WR_FIN WR

1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN

1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

WESTERN_REGION

WR_HUMAN_
RESOURCES

WR_SALES WR_FINANCE

WR_ACCOUNTS_
RECEIVABLE

WR_ACCOUNTS_
PAYABLE

Label Components

Understanding Data Labels and User Labels 2-9

Groups are optional; a label can contain zero or more groups. Oracle Label Security
permits defining up to 10,000 groups.

All labels need not have groups. When you analyze your data's sensitivity, you may
find that some groups are only used at specific levels. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a
SENSITIVE label that does contain groups.

Industry Examples of Levels, Compartments, and Groups
Table 2–8 illustrates the flexibility of Oracle Label Security levels, compartments,
and groups, by listing typical ways in which they can be implemented in various
industries.

Table 2–7 Forms of Specifying Groups

Form Explanation

Numeric Form The numeric form of the group can range from 0 to 9999, and
must be unique for each policy.

The numeric form does not indicate any kind of ranking. It
does not indicate a parent-child relationship, or greater or less
sensitivity. It simply controls display order of the short form
group name in the label character string.

For example, assume that a label is created that has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as
listed in Table 2–6. When displayed in string format, the label
looks like this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before
1200.

Long Form The long form of the group name can contain up to 80
characters.

Short Form The short form can contain up to 30 characters.

See Also: Chapter 14, "Releasability Using Inverse Groups"

Label Syntax and Type

2-10 Oracle Label Security Administrator’s Guide

Label Syntax and Type
After defining the label components, the administrator creates data labels by
combining particular sets of level, compartments, and groups. Out of all the
possible permutations of label components, the administrator specifies those
combinations that will actually be used as valid data labels in the database.

Table 2–8 Typical Levels, Compartments, and Groups, by Industry

Industry Levels Compartments Groups

Defense

TOP_SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

ALPHA

DELTA

SIGMA

UK

NATO

SPAIN

Financial Services

ACQUISITIONS

CORPORATE

CLIENT

OPERATIONS

INSURANCE

EQUITIES

TRUSTS

COMMERCIAL_LOANS

CONSUMER_LOANS

CLIENT

TRUSTEE

BENEFICIARY

MANAGEMENT

STAFF

Judicial

NATIONAL_SECURITY

SENSITIVE

PUBLIC

CIVIL

CRIMINAL

ADMINISTRATION

DEFENSE

PROSECUTION

COURT

Health Care

PRIMARY_PHYSICIAN

PATIENT_
CONFIDENTIAL

PATIENT_RELEASE

PHARMACEUTICAL

INFECTIOUS_DISEASES

CDC

RESEARCH

NURSING_STAFF

HOSPITAL_STAFF

Business to Business

TRADE_SECRET

PROPRIETARY

COMPANY_
CONFIDENTIAL

PUBLIC

MARKETING

FINANCIAL

SALES

PERSONNEL

AJAX_CORP

BILTWELL_CO

ACME_INC

ERSATZ_LTD

Label Syntax and Type

Understanding Data Labels and User Labels 2-11

This can be done using the Oracle Policy Manager graphical user interface, or using
a command line procedure. Character string representations of labels use the
following syntax:

LEVEL:COMPARTMENT1,...,COMPARTMENTn:GROUP1,...,GROUPn

The text string specifying the label can have a maximum of 4,000 characters,
including alphanumeric characters, spaces, and underscores. The labels are
case-insensitive; you can enter them in uppercase, lowercase, or mixed case, but the
string is stored in the data dictionary and displayed in uppercase. A colon is used as
the delimiter between components. It is not necessary to enter trailing delimiters in
this syntax.

For example, the administrator might create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL
SENSITIVE::WESTERN_REGION
When a valid data label is created, two additional things occur:

■ The label is automatically designated as a valid data label. This functionality
limits the labels that can be assigned to data. Oracle Label Security can also
create valid data labels dynamically at runtime, from those that are pre-defined
in Oracle Internet Directory. Most users, however, prefer to create the labels
manually in order to limit data label proliferation.

■ A numeric label tag is associated with the text string representing the label. It is
this label tag—rather than the text string—that is stored in the policy label
column of the protected table.

Note: For Oracle Label Security installations that are not using
Oracle Internet Directory, dynamic creation of valid data labels
uses the TO_DATA_LABEL function. Its usage should be tightly
controlled. See Inserting Labels Using TO_DATA_LABEL on
page 4-17 within the section Inserting Labeled Data, which starts on
page 4-15.

How Data Labels and User Labels Work Together

2-12 Oracle Label Security Administrator’s Guide

How Data Labels and User Labels Work Together
A user can only access data within the range of his or her own label authorizations.
A user has:

■ Maximum and minimum levels

■ A set of authorized compartments

■ A set of authorized groups (and, implicitly, authorization for any subgroups)

For example, if a user is assigned a maximum level of SENSITIVE, then the user
potentially has access to SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED data.
The user has no access to HIGHLY_SENSITIVE data.

Figure 2–4 shows how data labels and user labels work together, to provide access
control in Oracle Label Security. Whereas data labels are discrete, user labels are
inclusive. Depending upon authorized compartments and groups, a user can
potentially access data corresponding to all levels within his or her range.

See Also:

■ Chapter 6, "Creating an Oracle Label Security Policy" for
instructions on creating label components and labels

■ The Policy Label Column and Label Tags on page 4-2

■ "Label Tags" on page 4-3

How Data Labels and User Labels Work Together

Understanding Data Labels and User Labels 2-13

Figure 2–4 Example: Data Labels and User Labels

As shown in the figure, User 1 can access rows 2, 3, and 4 because her maximum
level is HS; she has access to the FIN compartment; and her access to group WR
hierarchically includes group WR_SAL. She cannot access row 1 because she does
not have the CHEM compartment. (A user must have authorization for all
compartments in a row's data label, to access that row.)

User 2 can access rows 3 and 4. His maximum level is S, which is less than HS in
row 2. Although he has access to the FIN compartment, he only has authorization
for group WR_SAL. He cannot, therefore, access row 1.

Figure 2–5 shows how data pertaining to an organizational hierarchy fits in to data
levels and compartments.

How Data Labels and User Labels Work Together

2-14 Oracle Label Security Administrator’s Guide

Figure 2–5 How Label Components Interrelate

For example, the UNITED_STATES group includes three subgroups: EASTERN_
REGION, CENTRAL_REGION, and WESTERN_REGION. The WESTERN_
REGION subgroup is further subdivided into CALIFORNIA and NEVADA. For
each group and subgroup, there may be data belonging to some of the valid
compartments and levels within the database. Thus there may be SENSITIVE data
that is FINANCIAL, within the CALIFORNIA subgroup.

Note that data is generally labeled with a single group, whereas users' labels form a
hierarchy. If users have a particular group, that group may implicitly include child
groups. Thus a user associated with the WESTERN_REGION group has access to all
data; but a user associated with CALIFORNIA would only have access to data
pertaining to that subgroup.

UNITED_STATES

CENTRAL_REGIONEASTERN_REGION WESTERN_REGION

NEVADA

Financial OperationalChemical

600

SensitiveLevels

Public

Highly Sensitive

CALIFORNIA

Compartments

Groups

Administering Labels

Understanding Data Labels and User Labels 2-15

Administering Labels
Oracle Label Security provides administrative interfaces to define and manage the
labels used in a database. You define labels in an Oracle database using Oracle
Label Security packages, or using the Oracle Policy Manager. Initially, an
administrator must define the levels, compartments, and groups that compose the
labels, and then she or he can define the set of valid data labels for the contents of
the database.

The administrator can apply a policy to individual tables in the database, or to
entire application schemas. Finally, the administrator assigns to each database user
the label components (and privileges, if needed) appropriate for the person's job
function.

See Also: Chapter 9, "Applying Policies to Tables and Schemas"
for information about the Oracle Label Security interfaces used to
manage label components

Administering Labels

2-16 Oracle Label Security Administrator’s Guide

Understanding Access Controls and Privileges 3-1

3
Understanding Access Controls and

Privileges

Chapter 2 introduced the concept of labels (with their levels, compartments, and
groups) and the basic notion of access control based on the row's data label and the
user's label. The present chapter examines the access controls and privileges that
determine the type of access users can have to labeled rows.

This chapter contains these sections:

■ Introducing Access Mediation

■ Understanding Session Label and Row Label

■ Understanding User Authorizations

■ Evaluating Labels for Access Mediation

■ Using Oracle Label Security Privileges

■ Working with Multiple Oracle Label Security Policies

Introducing Access Mediation
To access data protected by an Oracle Label Security policy, a user must have
authorizations based on the labels defined for the policy. Figure 3–1 illustrates the
relationships between users, data, and labels.

■ Data labels specify the sensitivity of data rows.

■ User labels provide the appropriate authorizations to users.

■ Access mediation between users and rows of data depends upon their labels.

Understanding Session Label and Row Label

3-2 Oracle Label Security Administrator’s Guide

Figure 3–1 Relationships Between Users, Data, and Labels

Understanding Session Label and Row Label
This section introduces the basic user labels.

■ The Session Label

■ The Row Label

■ Session Label Example

The Session Label
Each Oracle Label Security user has a set of authorizations that include:

■ A maximum and minimum level

Note: Oracle Label Security enforcement options affect how access
controls apply to tables and schemas. This chapter assumes that all
policy enforcement options are in effect.

For more information, see "Choosing Policy Options" on page 8-1.

Data Sensitivity

Users

DataLabels

U
se

r A
ut

ho
riz

at
io

ns A
ccess M

ediation

Understanding Session Label and Row Label

Understanding Access Controls and Privileges 3-3

■ A set of authorized compartments

■ A set of authorized groups

■ For each compartment and group, a specification of read-only access, or
read/write access

The administrator also specifies the user's initial session label when setting up these
authorizations for the user.

The session label is the particular combination of level, compartments, and groups at
which a user works at any given time. The user can change the session label to any
combination of components for which he is authorized.

The Row Label
When a user writes data without specifying its label, a row label is assigned
automatically, using the user's session label. However, the user can set the label for
the written row, within certain restrictions on the components of the label he
specifies.

The level of this label can be set to any level within the range specified by the
administrator. For example, it can be set to the level of the user's current session
label down to the user's minimum level. However, the compartments and groups
for this row's new label are more restricted. The new label can include only those
compartments and groups contained in the current session label and, among those,
only the ones for which the user has write access.

When the administrator sets up the user authorizations, he or she also specifies an
initial default row label.

Session Label Example
The session label and the row label can fall anywhere within the range of the user's
level, compartment, and group authorizations. In Figure 3–2, the user's maximum

See Also: Changing Your Session and Row Labels with SA_
SESSION on page 4-18

See Also:

■ Managing User Labels by Component, with SA_USER_ADMIN
on page 7-2

■ Changing Your Session and Row Labels with SA_SESSION on
page 4-18

Understanding User Authorizations

3-4 Oracle Label Security Administrator’s Guide

level is SENSITIVE, and his minimum level is UNCLASSIFIED. However, his
default session label is C:FIN,OP:WR. In this example, the administrator has set the
user's session label so that the user connects to the database at the CONFIDENTIAL
level.

Similarly, even though the user is authorized for compartments FIN and OP, and
group WR, the administrator could set the session label so that the user connects
with only compartment FIN, and group WR.

Figure 3–2 User Session Label

Understanding User Authorizations
There are two types of user authorizations:

See Also:

■ SA_USER_ADMIN.SET_COMPARTMENTS on page 7-3 or

■ SA_USER_ADMIN.ALTER_COMPARTMENTS on page 7-5

Data

UNCLASSIFIED :FIN

UNCLASSIFIED :FIN

SENSITIVE :FIN :HR

CONFIDENTIAL :OP :WR

TOP SECRET :OP :WR

Data Label

UNCLASSIFIED :WR:CHEM

Default Session Label
C:FIN,OP:WR

Levels

Compartments

Groups

Understanding User Authorizations

Understanding Access Controls and Privileges 3-5

■ Authorizations Set by the Administrator

■ Computed Session Labels

Authorizations Set by the Administrator
The administrator explicitly sets a number of user authorizations:

■ Authorized Levels

■ Authorized Compartments

■ Authorized Groups

Authorized Levels
The administrator explicitly sets the following level authorizations:

For example, in Oracle Policy Manager, the administrator might set the following
authorizations:

Table 3–1 Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity that a user can access
during read and write operations

User Min Level The minimum ranking of sensitivity that a user can access
during write operations. The User Max Level must be equal to
or greater than the User Min Level.

User Default Level The level that is assumed by default when connecting to
Oracle9i

User Default Row Level The level that is used by default when inserting data into
Oracle9i

Understanding User Authorizations

3-6 Oracle Label Security Administrator’s Guide

Figure 3–3 Setting Up Authorized Levels

Authorized Compartments
The administrator specifies the list of compartments that a user can place in her
session label. Write access must be explicitly given for each compartment. A user
cannot directly insert, update, or delete a row that contains a compartment that she
does not have authorization to write. For example, in Oracle Policy Manager, the
administrator might set the following authorizations:

Understanding User Authorizations

Understanding Access Controls and Privileges 3-7

Figure 3–4 Setting Up Authorized Compartments

In Figure 3–4, the Row designation indicates whether the compartment should be
used as part of the default row label for newly inserted data. Note also that the
LABEL_DEFAULT policy option must be in effect for this setting to be valid.

Authorized Groups
The administrator specifies the list of groups that a user can place in her session
label. Write access must be explicitly given for each group listed. For example, in
Oracle Policy Manager, the administrator might set the following authorizations:

Understanding User Authorizations

3-8 Oracle Label Security Administrator’s Guide

Figure 3–5 Setting Up Authorized Groups

In Figure 3–5, the Row designation indicates whether the group should be used as
part of the default row label for newly inserted data. Note also that the LABEL_
DEFAULT policy option must be in effect for this setting to be valid.

Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the
value of the session label. These include:

See Also:

■ Chapter 7, "Administering User Labels and Privileges" for
instructions on setting the authorizations

■ "LABEL_DEFAULT: Using the Session's Default Row Label" on
page 8-7

Table 3–2 Computed Session Labels

Computed Label Definition

Maximum Read Label The user's maximum level combined with any combination of
compartments and groups for which the user is authorized.

Maximum Write Label The user's maximum level combined with the compartments
and groups for which the user has been granted write access.

Evaluating Labels for Access Mediation

Understanding Access Controls and Privileges 3-9

Evaluating Labels for Access Mediation
When a table is protected by an Oracle Label Security policy, the user's label
components are compared to the row's label components to determine whether the
user can access the data. In this way, Oracle Label Security evaluates whether the
user is authorized to perform the requested operation on the data in the row. This
section explains the rules and options by which user access is mediated. It contains
these topics:

■ Introducing Read/Write Access

■ The Oracle Label Security Algorithm for Read Access

■ The Oracle Label Security Algorithm for Write Access

Introducing Read/Write Access
Although data labels are stored in a column within data records, information about
user authorizations is stored in relational tables. When a user logs on, the tables are
used to dynamically generate user labels for use during the session.

Minimum Write Label The user's minimum level.

Default Read Label The single default level combined with compartments and
groups that have been designated as default for the user.

Default Write Label A subset of the default read label, containing the
compartments and groups to which the user has been granted
write access. The level component is equal to the level default
in the read label. This label is automatically derived from the
read label based on the user's write authorizations.

Default Row Label The combination of components between the user's minimum
write label and the maximum write label, which has been
designated as the default value for the data label for inserted
data.

See Also: "Computed Labels with Inverse Groups" on page 14-5

Table 3–2 Computed Session Labels

Computed Label Definition

Evaluating Labels for Access Mediation

3-10 Oracle Label Security Administrator’s Guide

Difference Between Read and Write Operations
Two fundamental types of access mediation on DML operations exist, within
protected tables:

■ Read access

■ Write access

The user has a maximum authorization for the data he or she can read; the user's
write authorization is a subset of that. The minimum write level controls the user's
ability to disseminate data by lowering its sensitivity. The user cannot write data
with a level lower than the minimum level the administrator assigned to this user.

In addition, there are separate lists of compartments and groups for which the user
is authorized; that is, for which the user has at least read access. An access flag
indicates whether the user can also write individual compartments or groups.

Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user's assigned groups include all
subgroups that are subordinate to the group to which she belongs. In this case, the
user's read/write authorizations on a parent group flow down to all the subgroups.

Consider the parent group WESTERN_REGION, with three subgroups as
illustrated in Figure 3–6. If the user has read access to WESTERN_REGION, she also
has read access to the three subgroups. The administrator can give the user write
access to subgroup WR_FINANCE, without granting her write access to the
WESTERN_REGION parent group (or to the other subgroups). On the other hand,
if the user has read/write access on WESTERN_REGION, then she also has
read/write access on all of the subgroups subordinate to it in the tree.

Write authorization on a group does not give a user write authorization on the
parent group. If a user has read-only access to WESTERN_REGION and WR_
FINANCE, the administrator can grant her write access to WR_ACCOUNTS_
RECEIVABLE, without affecting her read-only access to the higher-level groups.

Evaluating Labels for Access Mediation

Understanding Access Controls and Privileges 3-11

Figure 3–6 Subgroup Inheritance of Read/Write Access

The Oracle Label Security Algorithm for Read Access
READ_CONTROL enforcement determines the ability to read data in a row. The
following rules are used, in the sequence listed, to determine a user's read access to
a row of data:

1. The user's level must be greater than or equal to the level of the data.

2. The user's label must include at least one of the groups that belong to the data (or
the parent group of one such subgroup).

3. The user's label must include all the compartments that belong to the data.

If the user's label passes these tests, it is said to "dominate" the row's label.

Note that there is no notion of read or write access connected with levels. This is
because the administrator specifies a range of levels (minimum to maximum)
within which a user can potentially read and write. At any time, the user can read

See Also:

■ "Introduction to User Label and Privilege Management" on
page 7-1

■ "How Inverse Groups Work" on page 14-3

WESTERN_REGION

WR_HUMAN_
RESOURCES

WR_SALES WR_FINANCE

WR_ACCOUNTS_
RECEIVABLE

WR_ACCOUNTS_
PAYABLE

Read

Read

Read / Write Read / Write

Read / WriteRead

Administrator grants
user write access
to WR_FINANCE

Evaluating Labels for Access Mediation

3-12 Oracle Label Security Administrator’s Guide

all data equal to or less than her current session level. No privileges (other than
FULL) allow the user to write below her minimum authorized level.

The label evaluation process proceeds from levels to groups to compartments, as
illustrated in Figure 3–7. Note that if the data label is null or invalid, then the user is
denied access.

Figure 3–7 Label Evaluation Process for Read Access

As a read access request comes in, Oracle Label Security evaluates each row to
determine:

1. Is the user's level equal to, or greater than, the level of the data?

2. If so, does the user have access to at least one of the groups present in the data
label?

3. If so, does the user have access to all the compartments present in the data
label? (That is, are the data's compartments a subset of the user's
compartments?)

If the answer is no at any stage in this evaluation process, then Oracle Label
Security denies access to the row, and moves on to evaluate the next row of data.

Oracle Label Security policies allow user sessions to read rows at their label and
below, which is called reading down. Sessions cannot read rows at labels that they do
not dominate.

For example, if you are logged in at SENSITIVE:ALPHA,BETA, you can read a row
labeled SENSITIVE:ALPHA because your label dominates that of the row.

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N N
User

has at least one
group?

Evaluating Labels for Access Mediation

Understanding Access Controls and Privileges 3-13

However, you cannot read a row labeled SENSITIVE:ALPHA,GAMMA because
your label does not dominate that of the row.

Note that the user can gain access to the rows otherwise denied, if she or he
possesses special Oracle Label Security privileges.

The Oracle Label Security Algorithm for Write Access
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines
the ability to insert, update, or delete data in a row.

WRITE_CONTROL enables you to control data access with ever finer granularity.
Granularity increases when compartments are added to levels; it increases again
when groups are added to compartments. Access control becomes even more fine
grained when you can manage the user's ability to write the data that he can read.

To determine whether a user can write a particular row of data, Oracle Label
Security evaluates the following rules, in the order given:

1. The level in the data label must be greater than or equal to the user's minimum
level and less than or equal to the user's session level.

2. When groups are present, the user's label must include at least one of the groups
with write access that appear in the data label (or the parent of one such
subgroup). In addition, the user's label must include all the compartments in the
data label.

3. When no groups are present, the user's label must have write access on all of the
compartments in the data label.

To state tests 2 and 3 another way:

■ If the label has no groups, then the user must have write access on all the
compartments in the label, in order to write the data.

■ If the label does have groups, and the user has write access to one of the groups,
she only needs read access to the compartments, in order to write the data.

See Also:

■ "Privileges Defined by Oracle Label Security Policies" on
page 3-15

■ The Access Control Enforcement Options on page 8-8

■ "Algorithm for Read Access with Inverse Groups" on page 14-8

■ "Analyzing the Relationships Between Labels" on page A-1

Evaluating Labels for Access Mediation

3-14 Oracle Label Security Administrator’s Guide

Just as with read operations, the label evaluation process proceeds from levels to
groups to compartments. Note that the user cannot write any data below her
authorized minimum level, nor above her current session level. The user can always
read below her minimum level.

The following figure illustrates how the process works with INSERT, UPDATE, and
DELETE operations. Note that if the data label is null or invalid, then the user is
denied access.

Figure 3–8 Label Evaluation Process for Write Access

As an access request comes in, Oracle Label Security evaluates each row to
determine:

1. Is the data's level equal to, or less than, the level of the user?

2. Is the data's level equal to, or greater than, the user's minimum level?

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?
User has all

compartments?

N NN N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write
access?

N

Y N

YN

N

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-15

3. If the data's level falls within the foregoing bounds, does the user have write
access to at least one of the groups present in the data label?

4. If so, does the user have access to all the compartments with at least read access
that are present in the data label?

5. If there are no groups, but there are compartments, then does the user have
write access to all of the compartments?

If the answer is no at any stage in this evaluation process, then Oracle Label
Security denies access to the row, and moves on to evaluate the next row of data.

Consider a situation in which your session label is S:ALPHA,BETA but you only
have write access to compartment ALPHA. In this case you can read a row with the
label S:ALPHA,BETA, but you cannot update it.

In summary, write access is enforced on INSERT, UPDATE and DELETE operations
upon the data in the row.

 In addition, each user may have an associated minimum level below which she
cannot write. She cannot update or delete any rows labeled with levels below her
minimum, nor can she insert a row with a row label containing a level less than her
minimum.

Using Oracle Label Security Privileges
This section introduces the Oracle Label Security database and row label privileges:

■ Privileges Defined by Oracle Label Security Policies

■ Special Access Privileges

■ Special Row Label Privileges

■ System Privileges, Object Privileges, and Policy Privileges

Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to
bypass certain parts of the policy. Table 3–3 summarizes the full set of privileges that

See Also:

■ The Access Control Enforcement Options on page 8-8

■ "Algorithm for Write Access with Inverse Groups" on page 14-9

Using Oracle Label Security Privileges

3-16 Oracle Label Security Administrator’s Guide

can be granted to users or trusted stored program units. Each privilege is more fully
discussed after the table.

Special Access Privileges
A user's authorizations can be modified with any of four privileges:

■ READ

■ FULL

■ COMPACCESS

■ PROFILE_ACCESS

READ
A user with READ privilege can read all data protected by the policy, regardless of
his authorizations or session label. The user does not even need to have label

Table 3–3 Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the policy

FULL Allows full read and write access to all data protected by
the policy

COMPACCESS Allows a session access to data authorized by the row's
compartments, independent of the row's groups

PROFILE_ACCESS Allows a session to change its labels and privileges to
those of a different user

WRITEUP Allows users to set or raise only the level, within a row
label, up to the maximum level authorized for the user.
(Active only if LABEL_UPDATE is active.)

WRITEDOWN Allows users to set or lower the level, within a row label,
to any level equal to or greater than the minimum level
authorized for the user. (Active only if LABEL_UPDATE
is active.)

WRITEACROSS Allows a user to set or change groups and compartments
of a row label, but does not allow changes to the level.
(Active only if LABEL_UPDATE is active.)

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-17

authorizations. Note, in addition, that a user with READ privilege can write to any
data rows for which he or she has write access, based on any label authorizations.

This privilege is useful for system administrators who need to export data, but who
should not be allowed to change data. It is also useful for people who must run
reports and compile information, but not change data. The READ privilege enables
optimal performance on SELECTs, since the system behaves as though the Oracle
Label Security policy were not even present.

FULL
The FULL privilege has the same effect and benefits as the READ privilege, with
one difference: a user with FULL privilege can also write to all the data. For a user
with the FULL privilege, the READ and WRITE algorithms are not enforced.

Note that Oracle SYSTEM and OBJECT authorizations are still enforced. For
example, a user must still have SELECT on the application table. The FULL
authorization turns off the access mediation check at the individual row level.

COMPACCESS
The COMPACCESS privilege allows a user to access data based on the row label's
compartments, independent of the row label's groups. If a row label has no
compartments, then access is determined by the group authorizations. However,
when compartments do exist, and access to them is authorized, then the group
authorization is bypassed. This allows a privileged user whose label matches all the
compartments of the data to access any data in any particular compartment,
independent of what groups may own or otherwise be allowed access to the data.

Note: However, access mediation is still enforced on UPDATE,
INSERT, and DELETE operations.

See Chapter 8, "Implementing Policy Enforcement Options and
Labeling Functions", particularly

■ Overview of Policy Enforcement Options on page 8-2,

■ Table 8–2, "Policy Enforcement Options" on page 8-3, and

■ The Access Control Enforcement Options on page 8-8.

Using Oracle Label Security Privileges

3-18 Oracle Label Security Administrator’s Guide

Figure 3–9 shows the label evaluation process for read access with COMPACCESS
privilege. Note that if the data label is null or invalid, then the user is denied access.

Figure 3–9 Label Evaluation Process for Read Access with COMPACCESS Privilege

Figure 3–10 shows the label evaluation process for write access with COMPACCESS
privilege. Note that if the data label is null or invalid, then the user is denied access.

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N

Y

N N
User

has at least one
group?

Data has
compartments?

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-19

Figure 3–10 Label Evaluation Process for Write Access with COMPACCESS Privilege

PROFILE_ACCESS
The PROFILE_ACCESS privilege allows a session to change its session labels and
session privileges to those of a different user. This is a very powerful privilege, since
the user can potentially become a user with FULL privileges. This privilege cannot
be granted to a trusted stored program unit.

Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required
to modify the label. These privileges include WRITEUP, WRITEDOWN, and
WRITEACROSS.

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?

User has all
compartments?

N N N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write
access?

Data has
compartments?

N

Y

N

Y

N

N

Y

N

N

Using Oracle Label Security Privileges

3-20 Oracle Label Security Administrator’s Guide

Note that the LABEL_UPDATE enforcement option must be on for these label
modification privileges to be enforced. When a user updates a row label, the new
label and old label are compared, and the required privileges are determined.

WRITEUP
The WRITEUP privilege enables the user to raise the level of data within a row,
without compromising the compartments or groups. The user can raise the level up
to his or her maximum authorized level.

For example, an authorized user can raise the level of a data row that has a level
lower than his own minimum level. If a row is UNCLASSIFIED and the user's
maximum level is SENSITIVE, he can raise the row's level to SENSITIVE. He can
raise the level above his current session level, but cannot change the compartments.

WRITEDOWN
The WRITEDOWN privilege enables the user to lower the level of data within a
row, without compromising the compartments or groups. The user can lower the
level to any level equal to or greater than his or her minimum authorized level.

WRITEACROSS
The WRITEACROSS privilege allows the user to change the compartments and
groups of data, without altering its sensitivity level. This guarantees, for example,
that SENSITIVE data remains at the SENSITIVE level, but at the same time enables
the data's dissemination to be managed.

It lets the user change compartments and groups to anything that is currently
defined as a valid compartment or group within the policy, while maintaining the
level. With the WRITEACROSS privilege, a user with read access to one group (or
more) can write to a different group without explicitly being given access to it.

System Privileges, Object Privileges, and Policy Privileges
Remember that Oracle Label Security privileges are different from the standard
Oracle9i system and object privileges.

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-21

Oracle9i enforces the discretionary access control privileges that a user has been
granted. By default, a user has no privileges except those granted to the PUBLIC
user group. A user must explicitly be granted the appropriate privilege to perform
an operation.

For example, to read an object in Oracle9i, you must either be the object's owner, or
be granted the SELECT privilege on the object, or be granted the SELECT ANY
TABLE system privilege. Similarly, to update an object, you must either be the
object's owner, or be granted the UPDATE privilege on the object, or be granted the
UPDATE ANY TABLE privilege.

Access Mediation and Views
Prior to accessing data through a view, end users must have the appropriate system
and object privileges on the view. If the underlying table (upon which the view is
based) is protected by Oracle Label Security, then the end user of the view must
have authorization from Oracle Label Security to access specific rows of labeled
data.

Access Mediation and Program Unit Execution
In Oracle9i, if User1 executes a procedure that belongs to User2, the procedure runs
with User2's system and object privileges. However, any procedure executed by
User1 runs with User1's own Oracle Label Security labels and privileges. This is
true even when User1 executes stored program units owned by other users.

Figure 3–11 illustrates this process:

Table 3–4 Types of Privilege

Source Privileges Definition

Oracle9i System Privileges The right to execute a particular type of SQL
statement

Object Privileges The right to access another user's object

Oracle Label Security Policy Privileges The ability to bypass certain parts of the label
security policy

See Also: For more information about which Oracle9i privileges
are required to perform a certain operation, and how to grant and
revoke these discretionary access control privileges, see Oracle
Database Administrator's Guide.

Using Oracle Label Security Privileges

3-22 Oracle Label Security Administrator’s Guide

■ Stored program units execute with the DAC privileges of the procedure's owner
(User2).

■ In addition, stored program units accessing tables protected by Oracle Label
Security mediate access to data rows based on the label attached to the row, and
the Oracle Label Security labels and privileges of the invoker of the procedure
(User1).

Figure 3–11 Stored Program Unit Execution

Stored program units can become "trusted" when an administrator assigns them
Oracle Label Security privileges. A stored program unit can be run with its own
autonomous Oracle Label Security privileges, rather than those of the user who
invokes it. For example, if you possess no Oracle Label Security privileges in your
own right, but execute a stored program unit that has the WRITEDOWN privilege,
you can update labels. In this case, the privileges used are those of the stored
program unit, and not your own.

Trusted program units can encapsulate privileged operations in a controlled
manner. By using procedures, packages, and/or functions with assigned privileges,
you may be able to access data that your own labels and privileges would not
authorize. For example, to perform aggregate functions over all data in a table, not
just the data visible to you, you might use a trusted program set up by an

LABEL

User invokes stored
program unit

Stored Program Unit

Table accessed using stored
program unit's system and
object privileges

Row access mediated by user's
Oracle Label Security session
labels and privileges

Execute
privilege

Working with Multiple Oracle Label Security Policies

Understanding Access Controls and Privileges 3-23

administrator. Program units can thus perform operations on behalf of users,
without the need to grant privileges directly to users.

Access Mediation and Policy Enforcement Options
An administrator can choose among a set of policy enforcement options when
applying an Oracle Label Security policy to individual tables. These options enable
enforcement to be tailored differently for each database table. In addition to the
access controls based on the labels, a SQL predicate can also be associated with each
table. The predicate can further define which rows in the table are accessible to the
user. Policy enforcement options and predicates are discussed in Chapter 8,
"Implementing Policy Enforcement Options and Labeling Functions".

In cases where the label to be associated with a new or updated row should be
automatically computed, an administrator can specify a labeling function when
applying the policy. That function will thereafter always be invoked to provide the
data labels written under that policy, because active labeling functions take
precedence over any alternative means of supplying a label.

Except where noted, this guide assumes that all enforcement options are in effect.

Working with Multiple Oracle Label Security Policies
This section describes aspects of using multiple policies.

Multiple Oracle Label Security Policies in a Single Database
Several Oracle Label Security policies may be protecting data in a single database.
Each defined policy is associated with a set of labels used only by that policy. Data
labels are constrained by the set of defined labels for each policy.

See Also: Chapter 10, "Administering and Using Trusted Stored
Program Units"

See Also:

■ Using a Labeling Function on page 8-12

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_
SCHEMA_POLICY on page 9-7

Working with Multiple Oracle Label Security Policies

3-24 Oracle Label Security Administrator’s Guide

Each policy may protect a different table, but multiple policies can also apply to a
single table. To access data, you must have label authorizations for all policies
protecting that data. To access any particular row, you must be authorized by all
policies protecting the table containing your desired rows. If you require privileges,
then you may need privileges for all of the policies affecting your work.

Multiple Oracle Label Security Policies in a Distributed Environment
If you work in a distributed environment, where multiple databases may be
protected by the same or different Oracle Label Security policies, your remote
connections will also be controlled by Oracle Label Security.

See Also: Chapter 12, "Using Oracle Label Security with a
Distributed Database"

Part II
 Using Oracle Label Security Functionality

This part presents the following chapters, each discussing the indicated contents:

■ Chapter 4, "Working with Labeled Data"

■ Chapter 5, "Oracle Label Security Using Oracle Internet Directory"

Working with Labeled Data 4-1

4
Working with Labeled Data

This chapter explains how to

■ Use Oracle Label Security features to manage labeled data

■ View the value of security attributes for a session

■ Change the value of those session attributes

The chapter contains these sections:

■ The Policy Label Column and Label Tags

■ Presenting the Label

■ Filtering Data Using Labels

■ Inserting Labeled Data

■ Changing Your Session and Row Labels with SA_SESSION

Note: Many of the examples in this book use the "HUMAN_
RESOURCES" sample policy. Its policy name is "HR", and its policy
label column is "HR_LABEL". Unless otherwise noted, the
examples assume that the SQL statements are performed on rows
within the user's authorization, and with full Oracle Label Security
policy enforcement in effect.

The Policy Label Column and Label Tags

4-2 Oracle Label Security Administrator’s Guide

The Policy Label Column and Label Tags
This section explains how policy label columns in a table or schema are created and
filled, using these topics:

■ The Policy Label Column

■ Label Tags

The Policy Label Column
Each policy that is applied to a table creates a column in the database. By default,
the datatype of the policy label column is NUMBER.

Each row's label for that policy is represented by a tag in that column, using the
numeric equivalent of the character-string label value. The label tag is automatically
generated when the label is created, unless the administrator specifies the tag
manually at that time.

The automatic label generation follows the rules established by the administrator
when he defined the label components, as described in Chapter 2, "Understanding
Data Labels and User Labels".

Hiding the Policy Label Column
The administrator can decide not to display the column representing a policy by
applying the HIDE option to the table. After a policy using HIDE is applied to a
table, a user executing a SELECT * or performing a DESCRIBE will not see the
policy label column. If the policy label column is not hidden, then the label tag is
displayed as datatype NUMBER. See The HIDE Policy Column Option on page 8-6.

Note: The act of creating a policy does not in itself have any
effects on tables or schemas. Applying the policy to a table or
schema is what does it. See these sections:

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY on
page 6-9

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_
SCHEMA_POLICY on page 9-7

The Policy Label Column and Label Tags

Working with Labeled Data 4-3

Example 1: Numeric Column Datatype (NUMBER)
SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)
 HR_LABEL NUMBER(10)

Example 2: Numeric Column Datatype with Hidden Column
Notice that in this example, the HR_LABEL column is not displayed.

SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)

Label Tags
As noted in Chapter 2, the administrator first defines a set of label components to be
used in a policy. When creating labels, the administrator specifies the set of valid
combinations of components that can make up a label, that is, a level optionally
combined with one or more groups or compartments. Each such valid label within a
policy is uniquely identified by an associated numeric tag assigned by the
administrator or generated automatically upon its first use. Manual definition has
the advantage of allowing the administrator to control the ordering of label values
when they are sorted or logically compared.

However, label tags must be unique across all policies in the database. When you
use multiple policies in a database, you cannot use the same numeric label tag in
different policies. Remember that each label tag uniquely identifies one label, and
that numeric tag is what is stored in the data rows, not the label's character-string
representation.

This section contains these topics:

The Policy Label Column and Label Tags

4-4 Oracle Label Security Administrator’s Guide

■ Manually Defining Label Tags to Order Labels

■ Manually Defining Label Tags to Manipulate Data

■ Automatically Generated Label Tags

Manually Defining Label Tags to Order Labels
By manually defining label tags, the administrator can implement a data
manipulation strategy that permits labels to be meaningfully sorted and compared.
To do this, the administrator pre-defines all of the labels to be associated with
protected data, and assigns to each label a meaningful label tag value. Manually
assigned label tags can have up to 8 digits. The value of a label tag must be greater
than zero.

It may be advantageous to implement a strategy in which label tag values are
related to the numeric values of label components. In this way, you can use the tags
to group data rows in a meaningful way. This approach, however, is not mandatory.
It is good practice to set tags for labels of higher sensitivity to a higher numeric
value than tags for labels of lower sensitivity.

Table 4–1 illustrates a set of label tags that have been assigned by an administrator.
Notice that in this example the administrator has based the label tag value on the
numeric form of the levels, compartments, and rows that were discussed in Chapter
2 (Table 2–2, Table 2–4, and Table 2–6).

In this example, labels with a level of PUBLIC begin with "1", labels with a level of
CONFIDENTIAL begin with "2", labels with a level of SENSITIVE begin with "3",
and labels with a level of HIGHLY_SENSITIVE begin with "4".

Table 4–1 Administratively Defined Label Tags (Example)

Label Tag Label String

10000 P

20000 C

21000 C:FNCL

21100 C:FNCL,OP

30000 S

31110 S:OP:WR

40000 HS

42000 HS:OP

The Policy Label Column and Label Tags

Working with Labeled Data 4-5

Labels with the FINANCIAL compartment then come in the 1000 range, labels with
the compartment OP are in the 1100 range, and so on. The tens place is used to
indicate the group WR, for example.

Another strategy might be completely based on groups, where the tags might be
3110, 3120, 3130, and so on.

Note, however, that label tags identify the whole label, independent of the numeric
values assigned for the individual label components. The label tag is used as a
whole integer, not as a set of individually evaluated numbers.

Manually Defining Label Tags to Manipulate Data
An administratively defined label tag can serve as a convenient way to reference a
complete label string (that is, a particular combination of label components). As
illustrated in Table 4–1, for example, the tag "31110" could stand for the complete
label string "S:OP:WR".

Label tags can be used as a convenient way to partition data. For example, all data
with labels in the range 1000 - 1999 could be placed in tablespace A, all data with
labels in the range 2000 - 2999 could be placed in tablespace B, and so on.

This simplified notation also comes in handy when there is a finite number of
labels, and you need to perform various operations upon them. Consider a situation
in which one company hosts a human resources system for many other companies.
Assume that users from Company Y all have the label "C:ALPHA:CY", for which
the tag "210" has been set. To determine the total number of application users from
Company Y, the host administrator can enter:

SELECT * FROM tab1
 WHERE hr_label = 210;

Automatically Generated Label Tags
Dynamically generated label tags, illustrated in Table 4–2 , have 10 digits, with no
relationship to numbers assigned to any label component. There is no way to group
the data by label.

Table 4–2 Generated Label Tags (Example)

Label Tag Label String

100000020 P

100000052 C

100000503 C:FNCL

Assigning Labels to Data Rows

4-6 Oracle Label Security Administrator’s Guide

Assigning Labels to Data Rows
For rows that are being inserted, see Inserting Labeled Data on page 4-15.

For existing data rows, labels can be assigned by a labeling function that you create.
In such a function, you specify the exact table and row conditions defining what
label to insert. The function can be named in the call to apply a policy to a table or
schema, or in an update by the administrator.

Presenting the Label
When you retrieve labels, you do not automatically obtain the character string
value. By default, the label tag value is returned. Two label manipulation functions
enable you to convert the label tag value to and from its character string
representation:

100000132 C:FNCL,OP

100000003 S

100000780 S:OP:WR

100000035 HS

100000036 HS:OP

See Also:

■ "Creating a Valid Data Label with SA_LABEL_
ADMIN.CREATE_LABEL" on page 6-19

■ "Planning a Label Tag Strategy to Enhance Performance" on
page 13-8

See:

■ Using a Labeling Function on page 8-12

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4.

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_
SCHEMA_POLICY on page 9-7

Table 4–2 Generated Label Tags (Example)

Label Tag Label String

Presenting the Label

Working with Labeled Data 4-7

■ Converting a Character String to a Label Tag, with CHAR_TO_LABEL

■ Converting a Label Tag to a Character String, with LABEL_TO_CHAR

Converting a Character String to a Label Tag, with CHAR_TO_LABEL
Use the CHAR_TO_LABEL function to convert a character string to a label tag. This
function returns the label tag for the specified character string.

Syntax:

FUNCTION CHAR_TO_LABEL (
 policy_name IN VARCHAR2,
 label_string IN VARCHAR2)
RETURN NUMBER;

Example:

INSERT INTO emp (empno,hr_label)
VALUES (999, CHAR_TO_LABEL('HR','S:A,B:G5');

Here, "HR" is the label's policy name, "S" a sensitivity level, "A,B" compartments,
and "G5" a group.

Converting a Label Tag to a Character String, with LABEL_TO_CHAR
When you query a table or view, you automatically retrieve all of the rows in the
table or view that satisfy the qualifications of the query and are dominated by your
label. If the policy label column is not hidden, then the label tag value for each row
is displayed. You must use the LABEL_TO_CHAR function to display the character
string value of each label.

Note that all conversions must be explicit. There is no automatic casting to and from
tag and character string representations.

Syntax:

FUNCTION LABEL_TO_CHAR (
 label IN NUMBER)
RETURN VARCHAR2;

LABEL_TO_CHAR Examples

Example 1: To retrieve the label of a row from a table or view, specify the policy label
column in the SELECT statement as follows:

Presenting the Label

4-8 Oracle Label Security Administrator’s Guide

SELECT label_to_char (hr_label) AS label, ename FROM tab1;
 WHERE ename = 'RWRIGHT';

This statement returns the following:

LABEL ENAME
------------ ----------
S:A,B:G1 RWRIGHT

Example 2: You can also specify the policy label column in the WHERE clause of a
SELECT statement. The following statement displays all rows that have the policy
label "S:A,B:G1".

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE hr_label = char_to_label ('HR', 'S:A,B:G1');

This statement returns the following:

LABEL ENAME
------------- ---------
S:A,B:G1 RWRIGHT
S:A,B:G1 ESTANTON

Alternatively, you could use a more flexible statement to look up data that contains
the string "S:A,B:G1" anywhere in the text of the HR_LABEL column:

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE label_to_char (hr_label) like '%S:A,B:G1%';

If you do not use the LABEL_TO_CHAR function, you will see the label tag.

Example 3: The following example is with the numeric column datatype (NUMBER)
and dynamically generated label tags, but without using the LABEL_TO_CHAR
function. If you do not use the LABEL_TO_CHAR function, you will see the label
tag.

SQL> select empno, hr_label from emp
 where ename='RWRIGHT';

EMPNO HR_LABEL
---------- ----------
7839 1000000562

Filtering Data Using Labels

Working with Labeled Data 4-9

Retrieving All Columns from a Table When Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
select all columns from a table using the SELECT * command. You must explicitly
specify that you want to retrieve the label. For example, to retrieve all columns from
the DEPT table (including the policy label column in its character representation),
enter the following:

SQL> column label format a10
SQL> select label_to_char (hr_label) as label, dept.*
 2 from dept;

Executing these SQL statements returns the following data:

By contrast, if you do not explicitly specify the HR_LABEL column, the label is not
displayed at all. Note that while the policy column name is on a policy basis, the
HIDE option is on a table-by-table basis.

Filtering Data Using Labels
During the processing of SQL statements, Oracle Label Security makes calls to the
security policies defined in the database by the create and apply procedures
discussed on page 6-9 and on page 9-4. For SELECT statements, the policy filters the
data rows that the user is authorized to see. For INSERT, UPDATE, and DELETE
statements, Oracle Label Security permits or denies the requested operation, based
on the user's authorizations.

This section contains these topics:

■ Using Numeric Label Tags in WHERE Clauses

■ Ordering Labeled Data Rows

Table 4–3 Data Returned from Sample SQL Statements re Hidden Column

LABEL DEPTNO DNAME LOC

L1 10 ACCOUNTING NEW YORK

L1 20 RESEARCH DALLAS

L1 30 SALES CHICAGO

L1 40 OPERATIONS BOSTON

See Also: "The HIDE Policy Column Option" on page 8-6

Filtering Data Using Labels

4-10 Oracle Label Security Administrator’s Guide

■ Ordering by Character Representation of Label

■ Determining Upper and Lower Bounds of Labels

■ Merging Labels with the MERGE_LABEL Function

Using Numeric Label Tags in WHERE Clauses
This section describes techniques of using numeric label tags in WHERE clauses of
SELECT statements.

When using labels in the NUMBER format, the administrator can set up labels such
that a list of their label tags distinguishes the different levels. Comparisons of these
numeric label tags can be used for ORDER BY processing, and with the logical
operators.

For example, if the administrator has assigned all UNCLASSIFIED labels to the 1000
range, all SENSITIVE labels to the 2000 range, and all HIGHLY_SENSITIVE labels
to the 3000 range, then you can list all SENSITIVE records by entering:

SELECT * FROM emp
WHERE hr_label BETWEEN 2000 AND 2999;

To list all SENSITIVE and UNCLASSIFIED records, you can enter:

SELECT * FROM emp
WHERE hr_label <3000;

To list all HIGHLY_SENSITIVE records, you can enter:

SELECT * FROM emp
WHERE hr_label=3000;

See Also: "Partitioning Data Based on Numeric Label Tags" on
page 13-10

Note: Remember that such queries only have meaning if the
administrator has applied a numeric ordering strategy to the label
tags that he or she originally assigned to the labels. In this way the
administrator can provide for convenient dissemination of data. If,
however, the label tag values are generated automatically, then
there is no intrinsic relationship between the value of the tag and
the order of the labels.

Filtering Data Using Labels

Working with Labeled Data 4-11

Alternatively, you can use dominance relationships to set up an ordering strategy.

Ordering Labeled Data Rows
You can perform an ORDER BY referencing the policy label column to order rows
by the numeric label tag value that the administrator has set. For example:

SELECT * from emp
ORDER BY hr_label;

Notice that no functions were necessary in this statement. The statement simply
made use of label tags set up by the administrator.

Ordering by Character Representation of Label
Using the LABEL_TO_CHAR function, you can order data rows by the character
representation of the label. For example, the following statement returns all rows
sorted by the text order of the label:

SELECT * FROM emp
ORDER BY label_to_char (hr_label);

Determining Upper and Lower Bounds of Labels
This section describes the Oracle Label Security functions that determine the least
upper bound or the greatest lower bound of two or more labels. Two single-row
functions operate on each row returned by a query; they return one result for each
row.

■ Finding Least Upper Bound with LEAST_UBOUND

■ Finding Greatest Lower Bound with GREATEST_LBOUND

See Also: "Using Dominance Functions" on page A-2

Note: Again, such queries only have meaning if the administrator
has applied a numeric ordering strategy to the label tags originally
assigned to the labels.

Note: In all functions that take multiple labels, the labels must all
belong to the same policy.

Filtering Data Using Labels

4-12 Oracle Label Security Administrator’s Guide

Finding Least Upper Bound with LEAST_UBOUND
The LEAST_UBOUND (LUBD) function returns a character string label that is the
least upper bound of label1 and label2: that is, the one label that dominates both. The
least upper bound is the highest level, the union of the compartments in the labels,
and the union of the groups in the labels. For example, the least upper bound of
HIGHLY_SENSITIVE:ALPHA and SENSITIVE:BETA is HIGHLY_
SENSITIVE:ALPHA,BETA.

Syntax:

FUNCTION LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

The LEAST_UBOUND function is useful when joining rows with different labels,
because it provides a high water mark label for joined rows.

The following query compares each employee's label with the label of his or her
department, and returns the higher label—whether it be in the EMP table or the
DEPT table.

SELECT ename,dept.deptno,
 LEAST_UBOUND(emp.hr_label,dept.hr_label) as label
 FROM emp, dept
 WHERE emp.deptno=dept.deptno;

This query returns the following data:

Finding Greatest Lower Bound with GREATEST_LBOUND
The GREATEST_LBOUND (GLBD) function can be used to determine the lowest
label of the data that can be involved in an operation, given two different labels. It
returns a character string label that is the greatest lower bound of label1 and label2.

Table 4–4 Data Returned from Sample SQL Statements re Least_UBound

ENAME DEPTNO LABEL

KING 10 L3:M:D10

BLAKE 30 L3:M:D30

CLARK 10 L3:M:D10

JONES 20 L3:M:D20

MARTIN 30 L2:E:D30

Filtering Data Using Labels

Working with Labeled Data 4-13

The greatest lower bound is the lowest level, and the intersection of the
compartments in the labels and the groups in the labels. For example, the greatest
lower bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE is SENSITIVE.

Syntax:

FUNCTION GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function is a utility for merging two labels together. It accepts
the character string form of two labels, and the three-character specification of a
merge format. Its syntax is as follows:

Syntax:

FUNCTION merge_label (label1 IN number,
 label2 IN number,
 merge_format IN VARCHAR2)
RETURN number;

The valid merge format is specified with a three-character string:

<highest level or lowest level><union or intersection of compartments><union or
intersection of groups>

■ The first character indicates whether to merge using the highest level or the
lowest level of the two labels.

■ The second character indicates whether to merge using the union or the
intersection of the compartments in the two labels.

■ The third character indicates whether to merge using the union or the
intersection of the groups in the two labels.

The following table defines the MERGE_LABEL format constants.

Table 4–5 MERGE_LABEL Format Constants

Format
Specification Datatype Constant Meaning

Positions in Which
Format Is Used

max_lvl_fmt CONSTANT
varchar2(1)

H Maximum level First (level)

Filtering Data Using Labels

4-14 Oracle Label Security Administrator’s Guide

For example, HUI specifies the highest level of the two labels, union of the
compartments, intersection of the groups.

The MERGE_LABEL function is particularly useful to developers if the LEAST_
UBOUND function does not provide the intended result. The LEAST_UBOUND
function, when used with two labels containing groups, may result in a less
sensitive data label than expected. The MERGE_LABEL function enables you to
compute an intersection on the groups, instead of the union of groups that is
provided by the LEAST_UBOUND function.

For example, if the label of one data record contains the group UNITED_STATES,
and the label of another data record contains the group UNITED_KINGDOM, and
the LEAST_UBOUND function is used to compute the least upper bound of these
two labels, the resulting label would be accessible to users authorized for either the
UNITED_STATES or the UNITED_KINGDOM.

If, by contrast, the MERGE_LABEL function is used with a format clause of HUI,
the resulting label would contain the highest level, the union of the compartments,
and no groups—because UNITED_STATES and UNITED_KINGDOM do not
intersect.

min_lvl_fmt CONSTANT
varchar2(1)

L Minimum level First (Level)

union_fmt CONSTANT
varchar2(1)

U Union of the two
labels

Second (compartments)
and Third (groups)

inter_fmt CONSTANT
varchar2(1)

I Intersection of the
two labels

Second (compartments)
and Third (groups)

minus_fmt CONSTANT
varchar2(1)

M Remove second label
from first label

Second (compartments)
and Third (groups)

null_fmt CONSTANT
varchar2(1)

N If specified in
compartments
column, returns no
compartments. If
specified in groups
column, returns no
groups.

Second (compartments)
and Third (groups)

Table 4–5 MERGE_LABEL Format Constants (Cont.)

Format
Specification Datatype Constant Meaning

Positions in Which
Format Is Used

Inserting Labeled Data

Working with Labeled Data 4-15

Inserting Labeled Data
When you insert data into a table protected by a policy under Oracle Label Security,
a numeric label value tag must be supplied, usually in the INSERT statement itself.

To do this, you must explicitly specify the tag for the desired label, or explicitly
convert the character string representation of the label into the appropriate tag.
Note that this does not mean generating new label tags, but simply referencing the
appropriate one. When Oracle Label Security is using Oracle Internet Directory, the
only permissible labels (and corresponding tags) are those pre-defined by the
administrator and already in Oracle Internet Directory.

The only times an INSERT statement may omit a label value are:

a. if the LABEL_DEFAULT enforcement option was specified when the policy
was applied, or

b. if no enforcement options were specified when the policy was applied and
LABEL_DEFAULT was specified when the policy was created, or

c. if the statement applying the policy named a labeling function.

In cases a and b, the user's session default row label is used as the inserted row's
label. In the c case, the inserted row's label is created by that labeling function.

This section explains the different ways to specify a label in an INSERT statement:

■ Inserting Labels Using CHAR_TO_LABEL

■ Inserting Labels Using Numeric Label Tag Values

■ Inserting Data Without Specifying a Label

■ Inserting Data When the Policy Label Column Is Hidden

■ Inserting Labels Using TO_DATA_LABEL

See Also:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4, or to schemas on page 9-7

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY on
page 6-9

■ Using a Labeling Function on page 8-12

■ All of Chapter 8 regarding reading and writing labeled data
(and labels) and according to policy enforcement options

Inserting Labeled Data

4-16 Oracle Label Security Administrator’s Guide

Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string, and then transform
it into a label using the CHAR_TO_LABEL function. Using the definition for table
emp on page 4-3, the following example shows how to insert data with explicit
labels:

INSERT INTO emp (ename,empno,hr_label)
VALUES ('ESTANTON',10,char_to_label ('HR', 'SENSITIVE'));

Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using
the CHAR_TO_LABEL function. For example, if the numeric label tag for
SENSITIVE is 3000, it would look like this:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, 3000);

Inserting Data Without Specifying a Label
If LABEL_DEFAULT is set, or there is a labeling function applied to the table, you
do not need to specify a label in your INSERT statements. The label will be
provided automatically. Thus you could enter:

INSERT INTO emp (ename, empno)
VALUES ('ESTANTON', 10);

The resulting row label is set according to the default value (or by a labeling
function).

See Also:

■ Overview of Policy Enforcement Options on page 8-2

■ The Label Management Enforcement Options on page 8-6

■ Using a Labeling Function on page 8-12

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY on
page 6-9

Inserting Labeled Data

Working with Labeled Data 4-17

Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, the existence of the column is transparent to the
insertion of data. INSERT statements can be written that do not explicitly list the
table columns, and do not include a value for the label column. The session's row
label is used to label the data, or a labeling function is used if one was specified
when the policy was applied to the table or schema.

You can insert into a table without explicitly naming the columns—as long as you
specify a value for each non-hidden column in the table. The following example
shows how to insert a row into the table described in "Example 2: Numeric Column
Datatype with Hidden Column" on page 4-3:

INSERT INTO emp
VALUES ('196','ESTANTON',Technician,RSTOUT,50000,10);

Its label will be one of the following three possibilities:

■ The label you specify

■ The label established by the LABEL_DEFAULT option of the policy being
applied

■ The label created by a labeling function named by the policy being applied

Inserting Labels Using TO_DATA_LABEL

Note: If the policy label column is not hidden, you must explicitly
include a label value (possibly null, indicated by a comma) in the
INSERT statement.

Note: When Oracle Label Security is installed to work with Oracle
Internet Directory (OID), dynamic label generation is not allowed,
because labels are managed centrally in OID, using olsadmintool
commands. (See Appendix B, "Command-line Tools for Label
Security Using Oracle Internet Directory".)

Therefore, when Oracle Label Security is directory-enabled, this
function, TO_DATA_LABEL, is not available and will generate an
error message if used.

Changing Your Session and Row Labels with SA_SESSION

4-18 Oracle Label Security Administrator’s Guide

If you are generating new labels dynamically as you insert data, you can use the
TO_DATA_LABEL function to guarantee that this produces valid data labels. To do
this you must have EXECUTE authority on the TO_DATA_LABEL function.

Whereas the CHAR_TO_LABEL function requires that the label already be an
existing data label for the transaction to succeed, the TO_DATA_LABEL does not
have this requirement. It will automatically create a valid data label.

For example:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, to_data_label ('HR', 'SENSITIVE'));

Changing Your Session and Row Labels with SA_SESSION
During a given session, a user can change his or her labels, within the
authorizations set by the administrator.

 This section contains these topics:

■ SA_SESSION Functions to Change Session and Row Labels

■ Changing the Session Label with SA_SESSION.SET_LABEL

■ Changing the Row Label with SA_SESSION.SET_ROW_LABEL

■ Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS

■ Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS

■ Viewing Session Attributes with SA_SESSION Functions

SA_SESSION Functions to Change Session and Row Labels
The following functions enable the user to change the session and row labels:

Note: The TO_DATA_LABEL function must be explicitly granted
to individuals, in order to be used. Its usage should be tightly
controlled.

See Also: Chapter 9, "Applying Policies to Tables and Schemas"
for more information about inserting, updating, and deleting
labeled data

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-19

Changing the Session Label with SA_SESSION.SET_LABEL
Use the SET_LABEL procedure to set the label of the current database session.

Syntax:

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN VARCHAR2);

A user can set the session label to:

■ Any level equal to or less than his maximum, and equal to or greater than his
minimum level

■ Include any compartments in his authorized compartment list

■ Include any groups in his authorized group list. (Subgroups of authorized
groups are implicitly included in the authorized list.)

Note that if you change the session label, this change may affect the value of the
session's row label. The session's row label contains the subset of compartments and
groups for which the user has write access. This may or may not be equivalent to
the session label. For example, if you use the SA_SESSION.SET_LABEL command
to set your current session label to C:A,B:US and you have write access only on the
A compartment, then your row label would be set to C:A.

Table 4–6 Functions to Change Session Labels

Function Purpose

SA_SESSION.SET_LABEL Lets the user set a new level and new compartments and
groups to which he or she has read access

SA_SESSION.SET_ROW_
LABEL

Lets the user set the default row label that will be applied to
new rows

SA_SESSION.RESTORE_
DEFAULT_LABELS

Lets the user reset the current session label and row label to the
stored default settings

SA_SESSION.SAVE_
DEFAULT_LABELS

Lets the user store the current session label and row label as the
default for future sessions

Parameter Specifies

policy_name The name of an existing policy.

label The value to set as the label

Changing Your Session and Row Labels with SA_SESSION

4-20 Oracle Label Security Administrator’s Guide

Changing the Row Label with SA_SESSION.SET_ROW_LABEL
Use the SET_ROW_LABEL procedure to set the default row label value for the
current database session. The compartments and groups in the label must be a
subset of compartments and groups in the session label to which the user has write
access. When the LABEL_DEFAULT option is set, this row label value is used on
insert if the user does not explicitly specify the label.

Syntax:

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN VARCHAR2);

If the SA_SESSION.SET_ROW_LABEL procedure is not used to set the default row
label value, then this value is automatically derived from the session label. It
contains the level of the session label, and the subset of compartments and groups
in the session label for which the user has write authorization.

The row label is automatically reset if the session label changes. For example, if you
change your session level from HIGHLY_SENSITIVE to SENSITIVE, the level
component of the row label automatically changes to SENSITIVE.

The user can set the row label independently, but only to include:

■ A level that is less than or equal to the level of the session label, and greater
than or equal to the user's minimum level

■ A subset of the compartments and groups from the session label, for which the
user is authorized to have write access

If the user tries to set the row label to an invalid value, the operation is not
permitted, and the row label value is unchanged.

See Also: "SA_USER_ADMIN.SET_DEFAULT_LABEL" on
page 7-12

Parameter Specifies

policy_name The name of an existing policy.

label The value to set as the default row label

See Also: "SA_USER_ADMIN.SET_ROW_LABEL" on page 7-13

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-21

Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS
The RESTORE_DEFAULT_LABELS procedure restores the session label and row
label to those stored in the data dictionary. This command is useful to reset values
after a SA_SESSION.SET_LABEL command has been executed.

Syntax:

PROCEDURE RESTORE_DEFAULT_LABELS (policy_name in VARCHAR2);

where policy_name provides the name of an existing policy.

Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS
The SAVE_DEFAULT_LABELS procedure stores the current session label and row
label as your initial session label and default row label. It permits you to change
your defaults to reflect your current session label and row label. The saved labels
will be used as the initial default settings for future sessions.

Syntax:

PROCEDURE SAVE_DEFAULT_LABELS (policy_name in VARCHAR2);

where policy_name provides the name of an existing policy.

When you log into a database, your default session label and row label are used to
initialize the session label and row label. When the administrator originally
authorized your Oracle Label Security labels, he or she also defined your default
level, default compartments, and default groups. If you change your session label
and row label, and want to save these values as the default labels, you can use the
SA_SESSION.SAVE_DEFAULT_LABELS procedure.

This procedure is useful if you have multiple sessions and want to be sure that all
additional sessions have the same labels. You can save the current labels as the
default, and all future sessions will have these as the initial labels.

Consider a situation in which you connect to the database through Oracle Forms,
and want to run a report. By saving the current session labels as the default before
you invoke Oracle Reports, you ensure that Oracle Reports will initialize at the
same labels as are being used by Oracle Forms.

Note: The SA_SESSION.SAVE_DEFAULT_LABELS procedure
overrides the settings established by the administrator.

Changing Your Session and Row Labels with SA_SESSION

4-22 Oracle Label Security Administrator’s Guide

Viewing Session Attributes with SA_SESSION Functions
You can use SA_SESSION functions to view the policy attributes for a session.

■ USER_SA_SESSION View to Return All Security Attributes

■ Functions to Return Individual Security Attributes

USER_SA_SESSION View to Return All Security Attributes
You can display security attribute values by using the USER_SA_SESSION view.
Access to this view is PUBLIC. It lets you see the security attributes for your current
session. For example:

Functions to Return Individual Security Attributes
The SA_SESSION functions take a policy_name as the only input parameter. They
return VARCHAR2 character string values for use in SQL statements.

Table 4–7 Security Attribute Names and Types

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SA_USER_NAME VARCHAR2(4000)

PRIVS VARCHAR2(4000)

MAX_READ_LABEL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_LEVEL VARCHAR2(4000)

LABEL VARCHAR2(4000)

COMP_WRITE VARCHAR2(4000)

GROUP_WRITE VARCHAR2(4000)

ROW_LABEL VARCHAR2(4000)

Table 4–8 SA_SESSION Functions to View Security Attributes

Function Purpose

SA_SESSION.PRIVS Returns the set of current session privileges, in a comma-delimited list

SA_SESSION.MIN_LEVEL Returns the minimum level authorized for the session

SA_SESSION.MAX_LEVEL Returns the maximum level authorized for the session

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-23

For example, the following statement shows the current session label for the
Human Resources policy:

SQL> select sa_session.label ('human_resources')
 2 from dual;

SA_SESSION.LABEL('HUMAN_RESOURCES')

L3:M,E

SA_SESSION.COMP_READ Returns a comma-delimited list of compartments that the user is authorized
to read

SA_SESSION.COMP_WRITE Returns a comma-delimited list of compartments that the user is authorized
to write. This is a subset of SA_SESSION.COMP_READ.

SA_SESSION.GROUP_READ Returns a comma-delimited list of groups that the user is authorized to read

SA_SESSION.GROUP_WRITE Returns a comma-delimited list of groups that the user is authorized to write.
This is a subset of SA_SESSION.GROUP_READ.

SA_SESSION.LABEL Returns the session label (the level, compartments, and groups) with which
the user is currently working. The user can change this value with SA_
SESSION.SET_LABEL (see Changing the Session Label with SA_
SESSION.SET_LABEL).

SA_SESSION.ROW_LABEL Returns the session's default row label value. The user can change this value
with SA_SESSION.SET_ROW_LABEL (see Changing the Row Label with SA_
SESSION.SET_ROW_LABEL).

SA_SESSION.SA_USER_NAME Returns the username associated with the current Oracle Label Security
session

See Also: "Using SA_UTL Functions to Set and Return Label
Information" on page 10-6 for additional functions that return
numeric label tags and BOOLEAN values

Table 4–8 SA_SESSION Functions to View Security Attributes

Function Purpose

Changing Your Session and Row Labels with SA_SESSION

4-24 Oracle Label Security Administrator’s Guide

Oracle Label Security Using Oracle Internet Directory 5-1

5
Oracle Label Security Using Oracle Internet

Directory

Managing Oracle Label Security metadata in a centralized LDAP repository
provides many benefits. Policies and user label authorizations can be easily
provisioned and distributed throughout the enterprise. In addition, when
employees are terminated their label authorizations can be revoked in one place
and the change automatically propagated throughout the enterprise. This chapter
describes the integration between Oracle Label Security and Oracle Internet
Directory, in the following sections:

■ Introducing Label Management on Oracle Internet Directory

■ Configuring Oracle Internet Directory-Enabled Label Security

■ Oracle Label Security Profiles

■ Integrated Capabilities When Label Security Uses the Directory

■ Oracle Label Security Policy Attributes in Oracle Internet Directory

■ Restrictions on New Data Label Creation

■ Two Types of Administrators

■ Bootstrapping Databases

■ Synchronizing the Database and Oracle Internet Directory

■ Security Roles and Permitted Actions

■ Superseded PL/SQL Statements

■ Procedures for Policy Administrators Only

Introducing Label Management on Oracle Internet Directory

5-2 Oracle Label Security Administrator’s Guide

Introducing Label Management on Oracle Internet Directory
Previous releases of Oracle Label Security have relied on the Oracle database as the
central repository for policy and user label authorizations. This architecture
leveraged the scalability and high availability of the Oracle database, but didn't
leverage the identity management infrastructure, which includes the Oracle Internet
Directory. This directory is part of Oracle's Identity Management Platform.
Integrating your installation of Oracle Label Security with the Oracle Internet
Directory allows label authorizations to be part of your standard provisioning
process.

These advantages accrue also to directory-stored information about policies, user
labels, and privileges that Oracle Label Security assigns to users. These labels and
privileges are specific to the installation's policies defining access control on tables
and schemas. (When a site is not using Oracle Internet Directory, then such
information is stored locally in the database.)

The following Oracle Label Security information is stored in the directory:

■ Policy information, namely policy name, column name, policy enforcement
options, and audit options

■ User profiles identifying their labels and privileges

■ Policy label components: levels, compartments, groups

■ Policy data labels

Database-specific metadata is not stored in the directory. Examples include

■ Lists of schemas or tables, with associated policy information, and

■ Program units, with associated policy privileges

The following three notes identify important aspects of integrating your installation
of Oracle Label Security with Oracle Internet Directory:

Note: Oracle will continue to support both the database and
directory-based architectures for Oracle Label Security. However, a
single database environment cannot host both architectures.
Administrators must decide whether to use the centralized LDAP
administration model or the database-centric model.

Introducing Label Management on Oracle Internet Directory

Oracle Label Security Using Oracle Internet Directory 5-3

For sites that use Oracle Internet Directory, databases retrieve Oracle Label Security
policy information from the directory. Administrators use the olsadmintool
policy administration tool to operate directly on the directory to insert, alter, or
remove metadata as needed. Since enterprise users can log in to multiple databases
using the credentials stored in Oracle Internet Directory, it is logical to store their
Oracle Label Security policy authorizations and privileges there as well. An
administrator can then modify these authorizations and privileges simply by
updating these metadata in the directory. (Other aspects of managing enterprise
users are done by the Enterprise Security Manager.)

For distributed databases, centralized policy management removes the need for
replicating policies, since the appropriate policy information is available in the
directory. Changes are effective without further effort, synchronized with policy
information in the databases by means of the Directory Integration Platform.

Figure 5–1 illustrates the structure of metadata storage in Oracle Internet Directory.

Figure 5–2 illustrates applying different policies stored in Oracle Internet Directory
to the databases accessed by different enterprise users. Determining the policy to be
applied is controlled by the directory entries corresponding to the user and the
accessed database.

Note: Managing Oracle Label Security policies directly in the
directory is done using a new command-line tool, the Oracle Label
Security administration tool (olsadmintool), described in
Appendix B, "Command-line Tools for Label Security Using Oracle
Internet Directory".

Note: In this release, the GUI version of Oracle Policy Manager
(OPM) cannot be used to manage policies, labels, or user
authorization information in the directory.

See Also: Synchronization using the Directory Integration
Platform is described in the Oracle Internet Directory Administrator's
Guide.

Introducing Label Management on Oracle Internet Directory

5-4 Oracle Label Security Administrator’s Guide

Figure 5–1 Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory

Figure 5–2 Oracle Label Security Policies Applied through Oracle Internet Directory

Configuring Oracle Internet Directory-Enabled Label Security

Oracle Label Security Using Oracle Internet Directory 5-5

In this example, the directory has information about two Oracle Label Security
policies: Alpha, applying to database DB1, and Beta, applying to database DB2
Although both policies are known to each database, only the appropriate one is
applied in each case. In addition, enterprise users who are to access rows protected
by Oracle Label Security are listed in profiles within the Oracle Label Security
attributes in Oracle Internet Directory.

As Figure 5–2 shows, the connections between different databases and the directory
are established over either SSL or SASL. The database always binds to the directory
as a known identity using password-based authentication. Links between databases
and their clients (such as a sqlplus session, any PL/SQL programs , and so on) can
use either SSL or non-SSL connections. The example of Figure 5–2 assumes that
users are logged on through password authentication. The choice of connection
type depends on the enterprise user model.

The Oracle Label Security policy administration tool operates directly on metadata
in Oracle Internet Directory. Changes in the directory are then propagated to the
Directory Integration Platform (DIP) Server, which is configured to send changes to
the databases at specific time intervals.

The databases update the policy information in Oracle Internet Directory only when
policies are being applied to tables or schemas. These updates ensure that policies
that are in use will not be dropped from the directory.

Configuring Oracle Internet Directory-Enabled Label Security
You can configure a database for OID-enabled Label Security at any time after
database creation or during custom database creation. OID-enabled label security
relies on the Entrerprise User security feature.

See Also:

■ For enterprise domains, user models and authentication
activities, see Part V of the Oracle Advanced Security
Administrator's Guide.

■ For detailed information on Oracle Internet Directory, see the
Oracle Internet Directory Administrator's Guide.

Configuring Oracle Internet Directory-Enabled Label Security

5-6 Oracle Label Security Administrator’s Guide

Registering a Database and Configuring OID-enabled OLS
To achieve this goal, do the following major tasks:

Task 1. Configure Your Oracle Home for Directory Usage.

Task 2 : Configure the Database for OID-Enabled OLS
1. Register your database in the directory using DBCA (Database Configuration

Assistant).

2. After your database is registered in the directory, configure Label Security:

a. Start DBCA, select Configure database options in a database, and choose
Next.

b. Select a database and choose Next.

c. Regarding the option of unregistering the database or keeping it
registered, select Keep the database registered.

d. If the database is registered with OID, the Database options screen shows a
customize button beside the Label Security checkbox: Select the Label
Security option and click Customize.

e. This customize dialog has two configuration options, for standalone OLS or
for OID-enabled OLS. Click OID-enabled Label security configuration and
enter the OID credentials of an appropriate administrator. Click Ok.

f. Continue with the remaining DBCA steps and click Finish when it appears.

See Also: Details about Enterprise User Security appear in:

■ The Oracle Advanced Security Administrator's Guide, for
prerequisites and steps to configure a database for directory
usage, and

■ Chapter 2 of Oracle Database Administrator's Guide, for
information on DBCA, the Database Configuration Assistant.

See Also:

■ Please refer to the Oracle Advanced Security Administrator's
Guide, Chapter 12, Directory Security Concepts.

See Also: Oracle Advanced Security Administrator's Guide

Configuring Oracle Internet Directory-Enabled Label Security

Oracle Label Security Using Oracle Internet Directory 5-7

When configuring for OID-enabled OLS, DBCA also does the following things in
addition to registering the database:

1. Creates a provisioning profile for propagating Label Security policy changes to
to the database. This Directory Integration Platform (DIP) provisioning profile
is enabled by default.

2. Installs the required packages on the database side for OID-enabled OLS.

3. Bootstraps the database with all the existing Label Security policy information
in the OID.

Alternate Method for Task 2, Configuring Database for OID-Enabled OLS
Registering the database and configuring OLS can be done in one invocation of
DBCA.

1. Start DBCA.

2. Select Configure database options in a database and choose Next.

3. Select a database and choose Next.

4. Click Register the database.

5. Enter the OID credentials of an appropriate administrator, and the
corresponding password for the database wallet that will be created.

6. The Database options screen shows a Customize button beside the Label
Security checkbox. Select the Label Security option and click Customize.

The Customize dialog appears, showing two configuration options, for
standalone OLS or for OID-enabled OLS.

7. Click OID-enabled Label security configuration.

8. Continue with the remaining DBCA steps and click Finish when it appears.

Notes: You can configure a standalone OLS on a database that is
registered with OID: choose the standalone option in step e.

See Also: Bootstrapping Databases on page 5-13 for more
information.

Configuring Oracle Internet Directory-Enabled Label Security

5-8 Oracle Label Security Administrator’s Guide

Task3: Set the DIP Password and Connect Data
1. Use the command line tool oidprovtool to set the password for the DIP user and

update the interface connect information in the DIP provisioning profile for that
database with the new password.

2. Upon creation, the DIP profile uses a schedule value of 3600 seconds by default,
meaning that Oracle Label Security changes are propagated to the database
every hour. You can use oidprovtool to change this value if deployment
considerations require that.

Once the the database is configured for OID-enabled OLS, further considerations
regarding enterprise user security may apply.

Unregistering a Database with OID-enabled OLS
 To perform this task, you use DBCA, which does the following things:

1. Deletes the DIP provisioning profile for the database created for OLS.

2. Installs the required packages for standalone OLS, so that at the end of
unregistration, OID-enabled OLS becomes standalone OLS.

See: Directory Integration Platform (DIP) Provisioning Profiles on
page 5-15 for more details.

See Also: Please refer to the Oracle Advanced Security
Administrator's Guide, Chapter 13, Administering Enterprise User
Security, for further concepts, tools, steps, and procedures.

Note: Specific instructions for DB unregistration appear in the
Oracle Advanced Security Administrator's Guide. No special steps are
required when OID-enabled OLS is configured.

Note: If a database has standalone OLS, it cannot be converted to
OID-enabled OLS. You need to drop OLS from the database and
then use DBCA again to configure OID-enabled OLS.

Integrated Capabilities When Label Security Uses the Directory

Oracle Label Security Using Oracle Internet Directory 5-9

Oracle Label Security Profiles
A user profile is a set of user authorizations and privileges. Profiles are maintained
as part of each Oracle Label Security policy stored in the Directory.

If a user is added to a profile, he acquires the authorizations and privileges defined
in that profile for that particular policy, which include the following attributes:

■ Five label authorizations:

■ maximum read label

■ maximum write label

■ minimum write label

■ default read label

■ default row label

■ Privileges

■ The list of enterprise users to whom these authorizations apply

An enterprise user can belong to only one profile, or none.

Integrated Capabilities When Label Security Uses the Directory
The integration of Oracle Label Security and Oracle Internet Directory enables the
following capabilities:

■ User/administrator actions

■ Storing multiple Oracle Label Security policies in Oracle Internet Directory

■ Managing Oracle Label Security policies and options in the directory,
including

* creating or dropping a policy

See Also:

■ Oracle Label Security Policy Attributes in Oracle Internet
Directory on page 5-10

■ For more infomation on creating and managing enterprise
users, see Chapter 13 of the Oracle Advanced Security
Administrator's Guide

Oracle Label Security Policy Attributes in Oracle Internet Directory

5-10 Oracle Label Security Administrator’s Guide

* changing policy options

* changing audit settings

■ Creating label components for any Oracle Label Security policies by

* creating or removing levels, compartments, or groups

* assigning numeric values to levels, compartments, or groups

* changing long names of levels, compartments, or groups

* creating children groups

■ Managing enterprise users configured as users of any Oracle Label Security
policies, including

* assigning or removing enterprise users to/from profiles within policies

* assigning policy-specific privileges to enterprise users, or removing
them

* changing policy label authorizations assigned to enterprise users

■ Managing all user/administrator actions and capabilities by means of an
integrated set of command line tools that monitor and manage Oracle Label
Security policies in Oracle Internet Directory.

■ Automatic results of Oracle Label Security

■ Limiting database policy usage to directory-defined policies only (no local
policies defined or applied)

■ Synchronizing changes to policies in the directory with the databases using
Oracle Label Security (to apply after enterprise users reconnect)

■ After changes are propagated by the Directory Integration Platform, having
immediate access to enterprise users' Oracle Label Security attributes when
these users log on to any database using Oracle Label Security, assuming
they are configured within any Oracle Label Security policies. These
attributes include users' label authorizations and users' privileges.

Oracle Label Security Policy Attributes in Oracle Internet Directory
In Oracle Internet Directory, Oracle-related metadata is stored under
cn=OracleContext. Within Label Security, each policy holds the information and
parameters shown in Table 5–1:

Oracle Label Security Policy Attributes in Oracle Internet Directory

Oracle Label Security Using Oracle Internet Directory 5-11

When Oracle Label Security is used without Oracle Internet Directory, it supports
automatic creation of data labels by means of a label function. However, when
Oracle Label Security is used with Oracle Internet Directory, such functions can
create labels only using data labels that are already defined in the directory.

Table 5–1 Contents of Each Policy

Type of Entry Contents Meaning/Sample Usage/References

Policy Name The name assigned to this policy at its creation Used in olsadmintool commands such
as
olsadmintool createpolicy
(see Appendix B)

Column Name The name of the column that will hold the label
values relevant to this policy

Column is added to database: See
Chapter 4 (The Policy Label Column
and Label Tags & Inserting Labeled
Data); & The HIDE Policy Column
Option in Chapter 8; & Appendix B.

Used in

olsadmintool createpolicy

Enforcement
Options

Any combination of the following entries:

LABEL_DEFAULT, LABEL_UPDATE,
CHECK_CONTROL, READ_CONTROL,
WRITE_CONTROL, INSERT_CONTROL,
DELETE_CONTROL, UPDATE_CONTROL,
ALL_CONTROL, or NO_CONTROL

See the discussions in Chapter 8 and
Appendix B.

Used in

olsadmintool createpolicy

and olsadmintool alterpolicy

 Options

Enabled: TRUE or FALSE,
Type: ACCESS or SESSION,
Success: SUCCESSFUL, UNSUCCESSFUL, or

BOTH.

Used in

olsadmintool audit

Levels Name and number for each level Used in
olsadmintool
create/alter/droplevel

Compartments Name and number for each compartment Used in
olsadmintool
create/alter/drop
compartment

Groups Name, number, and parent for each group Used in
olsadmintool
create/alter/dropgroup

Restrictions on New Data Label Creation

5-12 Oracle Label Security Administrator’s Guide

Restrictions on New Data Label Creation
When Oracle Label Security is used with Oracle Internet Directory, data labels must
be pre-defined in the directory.

They cannot be created "on the fly" by a label function, as is possible when label
security is not integrated with the directory.

 Two Types of Administrators
Administrators listed within a policy are those individuals authorized to do the
following policy-specific administrative tasks:

■ Modify existing policy options and audit settings.

■ Enable or disable auditing for a policy.

■ Create or remove levels, compartments, groups or children groups.

■ Modify full/long names for levels, compartment, or groups.

Profiles Maximum and default read labels,
maximum and minimum write labels, default row
label, list of users, and a set of privileges from this list:

READ, FULL,

WRITEUP, WRITEDOWN, WRITEACROSS,

PROFILE_ACCESS, or COMPACCESS

Policies can have one or more
profiles, each of which can be
assigned to many users. Profiles
reduce the need to set up label
authorizations for individual
users.

All users with the same set of labels
and privileges are grouped in a single
profile. Each profile represents a
different set of labels, privileges, and
users. Each profile in a policy is
unique.

Data Labels Full name and number for each valid data label See Restrictions on New Data Label
Creation.

Administrators Name of each administrator authorized to modify the
parameters within this policy.

Policy administrators can modify
parameters within a policy. They are
not necessarily also policy creators,
who have the right to create or remove
policies or policy administrators: See
Security Roles and Permitted Actions.

Table 5–1 Contents of Each Policy (Cont.)

Type of Entry Contents Meaning/Sample Usage/References

Bootstrapping Databases

Oracle Label Security Using Oracle Internet Directory 5-13

■ Define or modify enterprise user settings, in this policy, for:

■ Privileges

■ Maximum or minimum levels

■ Read, write, or row access for levels, compartments, or groups

■ Label profiles

■ Remove enterprise users from a policy.

There is a higher level of administrators, called policy creators, who can create and
remove Oracle Label Security policies and the policy administrators named within
them.

Bootstrapping Databases
After a new database is registered with Oracle Internet Directory (OID), the
administrator can install OID-enabled Oracle Label Security (OLS) on that database.
This installation process automatically creates a Directory Integration Platform
(DIP) provisioning profile enabling policy information to be periodically refreshed
in the future by downloading it to the database. See Directory Integration Platform
(DIP) Provisioning Profiles.

When configuring the database for OID enabled OLS, the DBCA tool puts all the
policy information in OID into the database. At any point, the administrator can
decide to bootstrap the database with the policy information again, using the
bootstrap utility script at $ORACLE_HOME/bin/olsoidsync. The parameters it
requires are as follows:

olsoidsync --dbtnsname <database TNS name> --dbuser <database user>
--dbuserpassword <database user password> [-c] [-r]
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

For example,
olsoidsync --dbtnsname db1 --dbuser lbacsys
--dbuserpassword lbacsys -c
-b 'ou=Americas,o=Oracle,c=US' -h yippee -D cn=policycreator -w welcome1

The olsoidsync command pulls policy information from OID and populates the
information in the database. Users must provide the database TNS name, the
database username, the database user's password, the administrative context (if
any), the OID hostname, the bind DN and bind password, and optionally the OID
port number.

Synchronizing the Database and Oracle Internet Directory

5-14 Oracle Label Security Administrator’s Guide

The optional "-c" switch causes the command to drop all the existing policies in the
database and refresh it with policy information from OID.

The optional "-r" switch causes the command to drop all the policy metadata
(without dropping the policies themselves) and refresh the policies with new
metadata from OID.

Without these two switches, the command will only create new policies from OID,
and will halt on any errors encountered during the refresh.

Synchronizing the Database and Oracle Internet Directory
Oracle Label Security metadata in the directory is synchronized with the databases
using the Oracle Directory Provisioning Integration Service of the Directory
Integration Platform.

Changes to the label security data in the directory are conveyed by the provisioning
integration service in the form of provisioning events. A software agent receives
these events and generates appropriate SQL or PL/SQL statements to update the
database. After these statements are executed, Oracle Label Security data
dictionaries are updated to match the changes already made in the directory.

Oracle Label Security subscribes itself to the Provisioning Integration Service
automatically during installation. The provisioning service stores the information
associated with each database in the form of a provisioning profile. The software
agent uses the identity of the user "DIP" to connect to the database, and the
password "DIP", when synchronizing the changes in OID with the database.

If the password for the user DIP is changed, that information needs to be updated in
the provisioning profile of the provisioning integration service.

The steps to change the database connection information in the DIP profile are as
follows:

1. Disable the provisioning profile. (This temporarily stops the propagation of
label security changes in directory to the database, but no data is lost. Once the
profile is enabled, any label security changes that happened in the directory
since the profile was disabled are synchronized with the database.)

2. Update the database connection information in the profile.

3. Enable the profile.

Synchronizing the Database and Oracle Internet Directory

Oracle Label Security Using Oracle Internet Directory 5-15

Directory Integration Platform (DIP) Provisioning Profiles
The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database. This
profile is created automatically as part of the installation process for OID-enabled
Oracle Label Security. The administrator can use the provisioning tool oidprovtool
to modify the password for a database profile, using the script $ORACLE_
HOME/bin/oidprovtool. Each such profile contains the following information:

Note: The database character set must be compatible with Oracle
Internet Directory (OID) for OID-enabled Oracle Label Security
(OLS) to work correctly. Only then can there be successful
synchronization of the Label Security metadata in OID with the
Database.

Please refer to Chapters 2 and 3 of Oracle Database Globalization
Support Guide for more information on Character sets and
Globalization Support parameters.

See Also:

■ Disabling, Changing, and Enabling a Provisioning Profile on
page 5-17

■ Please refer to Chapter 29 of the Oracle Internet Directory
Administrator's Guide for more information on enabling and
disabling of provisioning profiles.

Table 5–2 Elements in a DIP Provisioning Profile

Element
Name for This Element
When Invoking oidprovtool

The LDAP host name ldap_host

The LDAP port number ldap_port

The user DN and password to bind to OID to retrieve policy
information

ldap_user

ldap_user_password

The database DN application_dn

The organization DN, that is, the administrative
context in which changes are being made

organization_dn

Synchronizing the Database and Oracle Internet Directory

5-16 Oracle Label Security Administrator’s Guide

Here is an example of using oidprovtool, followed by an explanation of the
parameters in this example:

oidprovtool operation=modify ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn='cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US'
organization_dn='ou=Americas,o=Oracle,c=US' interface_name=LBACSYS.OLS_DIP_NTFY
interface_type=PLSQL interface_connect_info=yippee:1521:db1:dip:newdip
schedule=60 event_subscription=
'ENTRY:cn=LabelSecurity,cn=Products,cn=OracleContext,
ou=Americas,o=Oracle,c=US:ADD(*)' event_subscription=
'ENTRY:cn=LabelSecurity,cn=Products, cn=OracleContext,ou=Americas,
o=Oracle,c=US:MODIFY(*)' event_subscription='ENTRY:cn=LabelSecurity,cn=Products,
cn=OracleContext, ou=Americas,o=Oracle,c=US:DELETE'

This sample oidprovtool command creates and enables a new DIP provisioning
profile with the following attributes:

■ OID in host yippee using port 389

■ OID user bind DN: cn=defense_admin with password welcome1

■ Database DN: cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US

■ Organization DN (administrative context): ou=Americas,o=Oracle,c=US

■ Database on host yippee, listening on port 1521

■ Oracle SID: db1

■ Database user: dip with new password newdip

The callback function to be invoked, that is,
LBACSYS.OLS_DIP_NTFY

interface_name

The database connect information, which is the
hostname of the database, the port number used to
connect to the database, the database SID, the
database user name and password

interface_connect_info

Event subscriptions, including all MODIFY, ADD and
DELETE events under cn=LabelSecurity in OID

operation

The time interval between synchronizations schedule

Table 5–2 Elements in a DIP Provisioning Profile (Cont.)

Element
Name for This Element
When Invoking oidprovtool

Synchronizing the Database and Oracle Internet Directory

Oracle Label Security Using Oracle Internet Directory 5-17

■ Interval to synchronize directory with connected databases : 60 seconds

■ All the ADD, MODIFY and DELETE events under cn=LabelSecurity to be sent
to DIP

To start the DIP server, use $ORACLE_HOME/bin/oidctl. For example:

oidctl server=odisrv connect=db2 config=0 instance=0 start

This command will start the DIP server by connecting to db2 (the OID database)
with config set 0 and instance number 0.

Disabling, Changing, and Enabling a Provisioning Profile
You can change the password for the interface_connect_info, which is the
database password, by using the oidprovtool modify command, but first you must
disable the profile. After changing the password, you then re-enable the profile.

You can disable the Oracle Label Security provisioning profile using oidprovtool,
specifying simply the disable operation and the first six original parameters shown
here. (The other original parameters are not needed.) The command form is:

oidprovtool operation=disable ldap_host=< > ldap_port=< > ldap_user_dn=< >
 ldap_user_password=< > application_dn=< > organization_dn=< >

Using parameters from the example given in the previous section, this command
would look like this:

oidprovtool operation=disable ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn='cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US'
organization_dn='ou=Americas,o=Oracle,c=US'

To modify the password in the connection information, use the oidprovtool

command, specifying the modify operation, the first six original parameters, and
the new DIPuser password given in the connection info. The command form is:

oidprovtool operation=modify ldap_host=< > ldap_port=< >
ldap_user_dn=< > ldap_user_password=< > application_dn=< >
organization_dn=< > interface_connect_info=< new_connect _info >

See also: Chapter 30 of the Oracle Internet Directory
Administrator's Guide regarding Directory Integration Server
Administration.

Security Roles and Permitted Actions

5-18 Oracle Label Security Administrator’s Guide

Using parameters from the example given in the previous section, this command
would look like this:

oidprovtool operation=modify ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn='cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US'
organization_dn='ou=Americas,o=Oracle,c=US'
interface_connect_info=yippee:1521:db1:dip:NewestDIPpassword

Similarly, you can re-enable the Directory Integration Platform provisioning profile
using oidprovtool as follows, again specifying simply the desired operation and the
first six original parameters. (The other original parameters are not needed.) The
command form is:

oidprovtool operation=enable ldap_host=< > ldap_port=< > ldap_user_dn=< >
ldap_user_password=< > application_dn=< > organization_dn=< >

Again using parameters from the example given in the previous section, this
command would look like this:

oidprovtool operation=enable ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn='cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US'
organization_dn='ou=Americas,o=Oracle,c=US'

Security Roles and Permitted Actions
To manage Oracle Label Security policies in Oracle Internet Directory, certain
entities are given access control rights in the directory. The access control
mechanisms are provided by Oracle Internet Directory.

Table 5–3 describes, in abstract terms, these entities and the tasks they are enabled
to perform.

Table 5–4, "Access Levels Allowed by Users in OID", lists the specific access level
operations permitted or disallowed for policy creators, policy administrators, and
label security users.

Security Roles and Permitted Actions

Oracle Label Security Using Oracle Internet Directory 5-19

Table 5–3 Tasks That Certain Entities Can Perform

Entity Tasks This Entity Can Perform

Policy creators Create new (or delete existing) policies;
create new (or remove existing) policy administrators.

Policy administrators For Policies: modify existing policy options and audit settings;
enable or disable auditing for a policy.

For Label components: create, modify, or remove levels, compartments
and groups, such as by changing their full or long names or (for
groups) by creating or deleting their children groups.

For enterprise users: remove enterprise users from a policy;
modify enterprise users' maximum or minimum levels, their read,
write, and row access for compartments or groups, their privileges for
a policy, and their label profiles

Table 5–4 Access Levels Allowed by Users in OID

Entries Policy Creators Policy Administrators Databases

cn=Policies can modify no access no access

cn=Admins,cn=Policy1 can modify no access no access

uniqueMember: cn=Policy1 can browse can browse can modify

cn=PolicyCreators no access1

1 The group cn=OracleContextAdmins is the owner of the group cn=PolicyCreators, hence members in cn=Ora-
cleContextAdmins can modify cn=PolicyCreators.

no access no access

cn=Levels,cn=Policy1 can browse and delete can modify no access

cn=Compartments,cn=Policy1 can browse and delete can modify no access

cn=Groups,cn=Policy1 can browse and delete can modify no access

cn=AuditOptions,cn=Policy1 can browse and delete can modify no access

cn=Profiles,cn=Policy1 can browse and delete can modify no access

cn=Labels,cn=Policy1 can browse and delete can modify no access

cn=DBServers no access2

2 The group cn=OracleDBCreators is the owner of the group cn=DBServers, hence members in cn=OracleDBCre-
ators can modify cn=DBServers.

no access no access

Superseded PL/SQL Statements

5-20 Oracle Label Security Administrator’s Guide

Superseded PL/SQL Statements
When Oracle Internet Directory is enabled with Oracle Label Security, the
procedures listed in Table 5–5 are superseded. Only LBACSYS is allowed to execute
these procedures.

For some of the procedures listed in the table, the functionality they provided is
replaced by the olsadmintool command named in the second column (and
explained in Appendix B).

Table 5–5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory

Disabled Procedure Replaced by olsadmintool Command

SA_SYSDBA.CREATE_POLICY olsadmintool createpolicy

SA_SYSDBA.ALTER_POLICY olsadmintool alterpolicy

SA_SYSDBA.DROP_POLICY olsadmintool droppolicy

SA_COMPONENTS.CREATE_LEVEL olsadmintool createlevel

SA_COMPONENTS.ALTER_LEVEL olsadmintool alterlevel

SA_COMPONENTS.DROP_LEVEL olsadmintool droplevel

SA_COMPONENTS.CREATE_COMPARTMENT olsadmintool createcompartment

SA_COMPONENTS.ALTER_COMPARTMENT olsadmintool altercompartment

SA_COMPONENTS.DROP_COMPARTMENT olsadmintool dropcompartment

SA_COMPONENTS.CREATE_GROUP olsadmintool creategroup

SA_COMPONENTS.ALTER_GROUP olsadmintool altergroup

SA_COMPONENTS.ALTER_GROUP_PARENT olsadmintool altergroup

SA_COMPONENTS.DROP_GROUP olsadmintool dropgroup

SA_USER_ADMIN.SET_LEVELS None

SA_USER_ADMIN.SET_COMPARTMENTS None

SA_USER_ADMIN.SET_GROUPS None

SA_USER_ADMIN.ADD_COMPARTMENTS None

SA_USER_ADMIN.ALTER_COMPARTMENTS None

SA_USER_ADMIN.DROP_COMPARTMENTS None

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS None

SA_USER_ADMIN.ADD_GROUPS None

Procedures for Policy Administrators Only

Oracle Label Security Using Oracle Internet Directory 5-21

Procedures for Policy Administrators Only
The following procedures are allowed to be executed only by policy administrators
(enterprise users defined in Oracle Internet Directory):

■ SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

■ SA_POLICY_ADMIN.APPLY_TABLE_POLICY

■ SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY

■ SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

■ SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

■ SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

■ SA_POLICY_ADMIN.GRANT_PROG_PRIVS

■ SA_POLICY_ADMIN.POLICY_SUBSCRIBE

■ SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

■ SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

SA_USER_ADMIN.ALTER_GROUPS None

SA_USER_ADMIN.DROP_GROUPS None

SA_USER_ADMIN.DROP_ALL_GROUPS None

SA_USER_ADMIN.SET_USER_LABELS olsadmintool createprofile; olsadmintool adduser;
olsadmintool dropprofile; olsadmintool dropuser;

SA_USER_ADMIN.SET_DEFAULT_LABEL None

SA_USER_ADMIN.SET_ROW_LABEL None

SA_USER_ADMIN.DROP_USER_ACCESS olsadmintool dropuser

SA_USER_ADMIN.SET_USER_PRIVS olsadmintool createprofile; olsadmintool adduser;
olsadmintool dropprofile; olsadmintool dropuser;

SA_AUDIT_ADMIN.AUDIT olsadmintool audit

SA_AUDIT_ADMIN.NOAUDIT olsadmintool noaudit

SA_AUDIT_ADMIN.AUDIT_LABEL None

SA_AUDIT_ADMIN.NOAUDIT_LABEL None

Table 5–5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory (Cont.)

Disabled Procedure Replaced by olsadmintool Command

Procedures for Policy Administrators Only

5-22 Oracle Label Security Administrator’s Guide

■ SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

■ SA_POLICY_ADMIN.SET_PROG_PRIVS

■ SA_POLICY_ADMIN.REVOKE_PROG_PRIVS

Part III
Administering an Oracle Label Security

Application

This part contains the following chapter:

■ Chapter 6, "Creating an Oracle Label Security Policy"

■ Chapter 7, "Administering User Labels and Privileges"

■ Chapter 8, "Implementing Policy Enforcement Options and Labeling Functions"

■ Chapter 9, "Applying Policies to Tables and Schemas"

■ Chapter 10, "Administering and Using Trusted Stored Program Units"

■ Chapter 11, "Auditing Under Oracle Label Security"

■ Chapter 12, "Using Oracle Label Security with a Distributed Database"

■ Chapter 13, "Performing DBA Functions Under Oracle Label Security"

■ Chapter 14, "Releasability Using Inverse Groups"

Creating an Oracle Label Security Policy 6-1

6
Creating an Oracle Label Security Policy

This chapter explains how to create an Oracle Label Security policy. It contains these
sections:

■ Oracle Label Security Administrative Task Overview

■ Organizing the Duties of Oracle Label Security Administrators

■ Choosing an Oracle Label Security Administrative Interface

■ Oracle Policy Manager

■ Using the SA_SYSDBA Package to Manage Security Policies

■ Using the SA_COMPONENTS Package to Define Label Components

■ Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Oracle Label Security Administrative Task Overview
To create and implement an Oracle Label Security policy, you perform the following
tasks, which are described in the next few chapters:

■ Step 1: Create the Policy on page 6-8

■ Step 2: Define the Components of the Labels

■ Step 3: Identify the Set of Valid Data Labels

■ Step 4: Apply the Policy to Tables and Schemas

■ Step 5: Authorize Users

■ Step 6: Create and Authorize Trusted Program Units (Optional)

■ Step 7: Configure Auditing (Optional)

Oracle Label Security Administrative Task Overview

6-2 Oracle Label Security Administrator’s Guide

Step 1: Create the Policy
Create a policy by defining:

■ The policy name

■ The column name for policy labels

■ The default options for the policy

To do this in Oracle Policy Manager, you can use the Create Policy icon or the
Policy property sheet.

Alternatively, you can use the SA_SYSDBA.CREATE_POLICY command line
procedure.

Step 2: Define the Components of the Labels
Define the levels, compartments, and groups that form the components of the new
policy's labels.

To do this in Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Labels and use the Labels property sheet.

Alternatively, you can use the SA_COMPONENTS package on the command line.

Step 3: Identify the Set of Valid Data Labels
Specify the set of valid labels to support the policy. From all the possible
combinations of levels, compartments, and groups, you must define labels that can
be assigned to data.

Alternatively, applications that need to create data labels dynamically at runtime
can use the TO_DATA_LABEL function.

See Also: "Creating a Policy with SA_SYSDBA.CREATE_
POLICY" on page 6-9

See Also: "Using the SA_COMPONENTS Package to Define
Label Components" on page 6-12

Oracle Label Security Administrative Task Overview

Creating an Oracle Label Security Policy 6-3

To use Oracle Policy Manager to define labels that can be assigned to data, go to
Oracle Label Security Policies—> policyname—>Labels and use the Labels
property sheet.

Step 4: Apply the Policy to Tables and Schemas
Protect individual database tables and schemas by applying the policy to them. In
the process, you can customize the level of enforcement of the policy for each table
and schema, to reflect your application security requirements.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Protected Objects. Select either Schemas or Tables, and use the
corresponding property sheet.

Alternatively, you can use the SA_POLICY_ADMIN package.

Step 5: Authorize Users
For individual users, define the authorizations that each person will use for session
access. If users do not have appropriate authorizations, they cannot access protected
data.

You can optionally assign special privileges that particular users need to do their
job. Note that Oracle Label Security privileges may only be necessary to perform
special job functions.

Note: When Oracle Label Security is installed to work with Oracle
Internet Directory (OID), dynamic label generation is not allowed,
because labels are managed centrally in OID, using olsadmintool
commands. (See Appendix B, "Command-line Tools for Label
Security Using Oracle Internet Directory".)

Therefore, when Oracle Label Security is directory-enabled, this
function, TO_DATA_LABEL, is not available and will generate an
error message if used.

See Also: "Using the SA_LABEL_ADMIN Package to Specify
Valid Labels" on page 6-19

"Inserting Labels Using TO_DATA_LABEL" on page 4-17

See Also: Chapter 9, "Applying Policies to Tables and Schemas"

Organizing the Duties of Oracle Label Security Administrators

6-4 Oracle Label Security Administrator’s Guide

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Authorizations—>Users and use the User property sheet.

Alternatively, you can use the SA_POLICY_ADMIN package.

Step 6: Create and Authorize Trusted Program Units (Optional)
Create any necessary stored trusted program units, and set their labels and
privileges.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Authorizations—>Program Units and use the User property sheet.

Alternatively, you can use the SA_USER_ADMIN package.

Step 7: Configure Auditing (Optional)
Configure monitoring of the administrative tasks and use of privileges, if desired.

■ Configure policy-wide auditing.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Auditing and use the Auditing tab page of the Policy property
sheet.

■ Configure auditing on a user-by-user basis.

To do this with Oracle Policy Manager, go to Oracle Label Security
Policies—>Authorizations—>Users—> username. Use the Auditing tab page of
the User property sheet.

Alternatively, you can use the SA_AUDIT_ADMIN package to set auditing options
for policies, users, and program units.

Organizing the Duties of Oracle Label Security Administrators
You can manage the administration of an Oracle Label Security policy in various
ways. The policy_DBA role is created when you create a new policy, and every
individual who needs to perform administrative functions must be granted this

See Also: Chapter 7, "Administering User Labels and Privileges"

See Also: Chapter 10, "Administering and Using Trusted Stored
Program Units"

See Also: Chapter 11, "Auditing Under Oracle Label Security"

Choosing an Oracle Label Security Administrative Interface

Creating an Oracle Label Security Policy 6-5

role. However, you can grant EXECUTE privileges on the administrative packages
to different users, so that each administrator can be restricted to a subset of the
administrative functions.

For example, you could grant EXECUTE privilege on SA_COMPONENTS and SA_
LABEL_ADMIN to one user or role to manage the label definitions, and grant
EXECUTE on SA_USER_ADMIN to a different user or role to manage user labels
and privileges. Alternatively, you could grant EXECUTE on all of the administrative
packages to the policy_DBA role, so that anyone with the policy_DBA role could
perform all of the administrative tasks.

Choosing an Oracle Label Security Administrative Interface
You can perform Oracle Label Security development and administrative tasks using
either of two interfaces:

■ Oracle Label Security Packages

■ Oracle Policy Manager

Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of
administration. These include:

Table 6–1 Oracle Label Security Administrative Packages

Package Purpose

SA_SYSDBA To create, alter, and drop Oracle Label Security policies

SA_COMPONENTS To define the levels, compartments, and groups for the policy

SA_LABEL_ADMIN To perform standard label policy administrative functions,
such as creating labels

SA_POLICY_ADMIN To apply policies to schemas and tables

SA_USER_ADMIN To manage user authorizations for levels, compartments, and
groups, as well as program unit privileges. Also to administer
user privileges.

SA_AUDIT_ADMIN To set options to audit administrative tasks and use of
privileges

Choosing an Oracle Label Security Administrative Interface

6-6 Oracle Label Security Administrator’s Guide

Oracle Label Security Demonstration File
For a demonstration showing how to create and develop an Oracle Label Security
policy using the supplied packages, refer to the olsdemo.sql file in your
ORACLE_HOME/rdbms/demo directory.

Oracle Policy Manager
You can use Oracle Policy Manager, an extension to Oracle Enterprise Manager, to
administer Oracle Label Security. Figure 6–1 is a representative screenshot that
illustrates the Oracle Policy Manager interface. Please see the online help for
instructions on how to use this graphical user interface.

Choosing an Oracle Label Security Administrative Interface

Creating an Oracle Label Security Policy 6-7

Figure 6–1 Oracle Policy Manager Interface

Using the SA_SYSDBA Package to Manage Security Policies

6-8 Oracle Label Security Administrator’s Guide

Using the SA_SYSDBA Package to Manage Security Policies
This section explains how to manage a policy using the SA_SYSDBA package. To do
this in Oracle Policy Manager, use the Create Policy icon or the Policy property
sheet.

■ Who Can Use the SA_SYSDBA Package

■ Who Can Administer a Policy

■ Valid Characters for Policy Specifications

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY

■ Modifying Policy Options with SA_SYSDBA.ALTER_POLICY

■ Disabling a Policy with SA_SYSDBA.DISABLE_POLICY

■ Enabling a Policy with SA_SYSDBA.ENABLE_POLICY

■ Removing a Policy with SA_SYSDBA.DROP_POLICY

Who Can Use the SA_SYSDBA Package
To use the SA_SYSDBA package to create, alter, and drop policies a user must have:

■ The LBAC_DBA role

■ EXECUTE privilege on the SA_SYSDBA package

Who Can Administer a Policy
When you create a policy, a role named policy_DBA is automatically created. You
can use this role to control the users who are authorized to execute the policy's
administrative procedures.

For example, after you have created a human resources policy named HR, an HR_
DBA role is automatically created. To use any administrative packages, a user
would need to have the HR_DBA role. If Joan is the administrator of the HR policy,
and David is the administrator of the FIN policy, then Joan has the HR_DBA role
and David has the FIN_DBA role. Each person can only administer the policy for
which he or she has the policy_DBA role.

The user who creates the policy is automatically granted the policy_DBA role with
the ADMIN option, and can grant the role to others.

Using the SA_SYSDBA Package to Manage Security Policies

Creating an Oracle Label Security Policy 6-9

Valid Characters for Policy Specifications
Valid characters for all policy specifications include alphanumeric characters and
underscores, as well as any valid character from your database character set.

Creating a Policy with SA_SYSDBA.CREATE_POLICY
Use the CREATE_POLICY procedure to create a new Oracle Label Security policy,
define a policy-specific column name, and specify a set of default policy options.

Syntax:

PROCEDURE CREATE_POLICY (
 policy_name IN VARCHAR2,
 column_name IN VARCHAR2 DEFAULT NULL,
 default_options IN VARCHAR2 DEFAULT NULL);

Table 6–2 Parameters for SA_SYSDBA.CREATE_POLICY

Parameter Name Parameter Description

policy_name Specifies the policy name, which must be unique within the
database. It can have a maximum of 30 characters, but only the
first 26 characters in the policy_name are significant. Two
policies may not have the same first 26 characters in the
policy_name.

column_name Specifies the name of the column to be added to tables
protected by the policy. If NULL, the default name "SA_
LABEL" is used. Two Oracle Label Security policies cannot
share the same column name.

default_options Specifies the default options to be used when the policy is
applied and no table- or schema-specific options are specified.
Includes enforcement options and the option to hide the label
column.

See Also:

■ Regarding policy enforcement options for tables: Applying a
Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY on
page 9-4

■ Regarding HIDE, "Choosing Policy Options" on page 8-1 and
The HIDE Policy Column Option on page 8-6.

■ "SYSDBA.CREATE_POLICY with Inverse Groups" on
page 14-17.

Using the SA_SYSDBA Package to Manage Security Policies

6-10 Oracle Label Security Administrator’s Guide

Modifying Policy Options with SA_SYSDBA.ALTER_POLICY
Use the ALTER_POLICY procedure to set and modify policy default options.

Syntax:

PROCEDURE ALTER_POLICY (
 policy_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL);

Disabling a Policy with SA_SYSDBA.DISABLE_POLICY
Use the DISABLE_POLICY procedure to turn off enforcement of a policy, without
removing it from the database. The policy is not enforced for all subsequent access
to the database.

To disable a policy means that no access control is enforced on the tables and
schemas protected by the policy. The administrator can continue to perform
administrative operations while the policy is disabled.

Syntax:

PROCEDURE DISABLE_POLICY (policy_name IN VARCHAR2);

Table 6–3 Parameters for SA_SYSDBA.ALTER_POLICY

Parameter Name Parameter Description

policy_name Specifies the policy name

default_options Specifies the default options to be used when the policy is
applied and no table- or schema-specific options are specified.
Includes enforcement options and the option to hide the label
column.

Table 6–4 Parameters for SA_SYSDBA.DISABLE_POLICY

Parameter Name Parameter Description

policy_name Specifies the policy to be disabled

Using the SA_SYSDBA Package to Manage Security Policies

Creating an Oracle Label Security Policy 6-11

Normally, a policy should not be disabled in order to manage data. At times,
however, an administrator may need to disable a policy in order to perform
application debugging tasks. In this case, the database should be run in single-user
mode. In a development environment, for example, you may need to observe data
processing operations without the policy turned on. When you re-enable the policy,
all of the selected enforcement options become effective again.

Enabling a Policy with SA_SYSDBA.ENABLE_POLICY
Use the ENABLE_POLICY procedure to enforce access control on the tables and
schemas protected by the policy. A policy is automatically enabled when it is
created. After creation or enabling, the policy is enforced for all subsequent access
to tables protected by the policy

Syntax:

PROCEDURE ENABLE_POLICY (policy_name IN VARCHAR2);

Removing a Policy with SA_SYSDBA.DROP_POLICY
Use the DROP_POLICY procedure to remove the policy and all of its associated
user labels and data labels from the database. It purges the policy from the system
entirely. You can optionally drop the label column from all tables controlled by the
policy.

Syntax:

PROCEDURE DROP_POLICY (policy_name IN VARCHAR2,
 drop_column BOOLEAN DEFAULT FALSE);

Note: This feature is extremely powerful, and should be used with
caution. When a policy is disabled, anyone who connects to the
database can access all the data normally protected by the policy.
Your site therefore should establish guidelines for use of this
feature.

Table 6–5 Parameters for SA_SYSDBA.ENABLE_POLICY

Parameter Name Parameter Description

policy_name Specifies the policy to be enabled

Using the SA_COMPONENTS Package to Define Label Components

6-12 Oracle Label Security Administrator’s Guide

Using the SA_COMPONENTS Package to Define Label Components
This package manages the component definitions of an Oracle Label Security label.
Each policy defines the components differently. This section contains these topics:

■ Creating a Level with SA_COMPONENTS.CREATE_LEVEL

■ Modifying a Level with SA_COMPONENTS.ALTER_LEVEL

■ Removing a Level with SA_COMPONENTS.DROP_LEVEL

■ Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT

■ Modifying a Compartment with SA_COMPONENTS.ALTER_
COMPARTMENT

■ Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT

■ Creating a Group with SA_COMPONENTS.CREATE_GROUP

■ Modifying a Group with SA_COMPONENTS.ALTER_GROUP

■ Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT

■ Removing a Group with SA_COMPONENTS.DROP_GROUP

Using Overloaded Procedures
Oracle Label Security makes use of overloaded subprogram names. That is, the
same name is used for several different procedures whose formal parameters differ
in number, order, or datatype family.

Table 6–6 Parameters for SA_SYSDBA.DROP_POLICY

Parameter Name Parameter Description

policy_name Specifies the policy to be dropped

drop_column Indicates that the policy column should be dropped from
protected tables (TRUE)

See Also: Chapter 2, "Understanding Data Labels and User
Labels" for information about the components

"Using Oracle Label Security Views" on page 7-16 for
information about displaying the label definitions
you have set

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 6-13

For example, you can call the SA_COMPONENTS.ALTER_LEVEL procedure this
way:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

or this way:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Because the processing in these two procedures is the same, it is logical to give them
the same name. PL/SQL determines which of the two procedures is being called by
checking their formal parameters. In the preceding example, the version of
initialize used by PL/SQL depends on whether you call the procedure with a
level_num or short_name parameter.

Creating a Level with SA_COMPONENTS.CREATE_LEVEL
Use the CREATE_LEVEL procedure to create a level and specify its short name and
long name. The numeric values assigned to the level_num determine the sensitivity
ranking (that is, a lower number indicates less sensitive data).

Syntax:

PROCEDURE CREATE_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

Table 6–7 Parameters for SA_COMPONENTS.CREATE_LEVEL

Parameter Name Parameter Description

policy_name Specifies the policy

level_num Specifies the level number (0-9999)

short_name Specifies the short name for the level (up to 30 characters)

long_name Specifies the long name for the level (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

6-14 Oracle Label Security Administrator’s Guide

Modifying a Level with SA_COMPONENTS.ALTER_LEVEL
Use the ALTER_LEVEL procedure to change the short name and/or long name
associated with a level.

Once they are defined, level numbers cannot be changed. If a level is used in any
existing label, then its short name cannot be changed, but its long name can be
changed.

Syntax:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Removing a Level with SA_COMPONENTS.DROP_LEVEL
Use the DROP_LEVEL procedure to remove a level. If the level is used in any
existing label, it cannot be dropped.

Syntax:

PROCEDURE DROP_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER);

PROCEDURE DROP_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Table 6–8 Parameters for SA_COMPONENTS.ALTER_LEVEL

Parameter Name Parameter Description

policy_name Specifies the policy

level_num Specifies the number of the level to be altered

short_name Specifies the short name for the level (up to 30 characters)

new_short_name Specifies the new short name for the level (up to 30 characters)

new_long_name Specifies the new long name for the level (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 6-15

Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT
Use the CREATE_COMPARTMENT procedure to create a compartment and specify
its short name and long name. The comp_num determines the order in which
compartments are listed in the character string representation of labels.

Syntax:

PROCEDURE CREATE_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT
Use the ALTER_COMPARTMENT procedure to change the short name and/or long
name associated with a compartment.

Once set, the comp_num cannot be changed. If the comp_num is used in any existing
label, then its short name cannot be changed, but its long name can be changed.

Syntax:

PROCEDURE ALTER_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,

Table 6–9 Parameters for SA_COMPONENTS.DROP_LEVEL

Parameter Name Parameter Description

policy_name Specifies the policy

level_num Specifies the number of an existing level for the policy

short_name Specifies the short name for the level (up to 30 characters)

Table 6–10 Parameters for SA_COMPONENTS.CREATE_COMPARTMENT

Parameter Name Parameter Description

policy_name Specifies the policy

comp_num Specifies the compartment number (0-9999)

short_name Specifies the short name for the compartment (up to 30
characters)

long_name Specifies the long name for the compartment (up to 80
characters)

Using the SA_COMPONENTS Package to Define Label Components

6-16 Oracle Label Security Administrator’s Guide

 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_COMPARTMENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT
Use the DROP_COMPARTMENT procedure to remove a compartment. If the
compartment is used in any existing label, it cannot be dropped.

Syntax:

PROCEDURE DROP_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER);

PROCEDURE DROP_COMPARTMENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Table 6–11 Parameters for SA_COMPONENTS.ALTER_COMPARTMENT

Parameter Name Parameter Description

policy_name Specifies the policy

comp_num Specifies the number of the compartment to be altered

short_name Specifies the short name of the compartment to be altered (up
to 30 characters)

new_short_name Specifies the new short name of the compartment (up to 30
characters)

new_long_name Specifies the new long name of the compartment (up to 80
characters).

Table 6–12 Parameters for SA_COMPONENTS.DROP_COMPARTMENT

Parameter Name Parameter Description

policy_name Specifies the policy

comp_num Specifies the number of an existing compartment for the policy

short_name Specifies the short name of an existing compartment for the
policy

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 6-17

Creating a Group with SA_COMPONENTS.CREATE_GROUP
Use the CREATE_GROUP procedure to create a group and specify its short name
and long name, and optionally a parent group.

Syntax:

PROCEDURE CREATE_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2,
 parent_name IN VARCHAR2 DEFAULT NULL);

Note that the group number affects the order in which groups will be displayed
when labels are selected.

Modifying a Group with SA_COMPONENTS.ALTER_GROUP
Use the ALTER_GROUP procedure to change the short name and/or long name
associated with a group.

Once set, the group_num cannot be changed. If the group is used in any existing
label, then its short name cannot be changed, but its long name can be changed.

Syntax:

PROCEDURE ALTER_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_GROUP (policy_name IN VARCHAR2,

Table 6–13 Parameters for SA_COMPONENTS.CREATE_GROUP

Parameter Name Parameter Description

policy_name Specifies the policy

group_num Specifies the group number (0-9999)

short_name Specifies the short name for the group (up to 30 characters)

long_name Specifies the long name for the group (up to 80 characters)

parent_name Specifies the short name of an existing group as the parent
group. If NULL, the group is a top-level group.

See Also: "Groups" on page 2-7

Using the SA_COMPONENTS Package to Define Label Components

6-18 Oracle Label Security Administrator’s Guide

 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT
The ALTER_GROUP_PARENT procedure changes the parent group associated with
a particular group.

Syntax:

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 parent_name IN VARCHAR2);

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 parent_num IN INTEGER);

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 parent_name IN VARCHAR2);

Table 6–14 Parameters for SA_COMPONENTS.ALTER_GROUP

Parameter Name Parameter Description

policy_name Specifies the policy

group_num Specifies the existing group number to be altered

short_name Specifies the existing group short name to be altered

new_short_name Specifies the new short name for the group (up to 30
characters)

new_long_name Specifies the new long name for the group (up to 80 characters)

Table 6–15 Parameters for SA_COMPONENTS.ALTER_GROUP_PARENT

Parameter Name Parameter Description

policy_name Specifies the policy

group_num Specifies the existing group number to be altered

short_name Specifies the existing group short name to be altered

parent_num Specifies the number of an existing group as the parent group

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Creating an Oracle Label Security Policy 6-19

Removing a Group with SA_COMPONENTS.DROP_GROUP
Use the DROP_GROUP procedure to remove a group. If the group is used in
existing labels, it cannot be dropped.

Syntax:

PROCEDURE DROP_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER);

PROCEDURE DROP_GROUP (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Using the SA_LABEL_ADMIN Package to Specify Valid Labels
The SA_LABEL_ADMIN package provides an administrative interface to manage
the labels used by a policy. To do this, a user must have EXECUTE privilege for the
SA_LABEL_ADMIN package and have been granted the policy_DBA role.

This section includes:

■ Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL

■ Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL

■ Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL

Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL
Use the SA_LABEL_ADMIN.CREATE_LABEL procedure to create a valid data
label. You must manually specify a label tag value from 1 to 8 digits long.

parent_name Specifies the short name of an existing group as the parent
group

Table 6–16 Parameters for SA_COMPONENTS.DROP_GROUP

Parameter Name Parameter Description

policy_name Specifies the policy

group_num Specifies the number of an existing group for the policy

short_name Specifies the short name of an existing group

Table 6–15 Parameters for SA_COMPONENTS.ALTER_GROUP_PARENT

Parameter Name Parameter Description

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

6-20 Oracle Label Security Administrator’s Guide

Syntax:

PROCEDURE CREATE_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER,
 label_value IN VARCHAR2,
 data_label IN BOOLEAN DEFAULT TRUE);

When specifying labels, use the short name of the level, compartment and group.

When you identify valid labels, you specify which of all the possible combinations
of levels, compartments, and groups can potentially be used to label data in tables.

Table 6–17 Parameters for SA_LABEL_ADMIN.CREATE_LABEL

Parameter Name Parameter Description

policy_name Specifies the name of an existing policy

label_tag Specifies an unique integer value representing the sort order of
the label, relative to other policy labels (0-99999999)

label_value Specifies the character string representation of the label to be
created

data_label TRUE if the label can be used to label row data. Use this to
define the label as valid for data.

Note: If you create a new label by using the TO_DATA_LABEL
procedure, a system-generated label tag of 10 digits will be
generated automatically.

However, When Oracle Label Security is installed to work with
Oracle Internet Directory (OID), dynamic label generation is not
allowed, because labels are managed centrally in OID, using
olsadmintool commands. (See Appendix B, "Command-line Tools
for Label Security Using Oracle Internet Directory".)

Therefore, when Oracle Label Security is directory-enabled, the
TO_DATA_LABEL function is not available and will generate an
error message if used.

See Also: "The Policy Label Column and Label Tags" on page 4-2

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Creating an Oracle Label Security Policy 6-21

Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL
Use the ALTER_LABEL procedure to change the character string label definition
associated with a label tag. Note that the label tag itself cannot be changed.

If you change the character string associated with a label tag, the sensitivity of the
data in the rows changes accordingly. For example, if the label character string TS:A
with an associated label tag value of 4001 is changed to the label TS:B, then access to
the data changes accordingly. This is true even though the label tag value (4001) has
not changed. In this way you can change the data's sensitivity without the need to
update all the rows.

Note that, when you specify a label to alter, you can refer to it either by its label tag
or by its character string value.

Syntax:

PROCEDURE ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

PROCEDURE ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

Table 6–18 Parameters for SA_LABEL_ADMIN.ALTER_LABEL

Parameter Name Parameter Description

policy_name Specifies the name of an existing policy

label_tag Identifies the integer tag assigned to the label to be altered

label_value Identifies the existing character-string representation of the
label to be altered

new_label_value Specifies the new character string representation of the label
value. If NULL, the existing value is not changed.

new_data_label TRUE if the label can be used to label row data. If NULL, the
existing value is not changed.

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

6-22 Oracle Label Security Administrator’s Guide

Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL
Use the SA_LABEL_ADMIN.DROP_LABEL procedure to delete a specified policy
label. Any subsequent reference to the label (in data rows, or in user or program
unit labels) will raise an invalid label error.

Syntax:

PROCEDURE DROP_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER);

PROCEDURE DROP_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2);

Use this procedure only while setting up labels, prior to data population. If you
should inadvertently drop a label that is being used, you can recover by disabling
the policy, fixing the problem, and then re-enabling the policy.

Table 6–19 Parameters for SA_LABEL_ADMIN.DROP_LABEL

Parameter Name Parameter Description

policy_name Specifies the name of an existing policy

label_tag Specifies the integer tag assigned to the label to be dropped

label_value Specifies the string value of the label to be dropped

Caution: Do not drop a label that is in use anywhere in the
database.

Administering User Labels and Privileges 7-1

7
Administering User Labels and Privileges

In Oracle Label Security, you can set authorizations for users, and grant privileges
to users or stored program units by means of the available Oracle Label Security
packages, or Oracle Policy Manager.

■ Introduction to User Label and Privilege Management

■ Managing User Labels by Component, with SA_USER_ADMIN

■ Managing User Labels by Label String, with SA_USER_ADMIN

■ Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

■ Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

■ Returning User Name with SA_SESSION.SA_USER_NAME

■ Using Oracle Label Security Views

Introduction to User Label and Privilege Management
To manage user labels and privileges, you must have EXECUTE privilege for the
SA_USER_ADMIN package, and must have been granted the policy_DBA role.

To perform these functions with Oracle Policy Manager, go to Oracle Label
Security Policies—> policyname—>Authorizations—>Users and use the User
property sheet.

The SA_USER_ADMIN package provides the functions to manage the Oracle Label
Security user security attributes. It contains several procedures to manage user
labels by component: that is, specifying user levels, compartments, and groups. For
convenience, there are additional procedures that accept character string
representations of full labels, rather than components. Note that the level,

Managing User Labels by Component, with SA_USER_ADMIN

7-2 Oracle Label Security Administrator’s Guide

compartment and group parameters use the short name defined for each
component.

All of the label and privilege information is stored in Oracle Label Security data
dictionary tables. When a user connects to the database, his session labels are
established based on the information stored in the Oracle Label Security data
dictionary.

Note that a user can be authorized under multiple policies.

Managing User Labels by Component, with SA_USER_ADMIN
The following SA_USER_ADMIN procedures enable you to manage user labels by
label component:

■ SA_USER_ADMIN.SET_LEVELS

■ SA_USER_ADMIN.SET_COMPARTMENTS

■ SA_USER_ADMIN.SET_GROUPS

■ SA_USER_ADMIN.ADD_COMPARTMENTS

■ SA_USER_ADMIN.ALTER_COMPARTMENTS

■ SA_USER_ADMIN.DROP_COMPARTMENTS

■ SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

■ SA_USER_ADMIN.ADD_GROUPS

■ SA_USER_ADMIN.ALTER_GROUPS

■ SA_USER_ADMIN.DROP_GROUPS

■ SA_USER_ADMIN.DROP_ALL_GROUPS

SA_USER_ADMIN.SET_LEVELS
The SET_LEVELS procedure assigns a minimum and maximum level to a user and
identifies default values for the user's session label and row label.

■ If the min_level is NULL, it is set to the lowest defined level for the policy.

■ If the def_level is not specified, it is set to the max_level.

■ If the row_level is not specified, it is set to the def_level.

Syntax:

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 7-3

PROCEDURE SET_LEVELS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_level IN VARCHAR2,
 min_level IN VARCHAR2 DEFAULT NULL,
 def_level IN VARCHAR2 DEFAULT NULL,
 row_level IN VARCHAR2 DEFAULT NULL);

SA_USER_ADMIN.SET_COMPARTMENTS
The SET_COMPARTMENTS procedure assigns compartments to a user and
identifies default values for the user's session label and row label.

■ If write_comps are NULL, they are set to the read_comps.

■ If the def_comps are NULL, they are set to the read_comps.

■ If the row_comps are NULL, they are set to the components in def_comps that are
authorized for write access.

All users must have their levels set before their authorized compartments can be
established.

The write compartments, if specified, must be a subset of the read compartments.
(The write compartments are those to which the user should have write access.)

Syntax:

PROCEDURE SET_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_comps IN VARCHAR2,
 write_comps IN VARCHAR2 DEFAULT NULL,
 def_comps IN VARCHAR2 DEFAULT NULL,

Table 7–1 Parameters for SA_USER_ADMIN.SET_LEVELS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

max_level The highest level for read and write access

min_level The lowest level for write access

def_level Specifies the default level (equal to or greater than the
minimum level, and equal to or less than the maximum level)

row_level Specifies the row level (equal to or greater than the minimum
level, and equal to or less than the default level)

Managing User Labels by Component, with SA_USER_ADMIN

7-4 Oracle Label Security Administrator’s Guide

 row_comps IN VARCHAR2 DEFAULT NULL);

SA_USER_ADMIN.SET_GROUPS
The SET_GROUPS procedure assigns groups to a user and identifies default values
for the user's session label and row label.

■ If the write_groups are NULL, they are set to the read_groups.

■ If the def_groups are NULL, they are set to the read_groups.

■ If the row_groups are NULL, they are set to the groups in def_groups that are
authorized for write access.

All users must have their levels set before their authorized groups can be
established.

Syntax:

PROCEDURE SET_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_groups IN VARCHAR2,
 write_groups IN VARCHAR2 DEFAULT NULL,
 def_group IN VARCHAR2 DEFAULT NULL,
 row_groups IN VARCHAR2 DEFAULT NULL);

Table 7–2 Parameters for SA_USER_ADMIN.SET_COMPARTMENTS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

read_comps A comma-delimited list of compartments authorized for read
access

write_comps A comma-delimited list of compartments authorized for write
access (subset of read_comps)

def_comps Specifies the default compartments. This must be a subset of
read_comps.

row_comps Specifies the row compartments. This must be a subset of
write_comps and the def_comps.

Table 7–3 Parameters for SA_USER_ADMIN.SET_GROUPS

Parameter Meaning

policy_name Specifies the policy

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 7-5

SA_USER_ADMIN.ALTER_COMPARTMENTS
The ALTER_COMPARTMENTS procedure changes the write access, the default
label indicator, and/or the row label indicator for each of the compartments in the
list.

Syntax:

PROCEDURE ALTER_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

user_name Specifies the user name

read_groups A comma-delimited list of groups authorized for read

write_groups A comma-delimited list of groups authorized for write. This
must be a subset of read_groups.

def_groups Specifies the default groups. This must be a subset of read_
groups.

row_groups Specifies the row groups. This must be a subset of write_groups
and def_groups.

Table 7–4 Parameters for SA_USER_ADMIN.ALTER_COMPARTMENTS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-delimited list of compartments to modify

Table 7–3 Parameters for SA_USER_ADMIN.SET_GROUPS (Cont.)

Parameter Meaning

Managing User Labels by Component, with SA_USER_ADMIN

7-6 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.ADD_COMPARTMENTS
This procedure adds compartments to a user's authorizations, indicating whether
the compartments are authorized for write as well as read.

Syntax:

PROCEDURE ADD_COMPARTMENTS (policy_name IN VARCHAR2,
user_name IN VARCHAR2,
comps IN VARCHAR2,
access_model IN VARCHAR2 DEFAULT NULL,
in_def IN VARCHAR2 DEFAULT NULL,
in_row IN VARCHAR2 DEFAULT NULL);

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write
access

SA_UTL.READ_WRITE READ_WRITE Indicates write is
authorized

If access_mode is NULL, then access_mode for the compartment
is unaltered.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then in_def for the compartment is
unaltered.

in_row Specifies whether these compartments should be in the row
label (Y/N)

If in_row is NULL, then in_row for the compartment is
unaltered.

Table 7–5 Parameters for SA_USER_ADMIN.ADD_COMPARTMENTS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-delimited list of read compartments to add

Table 7–4 Parameters for SA_USER_ADMIN.ALTER_COMPARTMENTS (Cont.)

Parameter Meaning

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 7-7

SA_USER_ADMIN.DROP_COMPARTMENTS
The DROP_COMPARTMENTS procedure drops the specified compartments from a
user's authorizations.

Syntax:

PROCEDURE DROP_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2);

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The DROP_ALL_COMPARTMENTS procedure drops all compartments from a
user's authorizations.

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write
access

SA_UTL.READ_WRITE READ_WRITE Indicates write is
authorized

If access_mode is NULL, then it is set to SA_UTL.READ_ONLY.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then it is set to Y.

in_row Specifies whether these compartments should be in the row
label (Y/N)

If in_row is NULL, then it is set to N.

Table 7–6 Parameters for SA_USER_ADMIN.DROP_COMPARTMENTS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-delimited list of compartments to drop

Table 7–5 Parameters for SA_USER_ADMIN.ADD_COMPARTMENTS (Cont.)

Parameter Meaning

Managing User Labels by Component, with SA_USER_ADMIN

7-8 Oracle Label Security Administrator’s Guide

Syntax:

PROCEDURE DROP_ALL_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

SA_USER_ADMIN.ADD_GROUPS
The ADD_GROUPS procedure adds groups to a user, indicating whether the
groups are authorized for write as well as read.

Syntax:

PROCEDURE ADD_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Table 7–7 Parameters for SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

Table 7–8 Parameters for SA_USER_ADMIN.ADD_GROUPS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-delimited list of read groups to add

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write
access

SA_UTL.READ_WRITE READ_WRITE Indicates write is
authorized

If access_mode is NULL, then access_mode is set to SA_
UTL.READ_ONLY.

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 7-9

SA_USER_ADMIN.ALTER_GROUPS
The ALTER_GROUPS procedure changes the write access, the default label
indicator, and/or the row label indicator for each of the groups in the list.

Syntax:

PROCEDURE ALTER_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

in_def Specifies whether these groups should be in the default groups
(Y/N)

If in_def is NULL, then it is set to Y.

in_row Specifies whether these groups should be in the row label
(Y/N)

If in_row is NULL, then it is set to N.

Table 7–9 Parameters for SA_USER_ADMIN.ALTER_GROUPS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-delimited list of groups to alter

access_mode Two public variables contain string values that can specify the
type of access authorized. The variable names, values, and
meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write
access

SA_UTL.READ_WRITE READ_WRITE Indicates write is
authorized

If access_mode is NULL, then access_mode for the group is
unaltered.

Table 7–8 Parameters for SA_USER_ADMIN.ADD_GROUPS (Cont.)

Parameter Meaning

Managing User Labels by Component, with SA_USER_ADMIN

7-10 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.DROP_GROUPS
The DROP_GROUPS procedure drops the specified groups from a user's
authorizations.

Syntax:

PROCEDURE DROP_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2);

SA_USER_ADMIN.DROP_ALL_GROUPS
The DROP_ALL_GROUPS procedure drops all groups from a user's authorizations.

Syntax:

PROCEDURE DROP_ALL_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

in_def Specifies whether these groups should be in the default groups
(Y/N)

If in_def is NULL, then in_def for the group is unaltered.

in_row Specifies whether these groups should be in the row label
(Y/N)

If in_row is NULL, then in_row for the group is unaltered.

Table 7–10 Parameters for SA_USER_ADMIN.DROP_GROUPS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-delimited list of groups to drop

Table 7–11 Parameters for SA_USER_ADMIN.DROP_ALL_GROUPS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

Table 7–9 Parameters for SA_USER_ADMIN.ALTER_GROUPS (Cont.)

Parameter Meaning

Managing User Labels by Label String, with SA_USER_ADMIN

Administering User Labels and Privileges 7-11

Managing User Labels by Label String, with SA_USER_ADMIN
The following SA_USER_ADMIN procedures enable you to manage user labels by
specifying the complete character label string:

■ SA_USER_ADMIN.SET_USER_LABELS

■ SA_USER_ADMIN.SET_DEFAULT_LABEL

■ SA_USER_ADMIN.SET_ROW_LABEL

■ SA_USER_ADMIN.SET_DEFAULT_LABEL

SA_USER_ADMIN.SET_USER_LABELS
The SET_USER_LABELS procedure sets the user's levels, compartments, and
groups using a set of labels, instead of the individual components.

Syntax:

PROCEDURE SET_USER_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_read_label IN VARCHAR2,
 max_write_label IN VARCHAR2 DEFAULT NULL,
 min_write_label IN VARCHAR2 DEFAULT NULL,
 def_label IN VARCHAR2 DEFAULT NULL,
 row_label IN VARCHAR2 DEFAULT NULL);

Table 7–12 Parameters for SA_USER_ADMIN.SET_USER_LABELS

Parameter Meaning

max_read_label Specifies the label string to be used to initialize the user's
maximum authorized read label. Composed of the user's
maximum level, compartments authorized for read access, and
groups authorized for read access.

max_write_label Specifies the label string to be used to initialize the user's
maximum authorized write label. Composed of the user's
maximum level, compartments authorized for write access,
and groups authorized for write access. If the max_write_label is
not specified, it is set to the max_read_label.

min_write_label Specifies the label string to be used to initialize the user's
minimum authorized write label. Contains only the level, with
no compartments or groups. If the min_write_label is not
specified, it is set to the lowest defined level for the policy, with
no compartments or groups.

Managing User Labels by Label String, with SA_USER_ADMIN

7-12 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_DEFAULT_LABEL
The SET_DEFAULT_LABEL procedure sets the user's initial session label to the one
specified.

Syntax:

PROCEDURE SET_DEFAULT_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 def_label IN VARCHAR2);

As long as the row label will still be dominated by the new write label, the user can
set the session label to:

def_label Specifies the label string to be used to initialize the user's
session label, including level, compartments, and groups (a
subset of max_read_label). If the default_label is not specified, it is
set to the max_read_label.

policy_name Specifies the policy

user_name Specifies the user name

row_label Specifies the label string to be used to initialize the program's
row label. Includes level, components, and groups: subsets of
max_write_label and def_label. If row_label is not specified, it is
set to the def_label, with only the compartments and groups
authorized for write access.

See Also: "Managing Program Unit Privileges with SET_PROG_
PRIVS" on page 10-3

Table 7–13 Parameters for SA_USER_ADMIN.SET_DEFAULT_LABEL

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

def_label Specifies the label string to be used to initialize the user's
default labels. This label may contain any compartments and
groups that are authorized for read access.

Table 7–12 Parameters for SA_USER_ADMIN.SET_USER_LABELS (Cont.)

Parameter Meaning

Managing User Labels by Label String, with SA_USER_ADMIN

Administering User Labels and Privileges 7-13

■ Any level equal to or less than his maximum, and equal to or greater than his
minimum label

■ Include any compartments in the authorized compartment list

■ Include any groups in the authorized group list. (Subgroups of authorized
groups are implicitly included in the authorized list.)

The row label must be dominated by the new write label that will result from
resetting the session label. If this condition is not true, the SET_DEFAULT_LABEL
procedure will fail.

For example, suppose the current row label is S:A,B, and that you have write access
to both compartments. If you attempt to set the new default label to C:A,B the SET_
LABEL procedure will fail. This is because the new write label would be C:A,B,
which does not dominate the current row label.

To successfully reset the session label in this case, you must first lower the row label
to a value that will be dominated by the resulting session label.

SA_USER_ADMIN.SET_ROW_LABEL
Use the SET_ROW_LABEL procedure to set the user's initial row label to the one
specified.

Syntax:

PROCEDURE SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 row_label IN VARCHAR2);

See Also: "Changing the Session Label with SA_SESSION.SET_
LABEL" on page 4-19

"Session Labels and Inverse Groups" on page 14-12

Table 7–14 Parameters for SA_USER_ADMIN.SET_ROW_LABEL

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

row_label Specifies the label string to be used to initialize the user's row
label. The label must contain only those compartments and
groups from the default label that are authorized for write
access.

Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

7-14 Oracle Label Security Administrator’s Guide

The user can set the row label independently, but only to:

■ A level that is less than or equal to the level of the session label, and greater
than or equal to the user's minimum level

■ Include a subset of the compartments and groups from the session label, for
which the user is authorized to have write access

If you try to set the row label to an invalid value, the operation is disallowed, and
the row label value is unchanged.

SA_USER_ADMIN.DROP_USER_ACCESS
Use the DROP_USER_ACCESS procedure to remove all Oracle Label Security
authorizations and privileges from the specified user. This procedure must be
issued from the command line. It is not available in Oracle Policy Manager.

Syntax:

PROCEDURE DROP_USER_ACCESS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

 Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS
The SET_USER_PRIVS procedure sets policy-specific privileges for users. These
privileges do not become effective in the current session; rather, they become
effective the next time the user logs in. The new set of privileges replaces any
existing privileges. A NULL value for the privileges parameter removes the user's
privileges for the policy.

To assign policy privileges to users, you must have EXECUTE privilege for the SA_
USER_ADMIN package, and must have been granted the policy_DBA role.

See Also: "Changing the Row Label with SA_SESSION.SET_
ROW_LABEL" on page 4-20

Table 7–15 Parameters for SA_USER_ADMIN.DROP_USER_ACCESS

Parameter Meaning

policy_name Specifies the policy

user_name Specifies the user name

Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

Administering User Labels and Privileges 7-15

To use Oracle Policy Manager to perform these functions, go to the Privileges tab of
the User property sheet.

Syntax:

PROCEDURE SET_USER_PRIVS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privileges IN VARCHAR2);

Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE
The SET_ACCESS_PROFILE procedure sets the Oracle Label Security
authorizations and privileges of the database session to those of the specified user.
(Note that the originating user retains the PROFILE_ACCESS privilege.)

The user executing the SA_SESSION.SET_ACCESS_PROFILE procedure must have
the PROFILE_ACCESS privilege. Note that the logged-in database user (the Oracle
userid) does not change. That user assumes only the authorizations and privileges
of the specified user. By contrast, the Oracle Label Security user name is changed.

This administrative procedure is useful for various tasks:

■ With SET_ACCESS_PROFILE, the administrator can see the result of the
authorization and privilege settings for a particular user.

■ Applications need to have proxy accounts connect as (and assume the identity
of) application users, for purposes of accessing labeled data. With the SET_
ACCESS_PROFILE privilege, the proxy account can act on behalf of the
application users.

Syntax:

Table 7–16 Parameters for SA_USER_ADMIN.SET_USER_PRIVS

Parameter Meaning

policy_name Specifies the policy name of an existing policy

user_name The name of the user to be granted privileges

privileges A character string of policy-specific privileges separated by
commas

See Also: "Managing Program Unit Privileges with SET_PROG_
PRIVS" on page 10-3

Returning User Name with SA_SESSION.SA_USER_NAME

7-16 Oracle Label Security Administrator’s Guide

PROCEDURE SET_ACCESS_PROFILE (policy_name IN VARCHAR2
 user_name IN VARCHAR2);

Returning User Name with SA_SESSION.SA_USER_NAME
The SA_USER_NAME function returns the name of the current Oracle Label
Security user, as set by the SET_ACCESS_PROFILE procedure (or as established at
login). This is how you can determine the identity of the current user in relation to
Oracle Label Security, rather than in relation to your Oracle login name.

Syntax:

FUNCTION SA_USER_NAME (policy_name IN VARCHAR2)
RETURN VARCHAR2;

Using Oracle Label Security Views
This section describes views you can use to see the user authorization and privilege
assignments made by the administrator.

Note that the views are designed to display these values from two different
perspectives. The DBA_SA_USERS view is optimized for users of the command-line
interface. The component views are optimized for users of the Oracle Policy
Manager administrative tool.

■ View to Display All User Security Attributes: DBA_SA_USERS

■ Views to Display User Authorizations by Component

Table 7–17 Parameters for SA_SESSION.SET_ACCESS_PROFILE

Parameter Meaning

policy_name The name of an existing policy

user_name Name of the user whose authorizations and privileges should
be assumed

Table 7–18 Parameters for SA_SESSION.SA_USER_NAME

Parameter Meaning

policy_name The name of an existing policy

Using Oracle Label Security Views

Administering User Labels and Privileges 7-17

View to Display All User Security Attributes: DBA_SA_USERS
The DBA_SA_USERS view displays the values assigned for privileges, levels,
compartments, and groups all together—corresponding to how you enter these
values through the SA_USER_ADMIN command-line interface. The values include:

USER_PRIVILEGES

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

USER_LABELS

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

This information is stored in data dictionary tables, and used to establish session
and row labels when a user logs in.

Note: The field USER_LABELS in DBA_SA_USERS is retained
solely for backward compatibility and will be removed in the next
release.

Using Oracle Label Security Views

7-18 Oracle Label Security Administrator’s Guide

Views to Display User Authorizations by Component
The following views display individually each component of the label,
corresponding to how you enter these values through Oracle Policy Manager.

Table 7–19 Oracle Label Security Views

View Contents

DBA_SA_USER_LEVELS Displays the levels assigned to the user:
minimum level, maximum level, default level,
and level for the row label

DBA_SA_USER_COMPARTMENTS Displays the compartments assigned to the user

DBA_SA_USER_GROUPS Displays the groups assigned to the user

Implementing Policy Enforcement Options and Labeling Functions 8-1

8
Implementing Policy Enforcement Options

and Labeling Functions

This chapter explains how to customize the enforcement of Oracle Label Security
policies and how to implement labeling functions, in the following sections:

■ Choosing Policy Options

■ Using a Labeling Function

■ Inserting Labeled Data Using Policy Options and Labeling Functions

■ Updating Labeled Data Using Policy Options and Labeling Functions

■ Deleting Labeled Data Using Policy Options and Labeling Functions

■ Using a SQL Predicate with an Oracle Label Security Policy

Choosing Policy Options
This section introduces the policy options, and discusses their use.

■ Overview of Policy Enforcement Options

■ The HIDE Policy Column Option

■ The Label Management Enforcement Options

■ The Access Control Enforcement Options

■ The Overriding Enforcement Options

■ Guidelines for Using the Policy Enforcement Options

■ Exemptions from Oracle Label Security Policy Enforcement

Choosing Policy Options

8-2 Oracle Label Security Administrator’s Guide

Overview of Policy Enforcement Options
Of all the enforcement controls that Oracle Label Security permits, the administrator
must choose those that meet the needs of the given application. This means
identifying levels of data sensitivity to exposure, alteration, or misuse, as well as
identifying which users have the need or the right to access or alter such data. The
policy enforcement options enable administrators to fine-tune users' abilities to read
or write data or labels.

These options can operate at three different levels:

When you apply a policy to a table or schema, you can specify the enforcement
options that are to constrain use of that table or schema. If you do not specify
enforcement options at that time, then the default enforcement options you
specified when you created that policy are used automatically.

These options customize your policy enforcement to meet your security
requirements as to READ access, WRITE access, and label changes. You can also
specify whether the label column should be displayed or hidden. You can choose to
enforce some or all of the policy options for any protected table by specifying only
those you want.

Optionally, you can assign each table a labeling function, which determines the label
of any row inserted or updated in that table. You can also specify, optionally, a SQL
predicate for a table, to control which rows are accessible to users, based on their
labels.

Table 8–1 When Policy enforcement Options Take Effect

Level at which option set Options set at this level affect user operations ...

Policy Level ... only when the policy has been applied to the table or schema

Schema Level ... whenever a user acts in this schema

Table Level ... whenever a user acts in this table

See Also:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_
POLICY on page 9-4

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY on
page 6-9

Choosing Policy Options

Implementing Policy Enforcement Options and Labeling Functions 8-3

When Oracle Label Security policy enforcement options are applied, they control
what rows are accessible to view or to insert, update, or delete.

Table 8–2, "Policy Enforcement Options" lists the options in three categories:

■ Label management options, ensuring that data labels written for inserted or
updated rows do not violate policies set for such labels.

■ Access control options, ensuring that only rows whose labels meet established
policies are accessible for SELECT, UPDATE, INSERT, or DELETE operations.

■ Overriding options, that can suspend or apply all other enforcement options.

See Also:

■ Using a Labeling Function on page 8-12.

■ Using a SQL Predicate with an Oracle Label Security Policy on

page 8-20.

Table 8–2 Policy Enforcement Options

Type of Enforcement Option Description

The Label
Management
Enforcement Options

LABEL_DEFAULT Uses the session's default row label value unless the user
explicitly specifies a label on INSERT.

LABEL_UPDATE Applies policy enforcement to UPDATE operations that set or
change the value of a label attached to a row. The WRITEUP,
WRITEDOWN, and WRITEACROSS privileges are only enforced
if the LABEL_UPDATE option is active.

CHECK_
CONTROL

Applies READ_CONTROL policy enforcement to INSERT and
UPDATE statements to assure that the new row label is
read-accessible.

The Access Control
Enforcement Options

READ_CONTROL Applies policy enforcement to all queries; only authorized rows
are accessible for SELECT, UPDATE, and DELETE operations.

WRITE_CONTROL Determines the ability to INSERT, UPDATE, and DELETE data in
a row. If this option is active, it enforces INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL.

INSERT_
CONTROL

Applies policy enforcement to INSERT operations, according to
the algorithm for write access described in Figure 3–8.

DELETE_
CONTROL

Applies policy enforcement to DELETE operations, according to
the algorithm for write access described in Figure 3–8.

Choosing Policy Options

8-4 Oracle Label Security Administrator’s Guide

Remember: even when Oracle Label Security is applicable to a table, some DML
operations may not be covered by the policies being applied. The policy
enforcement options set by the administrator determine both the SQL processing
behavior and what an authorized user can actually see in response to a query on a
protected table. Except where noted, this chapter assumes that ALL_CONTROL is
active, meaning that all enforcement options are in effect. If users attempt to
perform an operation for which they are not authorized, an error message is raised
and the SQL statement fails.

Understanding the relationships among these policy enforcement options, and what
SQL statements they control, is essential to their effective use in designing and
implementing your Oracle Label Security policies.

Table 8–2, "Policy Enforcement Options" indicates these relationships.

UPDATE_
CONTROL

Applies policy enforcement to UPDATE operations on the data
columns within a row, according to the algorithm for write access
described in Figure 3–8.

The Overriding
Enforcement Options

ALL_CONTROL Applies all enforcement options.

NO_CONTROL Applies no enforcement options. A labeling function or a SQL
predicate can nonetheless be applied.

See Also: "Implementing Inverse Groups with the INVERSE_
GROUP Enforcement Option" on page 14-3

Table 8–3 What Policy Enforcement Options Control

Specifying This
Option in a Policy

Controls These SQL
Operations Using These Criteria and with These Effects

READ_CONTROL SELECT, UPDATE, and
DELETE

Only authorized rows (*) are accessible.

WRITE_CONTROL INSERT, UPDATE, and
DELETE

(a) Only authorized rows (**) are accessible

(b) Data labels writable unless LABEL_UPDATE is active.

WRITE_CONTROL is
necessary for these 3:

INSERT_CONTROL INSERT

Table 8–2 Policy Enforcement Options (Cont.)

Type of Enforcement Option Description

Choosing Policy Options

Implementing Policy Enforcement Options and Labeling Functions 8-5

(*) A row is authorized for READ access if the following three criteria are all met:
(user-minimum-level) < = (data-row-level) < = (session-level)
(any-data-group) is a child of (any-user-group-or-childgroup)
(every-data-compartment) is also in (the user's compartments)
See Figure 3–7 on page 3-12.

(**) A row is authorized for READ access if the following three criteria are all met:
(user-minimum-level) < = (data-row-level) < = (session-level)
(any-data-group) is a child of (any-user-group-or-childgroup)
(every-data-compartment) is also in (the user's compartments)
See Figure 3–7 on page 3-12

UPDATE_CONTROL UPDATE

DELETE_CONTROL DELETE

CHECK_CONTROL Applies READ_CONTROL policy enforcement to INSERT and
UPDATE statements to assure that the new row label is
read-accessible.

The Access Control
Enforcement Options

Applies policy enforcement to all queries; only authorized rows
are accessible for operations.

Determines the ability to data in a row. If this option is active, it
enforces.

INSERT_CONTROL Applies policy enforcement to INSERT operations, according to
the algorithm for write access described in Figure 3–8.

DELETE_CONTROL Applies policy enforcement to DELETE operations, according to
the algorithm for write access described in Figure 3–8.

UPDATE_CONTROL Applies policy enforcement to UPDATE operations on the data
columns within a row, according to the algorithm for write access
described in Figure 3–8.

The Overriding
Enforcement Options

ALL_CONTROL Applies all enforcement options.

NO_CONTROL Applies no enforcement options. A labeling function or a SQL
predicate can nonetheless be applied.

Table 8–3 What Policy Enforcement Options Control (Cont.)

Specifying This
Option in a Policy

Controls These SQL
Operations Using These Criteria and with These Effects

Choosing Policy Options

8-6 Oracle Label Security Administrator’s Guide

The HIDE Policy Column Option
You can specify the HIDE policy configuration option when you initially apply an
Oracle Label Security policy to a table, that is, when adding the policy column to
the table. HIDE prevents display of the column containing the policy's labels.

Once the policy has been applied, the hidden (or not hidden) status of the column
cannot be changed unless the policy is removed with the DROP_COLUMN
parameter set to TRUE. Then the policy can be reapplied with a new hidden status.

INSERT statements doing all-column inserts do not require the values for hidden
label columns.

SELECT statements do not automatically return the values of hidden label columns.
Such values must be explicitly retrieved.

A DESCRIBE on a table may or may not display the label column. If the
administrator set the HIDE option, the label column will not be displayed. If HIDE
is not specified for a policy, the label column is displayed in response to a SELECT.

The Label Management Enforcement Options
The three label enforcement options control the data label written when a row is
inserted or updated. When a policy specifies these options and is applied to a table
or schema, then these options apply to the situations described in this section.

A user inserting a row can specify any data label within the range of the user's label
authorizations. If the user does not specify a label for the row being written,
LABEL_DEFAULT can do so. Updates can be restricted by LABEL_UPDATE.
Inserts or updates that use a labeling function can need CHECK-CONTROL to
prevent assigning a data label outside the user's authorizations. Such a label would
prevent her from accessing the row just written, and could enable her to make data
available inappropriately.

See Also: Applying a Policy with SA_POLICY_ADMIN.APPLY_
TABLE_POLICY on page 9-4.

See Also: Removing a Policy with SA_POLICY_
ADMIN.REMOVE_TABLE_POLICY on page 9-5.

See Also: "Retrieving All Columns from a Table When Policy
Label Column Is Hidden" on page 4-9

Choosing Policy Options

Implementing Policy Enforcement Options and Labeling Functions 8-7

Any labeling function in force on a table overrides these options. Such a function
can be named in the call that applies the policy to the table. If the administrator
named such a function when applying a policy, but then disables or removes that
policy, that function is no longer applied.

LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated row
uses its original label. However, to insert a new row, the user must supply a valid
label unless a labeling function is in force or LABEL_DEFAULT applies for this
table. LABEL_DEFAULT causes the user's session default row label to be used as
the new row label.

If neither LABEL_DEFAULT nor a labeling function is in force and the user
attempts to INSERT a row, an error occurs.

Note that any labeling function in force on a table overrides the LABEL_DEFAULT
option.

LABEL_UPDATE: Changing Data Labels
A user updating a row can normally change its label to any label within his
authorized label range. However, if LABEL_UPDATE applies, then to modify a
label the user must have one or more of these privileges: WRITEUP, WRITEDOWN,
and WRITEACROSS.

The LABEL_UPDATE option uses an Oracle after-row trigger invoked only on an
update operation affecting the label. Note that any labeling function in force on a
table overrides the LABEL_UPDATE option.

CHECK_CONTROL: Checking Data Labels
If a row being inserted or updated gets its label from a labeling function, that label
could conceivably be outside the user's authorizations, preventing future access by
that user.

See Also:

■ Chapter 9 regarding applying policies to tables or schemas (or
removing them).

■ Disabling a Policy with SA_SYSDBA.DISABLE_POLICY on
page 6-10

See Also: Special Row Label Privileges on page 3-19.

Choosing Policy Options

8-8 Oracle Label Security Administrator’s Guide

CHECK_CONTROL causes READ_CONTROL to apply to the new label, ensuring
that this user will be authorized to read the inserted or updated row after the
operation. If not, the insert or update operation is canceled and has no effect.

In other words, if CHECK_CONTROL is included as an option in a policy being
enforced on a row, the user modifying that row must still be able to access it after
the operation. CHECK_CONTROL prevents a user or a labeling function from
modifying a row's label to include a level, group, or compartment that the
modifying user would be prevented from accessing.

Note that CHECK_CONTROL overrides any labeling function in force on a table.

The Access Control Enforcement Options
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or
DELETE operations to only those rows whose labels meet established policies:

■ READ_CONTROL: Reading Data

■ WRITE_CONTROL: Writing Data

■ INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

READ_CONTROL: Reading Data
READ_CONTROL uses Oracle virtual private database (VPD) technology to enforce
the read access mediation algorithm illustrated in Figure 3–7 on page 3-12.

READ_CONTROL limits the set of records accessible to a session for SELECT,
UPDATE and DELETE operations. If READ_CONTROL is not active, then even
rows in the table protected by the policy are accessible to all users.

WRITE_CONTROL: Writing Data
WRITE_CONTROL uses Oracle after-row triggers to enforce the write access
mediation algorithm illustrated in Figure 3–8 on page 3-14. When an Oracle Label
Security policy specifying the WRITE_CONTROL option is applied to a table,
triggers are generated and the algorithm is enforced.

Choosing Policy Options

Implementing Policy Enforcement Options and Labeling Functions 8-9

If WRITE_CONTROL is on but LABEL_UPDATE is not specified, the user can
change both data and labels. If you want to control updating the row labels, specify
the LABEL_UPDATE option in addition to WRITE_CONTROL when creating your
policies.

INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
These options apply policy enforcement during the corresponding operations on
the data columns within a row, according to the algorithm for write access
described in Figure 3–8.

Specifying WRITE_CONTROL limits all insert, update, and delete operations.
However,

■ specifying INSERT_CONTROL limits insertions but not updates or deletes;

■ specifying UPDATE_CONTROL limits updates but not insertions or deletes;
and

■ specifying DELETE_CONTROL limits deletes but not insertions or updates.

The Overriding Enforcement Options
Whereas ALL_CONTROL applies all of the label management and access control
enforcement options, NO_CONTROL applies none of them. In either case, labeling
functions and SQL predicates can be applied. Note that the ALL_CONTROL option

Note: The protection implementation for WRITE_CONTROL is
the same for all write operations, but you need not apply all write
options across the board. You can apply WRITE_CONTROL
selectively for INSERT, UPDATE, and DELETE operations by using
the corresponding policy enforcement option (INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL) instead of
WRITE_CONTROL.

See Also: For inserts, Inserting Labeled Data Using Policy
Options and Labeling Functions on page 8-15;

for updates, Updating Labeled Data Using Policy Options and
Labeling Functions on page 8-17;

and for deletions, Deleting Labeled Data Using Policy Options and
Labeling Functions on page 8-19.

Choosing Policy Options

8-10 Oracle Label Security Administrator’s Guide

can be used only on the command line. Oracle Policy Manager does not provide this
as an alternative to selecting individual options.

If you apply a policy with NO_CONTROL specified, a policy label column is added
to the table, but the label values are NULL. Since no access controls are operating on
the table, you can proceed to enter labels as desired. You can then set the policy
enforcement options as you wish.

NO_CONTROL can be a useful option if you have a labeling function in force to
label the data correctly—but want to let all users access all the data.

Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle
Policy Manager as described in Chapters 3 & 6, or by using the SA_POLICY_
ADMIN package as described in Chapter 8.

 This section documents the supported keywords.

Note that when you create a policy, you can specify a string of default options to be
used whenever the policy is applied without schema or table options being
specified.

If a policy is first applied to a table, and then also applied to the schema containing
that table, the options on the table are not affected by the schema policy. The options
of the policy originally applied to the table remain in force.

In general, administrators use the LABEL_DEFAULT policy option, causing data
written by a user to be labeled with that user's row label. Alternatively, a labeling
function can be used to label the data. If neither of these two choices is used, a label
must be specified in every INSERT statement. (Updates retain the row's original
label.)

The following table suggests certain combinations of policy enforcement options are
useful when implementing an Oracle Label Security policy. As the table indicates,

See Also:

■ Authorized Levels on page 3-5

■ Oracle Policy Manager on page 6-6

■ Chapter 9, "Applying Policies to Tables and Schemas"

Choosing Policy Options

Implementing Policy Enforcement Options and Labeling Functions 8-11

you might typically enforce READ_CONTROL and WRITE_CONTROL, choosing
among several possible combinations for setting the data label on writes.

Exemptions from Oracle Label Security Policy Enforcement
1. Oracle Label Security is not enforced during DIRECT path export.

2. By design, Oracle Label Security policies cannot be applied to objects in schema
SYS. As a consequence, the SYS user, and users making a DBA-privileged
connection to the database (such as CONNECT AS SYSDBA) do not have Oracle
Label Security policies applied to their actions. DBAs need to be able to
administer the database. It would make no sense, for example, to export part of
a table due to an Oracle Label Security policy being applied. The database user
SYS is thus always exempt from Oracle Label Security enforcement, regardless
of the export mode, application, or utility used to extract data from the
database.

Table 8–4 Suggested Policy Enforcement Option Combinations

Options Access Enforcement

READ_CONTROL, WRITE_
CONTROL, LABEL_DEFAULT

Read and write access based on session label.
Default label provided; users can insert/update
both data and labels.

READ_CONTROL, WRITE_
CONTROL, Labeling Function

Read and write access based on session label. Users
can set/change only row data; all row labels are set
explicitly by the labeling function.

Add CHECK_CONTROL to restrict new labels (on
insert or update) to visible range of labels.

READ_CONTROL, WRITE_
CONTROL, LABEL_UPDATE

Read and write access based on session label.
Changing but users cannot change labels without
privileges.

Add CHECK_CONTROL to restrict new labels (on
insert or update) to visible range.

See Also: Using the Export Utility with Oracle Label Security on
page 13-1

See Also: For other DBA-related considerations, see Chapter 13,
"Performing DBA Functions Under Oracle Label Security".

Using a Labeling Function

8-12 Oracle Label Security Administrator’s Guide

3. Similarly, database users granted the Oracle9i EXEMPT ACCESS POLICY
privilege, either directly or through a database role, are exempt from some
Oracle Label Security policy enforcement controls — READ_CONTROL and
CHECK_CONTROL — regardless of the export mode, application or utility
used to access the database or update its data. (See Table 8–2, "Policy
Enforcement Options" on page 8-3.) The following policy enforcement options
remain in effect even when EXEMPT ACCESS POLICY is granted:

■ INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL, WRITE_
CONTROL, LABEL_UPDATE, and LABEL_DEFAULT.

■ If the Oracle Label Security policy specifies the ALL_CONTROL option,
then all enforcement controls are applied except READ_CONTROL and
CHECK_CONTROL.

EXEMPT ACCESS POLICY is a very powerful privilege and should be carefully
managed.

Note that this privilege does not affect the enforcement of standard Oracle9i
object privileges such as SELECT, INSERT, UPDATE, and DELETE. These
privileges are enforced even if a user has been granted the EXEMPT ACCESS
POLICY privilege.

Viewing Policy Options on Tables and Schemas
Use the following views to show the policy enforcement options currently applied
to tables and schemas:

■ DBA_SA_TABLE_POLICIES

■ DBA_SA_SCHEMA_POLICIES

Using a Labeling Function
Application developers can create labeling functions. These programs can compute
and return a label using a wide array of resources, including context variables (such
as date or username) and data values.

The following sections describe how to use labeling functions.

■ Labeling Data Rows under Oracle Label Security

■ Understanding Labeling Functions in Oracle Label Security Policies

■ Creating a Labeling Function for a Policy

Using a Labeling Function

Implementing Policy Enforcement Options and Labeling Functions 8-13

■ Specifying a Labeling Function in a Policy

Labeling Data Rows under Oracle Label Security
There are three ways to label data that is being inserted or updated:

■ Explicitly specify a label in every INSERT or UPDATE to the table.

■ Set the LABEL_DEFAULT option, which causes the session's row label to be
used if an explicit row label is not included in the INSERT or UPDATE
statement.

■ Create a labeling function, automatically invoked upon every INSERT or
UPDATE statement and independently of any user's authorization.

The recommended approach is to write a labeling function to implement your rules
for labeling data. If you specify a labeling function, Oracle Label Security embeds a
call to that function in INSERT and UPDATE triggers to compute a label.

For example, you could create a labeling function named my_label to use the
contents of COL1 and COL2 of the new row to compute and return the appropriate
label for the row. Then you could insert, into your INSERT or UPDATE statements,
the following reference:

my_label(:new.col1,:new.col2) J

 If you do not specify a labeling function, specify the LABEL_DEFAULT option.
Otherwise, you must explicitly specify a label on every INSERT or UPDATE
statement.

Understanding Labeling Functions in Oracle Label Security Policies
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context. For example, you can use as a
labeling consideration the IP address to which the user is attached. There are many
opportunities to use SYS_CONTEXT in this way.

Labeling functions override the LABEL_DEFAULT and LABEL_UPDATE options.

Note: If the SQL is invalid, an error will occur when you apply the
labeling function to the table or policy. You should thoroughly test
a labeling function before using it with tables.

Using a Labeling Function

8-14 Oracle Label Security Administrator’s Guide

A labeling function is called in the context of a before-row trigger. This enables you
to pass in the old and new values of the data record, as well as the old and new
labels.

You can construct a labeling function to permit an explicit label to be passed in by
the user.

All labeling functions must have return types of the LBACSYS.LBAC_LABEL
datatype. The TO_LBAC_DATA_LABEL function can be used to convert a label in
character string format to a datatype of LBACSYS.LBAC_LABEL. Note that
LBACSYS must have EXECUTE privilege on your labeling function. The owner of
the labeling function must have EXECUTE privilege on the TO_LBAC_DATA_
LABEL function, with GRANT option.

Creating a Labeling Function for a Policy
The following example shows how to create a labeling function.

 SQL> CREATE OR REPLACE FUNCTION sa_demo.gen_emp_label
 (Job varchar2,
 Deptno number,
 Total_sal number)

 Return LBACSYS.LBAC_LABEL
 as
 i_label varchar2(80);
 Begin
 /************* Determine Class Level *************/
 if total_sal > 2000 then

 i_label := 'L3:';
 elsif total_sal > 1000 then

 i_label := 'L2:';
 else

 i_label := 'L1:';
 end if;

 /************* Determine Compartment *************/
 IF Job in ('MANAGER','PRESIDENT') then

 i_label := i_label||'M:';
 else

 i_label := i_label||'E:';

Note: LBACSYS is a unique schema providing opaque types for
Oracle Label Security. See the discussions on page 13-1 and on
page 13-11.

Inserting Labeled Data Using Policy Options and Labeling Functions

Implementing Policy Enforcement Options and Labeling Functions 8-15

 end if;
 /************* Determine Groups *************/
 i_label := i_label||'D'||to_char(deptno);

 return TO_LBAC_DATA_LABEL('human_resources',i_label);
 End;
 /

Specifying a Labeling Function in a Policy
The following example uses the sa_demo.gen_emp_label from the example in the
previous section to show how to specify a labeling function.

sa_policy_admin.remove_table_policy('human_resources','sa_demo','emp');
sa_policy_admin.apply_table_policy (

POLICY_NAME => 'human_resources',
SCHEMA_NAME => 'sa_demo',
TABLE_NAME => 'emp',
TABLE_OPTIONS => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
LABEL_FUNCTION => 'sa_demo.gen_emp_label(:new.job,:new.deptno,:new.sal)',
PREDICATE => NULL);

Inserting Labeled Data Using Policy Options and Labeling Functions
This section explains how enforcement options and labeling functions affect the
insertion of labeled data.

■ Evaluating Enforcement Control Options and INSERT

■ Inserting Labels When a Labeling Function is Specified

■ Inserting Child Rows into Tables with Declarative Referential Integrity Enabled

Note: When Oracle Label Security is configured to work directly
with Oracle Internet Directory (OID), dynamic label generation is
disabled, because labels are managed centrally in OID, using
olsadmintool commands. (See Appendix B, "Command-line Tools
for Label Security Using Oracle Internet Directory".) So if the label
function generates a data label using a string value that is not
already established in OID, an error message results.

Inserting Labeled Data Using Policy Options and Labeling Functions

8-16 Oracle Label Security Administrator’s Guide

Evaluating Enforcement Control Options and INSERT
When you attempt to insert or update data based on your authorizations, the
outcome depends upon what policy enforcement controls are active.

■ If INSERT_CONTROL is active, then rows you insert can only have labels
within your write authorizations. If you attempt to update data that you can
read, but for which you do not have write authorization, an error is raised. For
example, if you can read compartments A and B, but you can only write to
compartment A, then if you attempt to insert data with compartment B, the
statement will fail.

■ If INSERT_CONTROL is not active, you can use any valid label on rows you
insert.

■ If the CHECK_CONTROL option is active, then rows you insert can only have
labels you are authorized to read—even if the labels are generated by a labeling
function.

Inserting Labels When a Labeling Function is Specified
A labeling function takes precedence over labels entered by the user. If the
administrator has set up an automatic labeling function, then no data label a user
enters will have effect (unless the labeling function itself makes use of the user's
proposed label). New row labels are always determined by an active labeling
function, if present.

Note that a labeling function can set the label of a row being inserted to a value
outside the range that the user writing that row can see. If such a function is in use,
the user can potentially insert a row but not be authorized to see that row. You can
prevent this situation by specifying the CHECK_CONTROL option in the policy. If
this option is active, the new data label is checked against the user's read
authorization, and if she cannot read it, she will not be able to perform the insert.

Inserting Child Rows into Tables with Declarative Referential Integrity Enabled
If a parent table is protected by declarative referential integrity, then inserting a
child row is constrained by the requirement that the parent row be visible. The user
must be able to see the parent row for the insert to succeed, i.e., the user must have
read access to the parent row.

If READ_CONTROL is active on the parent table, the user's read authorization must
be sufficient to authorize a SELECT on the parent row. For example, a user who
cannot read department 20 cannot insert child rows for department 20. (Note that

Updating Labeled Data Using Policy Options and Labeling Functions

Implementing Policy Enforcement Options and Labeling Functions 8-17

all records will be visible if the user has FULL or READ privilege on the table or
schema.)

Updating Labeled Data Using Policy Options and Labeling Functions
The rules for updates in Oracle Label Security are almost identical to those for
inserts, as long as the user is authorized to change the rows in question. This section
contains these topics:

■ Updating Labels Using CHAR_TO_LABEL

■ Evaluating Enforcement Control Options and UPDATE

■ Updating Labels When a Labeling Function Is Specified

■ Updating Child Rows in Tables with Declarative Referential Integrity Enabled

Updating Labels Using CHAR_TO_LABEL
If you need to change a row's label from SENSITIVE to CONFIDENTIAL, you can
change the label by using the CHAR_TO_LABEL FUNCTION as follows:

UPDATE emp
SET hr_label = char_to_label ('HR', 'CONFIDENTIAL')
WHERE ename = 'ESTANTON';

Evaluating Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome
depends on what enforcement controls are active.

■ If UPDATE_CONTROL is active, then you can only update rows whose labels
fall within your write authorizations. If you attempt to update data that you can
read, but for which you do not have write authorization, an error is raised.
Assume, for example, that you can read compartments A and B, but you can
only write to compartment A. In this case, if you attempt to update data with
compartment B, the statement will fail.

■ If UPDATE_CONTROL is not active, you can update all rows to which you
have read access.

■ If LABEL_UPDATE is active, you must have the appropriate privilege
(WRITEUP, WRITEDOWN, or WRITEACROSS) to change a label by raising or
lowering its sensitivity level, or altering its groups or compartments.

Updating Labeled Data Using Policy Options and Labeling Functions

8-18 Oracle Label Security Administrator’s Guide

■ If LABEL_UPDATE is not active but UPDATE_CONTROL is active, then you
can update a label to any new label value within your write authorization.

■ If CHECK_CONTROL is active, you can only write labels you are authorized to
read.

The following figure illustrates the label evaluation process for LABEL_UPDATE.

Figure 8–1 Label Evaluation Process for LABEL_UPDATE

Updating Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user. If the
administrator has set up an automatic labeling function, then no label a user enters
will have effect (unless the labeling function itself makes use of the user's proposed
label). New row labels are always determined by an active labeling function, if
present.

Note that the security administrator can establish a labeling function that sets the
label of a row being updated to a value outside the range that you can see. If this is
the case, you can update a row, but not be authorized to see the row. If the CHECK_
CONTROL option is on, you will not be able to perform such an update. CHECK_
CONTROL verifies your read authorization on the new label.

No
Access

 Access

WRITE
DOWN

Privilege?

New level
< old level?

New level
> old level?

WRITE
UP

Privilege?

New
level

=< Max
=> Min

WRITE
ACROSS
Privilege?

N

Y

N N

N

Y

Y

Y

New groups
not equal to
old groups?

New comp
not equal to
old comp?

Y

NN

Y

N N

YY

Deleting Labeled Data Using Policy Options and Labeling Functions

Implementing Policy Enforcement Options and Labeling Functions 8-19

Updating Child Rows in Tables with Declarative Referential Integrity Enabled
If a child row is in a table that has a referential integrity constraint, then the update
can succeed only if the parent row is visible (the user must be able to see the parent
row). If the parent table has READ_CONTROL on, the user's read authorization
must be sufficient to authorize a SELECT on the parent row.

For example, a user who cannot read department 20 in a parent table cannot update
an employee's department to department 20 in a child table. (If the user has FULL
or READ privilege, then all records will be visible.)

Deleting Labeled Data Using Policy Options and Labeling Functions
This section covers the deletion of labeled data.

■ If DELETE_CONTROL is active, you can delete only rows within your write
authorization.

■ If DELETE_CONTROL is not active, then you can delete only rows that you can
read.

■ With DELETE_CONTROL active, and declarative referential integrity defined
with cascading deletes, then you must have write authorization on all the rows
to be deleted, or the statement will fail.

You cannot delete a parent row if there are any child rows attached to it, regardless
of your write authorization. To delete such a parent row, you must first delete each
of the child rows. If DELETE_CONTROL is active on any of the child rows, then
you must have write authorization to delete the child rows.

Consider, for example, a situation in which the user is UNCLASSIFIED and there
are three rows as follows:

See Also: Oracle Database Application Developer's Guide -
Fundamentals

Row Table Sensitivity

Parent row: DEPT UNCLASSIFIED

Child row: EMP UNCLASSIFIED

Child row: EMP UNCLASSIFIED

Using a SQL Predicate with an Oracle Label Security Policy

8-20 Oracle Label Security Administrator’s Guide

In this case, the UNCLASSIFIED user cannot delete the parent row.

DELETE_CONTROL has no effect when DELETE_RESTRICT is active. DELETE_
RESTRICT is always enforced. In some cases (depending on the user's
authorizations and the data's labels) it may look as though a row has no child rows,
when it actually does have children but the user cannot see them. Even if a user
cannot see child rows, he still cannot delete the parent row.

Using a SQL Predicate with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of
data access rules.

This section contains these topics:

■ Modifying an Oracle Label Security Policy with a SQL Predicate

■ Affecting Oracle Label Security Policies with Multiple SQL Predicates

Modifying an Oracle Label Security Policy with a SQL Predicate
A SQL predicate is a condition, optionally preceded by AND or OR. It can be
appended for READ_CONTROL access mediation. The following predicate, for
example, adds an application-specific test based on COL1 to determine if the
session has access to the row.

AND my_function(col1)=1

The combined result of the policy and the user-specified predicate limits the rows
that a user can read. This combination therefore affects the labels and data that
CHECK_CONTROL will permit a user to change. An OR clause, for example,
increases the number of rows a user can read.

A SQL predicate can be useful if you want to avoid performing label-based filtering.
In certain situations, a SQL predicate can easily implement row level security on
tables. Used instead of READ_CONTROL, a SQL predicate will filter the data for
SELECT, UPDATE, and DELETE operations.

Similarly, in a typical, Web-enabled human resources application, a user might have
to be a manager to access rows in the employee table. (That is, her user label would
have to dominate the label on the employee's row). A SQL predicate like the
following could be added, such that an employee could bypass label-based filtering

See Also: Oracle Database Application Developer's Guide -
Fundamentals

Using a SQL Predicate with an Oracle Label Security Policy

Implementing Policy Enforcement Options and Labeling Functions 8-21

if he wanted to view his own record in the employee table. (An "OR" is used so that
either the label policy will apply, or this statement will apply.)

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = employee_name

This predicate enables you to have additional access controls so that each employee
can access his or her own record.

You can use such a predicate in conjunction with READ_CONTROL, or as a
standalone predicate even if READ_CONTROL is not implemented.

Affecting Oracle Label Security Policies with Multiple SQL Predicates
A predicate applied to a table by means of an Oracle Label Security policy is
appended to any other predicates that may be applied by other Oracle Label
Security policies, or by Oracle fine grain access control/VPD policies. The
predicates are ANDed together.

Consider the following predicates applied to the EMP table in the SCOTT schema:

■ A predicate generated by an Oracle VPD policy, such as deptno=10

■ A label-based predicate generated by an Oracle Label Security policy, such as
label=100, with a user-specified predicate such as

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Correct: These predicates would be ANDed together as follows:

WHERE deptno=10 AND (label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') =
ename)

Incorrect: The predicates would not be combined in the following way:

WHERE deptno=10 AND label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Note: Verify that the predicate accomplishes your security goals
before you implement it in an application.

If a syntax error occurs in a predicate under Oracle Label Security,
an error will not arise when you try to apply the policy to a table.
Rather, a predicate error message will arise when you first attempt
to reference the table.

Using a SQL Predicate with an Oracle Label Security Policy

8-22 Oracle Label Security Administrator’s Guide

Applying Policies to Tables and Schemas 9-1

9
Applying Policies to Tables and Schemas

This chapter describes the SA_POLICY_ADMIN package, which enables you to
administer policies on tables and schemas. It contains these sections:

■ Policy Administration Terminology

■ Subscribing Policies in Directory-Enabled Label Security

■ Policy Administration Functions for Tables and Schemas

■ Administering Policies on Tables Using SA_POLICY_ADMIN

■ Administering Policies on Schemas with SA_POLICY_ADMIN

Policy Administration Terminology
When you apply a policy to a table, the policy is automatically enabled. To disable a
policy is to turn off its protections, although it is still applied to the table. To enable a
policy is to turn on and enforce its protections for a particular table or schema.

To remove a policy is to take it entirely away from the table or schema. Note,
however, that the policy label column and labels remain in the table unless you
explicitly drop them.

You can alter the default policy enforcement options for future tables that may be
created in a schema. This does not, however, affect policy enforcement options on
existing tables in the schema.

To change the enforcement options on an existing table, you must first remove the
policy from the table, make the desired changes, and then re-apply the policy to the
table.

See Also: "Choosing Policy Options" on page 8-1

Subscribing Policies in Directory-Enabled Label Security

9-2 Oracle Label Security Administrator’s Guide

Subscribing Policies in Directory-Enabled Label Security
In directory-enabled Oracle Label Security (OLS), a policy must be subscribed
before it can be applied (by APPLY_TABLE_POLICY or APPLY_SCHEMA_
POLICY). In a standalone OLS installation, the latter functions can be used directly
without the need to subscribe.

You subscribe a policy by using SA_POLICY_ADMIN.POLICY_SUBSCRIBE, as
described in the next section.

Such a policy cannot be dropped unless it has been removed from any table or
schema to which it was applied, and then has been unsubscribed.

You unsubscribe a policy by using SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
as described in a subsequent section.

Subscribing to a Policy with SA_POLICY_ADMIN.POLICY_SUBSCRIBE
In an OID-enabled OLS configuration, use the POLICY_SUBSCRIBE procedure to
subscribe to the policy for usage in APPLY_TABLE_POLICY and APPLY_
SCHEMA_POLICY. This procedure must be invoked for a policy before that policy
can be applied to a table or schema. Subscribing is needed only once, not for each
use of the policy in a table or schema.

Syntax
PROCEDURE POLICY_SUBSCRIBE(
 policy_name IN VARCHAR2);

where policy_name specifies an existing policy.

Example: The following statement subscribes the database to the HUMAN_
RESOURCES policy so that it can used by applying on tables and schema.

SA_POLICY_ADMIN.POLICY_SUBSCRIBE('human_resources');

Note: This procedure needs to be used before policy usage only in
the case of OID-enabled OLS configuration. In the standalone OLS
case, the policy can be used in APPLY_TABLE_POLICY, APPLY_
SCHEMA_POLICY directly without the need to subscribe.

Policy Administration Functions for Tables and Schemas

Applying Policies to Tables and Schemas 9-3

Unsubscribing to a Policy with SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
In an OID-enabled OLS configuration, use the POLICY_UNSUBSCRIBE procedure
to unsubscribe to the policy. This procedure can be used only if the policy is not in
use, that is, it has not been applied to any table or schema. (If it has been applied to
tables or schemas, it must be removed from all of them before it can be
unsubscribed.) A policy can be dropped in OID (olsadmintool droppolicy in
Appendix B) only if is not subscribed in any of the databases that have registered
with that OID.

Syntax
PROCEDURE POLICY_UNSUBSCRIBE(
 policy_name IN VARCHAR2);

where policy_name specifies an existing policy.

Example: The following statement unsubscribes the database to the HUMAN_
RESOURCES policy.

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE('human_resources');

Policy Administration Functions for Tables and Schemas
Two sets of functions are available to administer Oracle Label Security policies:

■ functions to administer policies at the table level

■ functions to administer policies at the schema level

Schema-level functions are provided for convenience. Note, however, that
administrative operations that you perform at the table level will override
operations performed at the schema level.

Table 9–1 Policy Administration Functions

Purpose Table-Level Function Schema-Level Function

Apply policy APPLY_TABLE_POLICY APPLY_SCHEMA_POLICY

Alter policy Not applicable ALTER_SCHEMA_POLICY

Disable policy DISABLE_TABLE_POLICY DISABLE_SCHEMA_POLICY

Re-enable policy ENABLE_TABLE_POLICY ENABLE_SCHEMA_POLICY

Remove policy REMOVE_TABLE_POLICY REMOVE_SCHEMA_POLICY

Administering Policies on Tables Using SA_POLICY_ADMIN

9-4 Oracle Label Security Administrator’s Guide

To perform these functions with Oracle Policy Manager, go to Oracle Label
Security Policies—> policyname—>Protected Objects. Select either Schemas or
Tables, and use the corresponding property sheet.

Administering Policies on Tables Using SA_POLICY_ADMIN
To administer policies on tables, a user must have EXECUTE privilege for the SA_
POLICY_ADMIN package, and must have been granted the policy_DBA role.
Authorized users can also perform these functions with the Oracle Policy Manager.
This section contains these topics:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY

■ Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

■ Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

■ Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY
Use the APPLY_TABLE_POLICY procedure to add the specified policy to a table.
A policy label column is added to the table if it does not exist, and is set to NULL.
When a policy is applied, it is automatically enabled. To change the table options,
labeling function, or predicate, you must first remove the policy, then re-apply it.

Syntax
PROCEDURE APPLY_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 table_options IN VARCHAR2 DEFAULT NULL,
 label_function IN VARCHAR2 DEFAULT NULL,
 predicate IN VARCHAR2 DEFAULT NULL);

Note: You should restrict access to application tables when using
Oracle Policy Manager to change enforcement options. This is
because Oracle Policy Manager must remove the policy in order to
make such changes, and then re-apply the policy after the changes
have been made.

Administering Policies on Tables Using SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 9-5

Example: The following statement applies the HUMAN_RESOURCES policy to the
EMP table in the SA_DEMO schema.

SA_POLICY_ADMIN.APPLY_TABLE_POLICY('human_resources',
'sa_demo','emp','no_control');

Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The REMOVE_TABLE_POLICY procedure removes the specified policy from a
table. The policy predicate and any DML triggers will be removed from the table,
and the policy label column can optionally be dropped. Policies can be removed
from tables belonging to a schema that is protected by the policy.

Syntax
PROCEDURE REMOVE_TABLE_POLICY (
policy_name IN VARCHAR2,
schema_name IN VARCHAR2,
table_name IN VARCHAR2,
 drop_column IN BOOLEAN DEFAULT FALSE);

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

table_name The table to be controlled by the policy

table_options A comma-delimited list of policy enforcement options to be used
for the table. If NULL, then the policy's default options are used.

label_function A string invoking a function to return a label value to use as the
default. For example, my_label(:new.dept,:new.status)
computes the label based on the new values of the DEPT and
STATUS columns in the row.

predicate An additional predicate to combine (using AND or OR) with the
label-based predicate for READ_CONTROL

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

Administering Policies on Tables Using SA_POLICY_ADMIN

9-6 Oracle Label Security Administrator’s Guide

Example: The following statement removes the HUMAN_RESOURCES policy from
the EMP table in the SA_DEMO schema:

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY('human_resources','sa_demo','emp');

Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The DISABLE_TABLE_POLICY procedure disables the enforcement of the policy
for the specified table without changing the enforcement options, labeling function,
or predicate values. It removes the RLS predicate and DML triggers from the table.

Syntax
PROCEDURE DISABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Example: The following statement disables the HUMAN_RESOURCES policy on
the EMP table in the SA_DEMO schema:

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY('human_resources','sa_demo','emp');

Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The ENABLE_TABLE_POLICY procedure re-enables the current enforcement
options, labeling function, and predicate for the specified table by re-applying the
RLS predicate and DML triggers.

table_name The table

drop_column Whether the column is to be dropped: if TRUE, the policy's
column will be dropped from the table; otherwise, it will remain.

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

table_name The table

Parameter Specifies

Administering Policies on Schemas with SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 9-7

Syntax
PROCEDURE ENABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Example: The following statement re-enables the HUMAN_RESOURCES policy on
the EMP table in the SA_DEMO schema:

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY('human_resources','sa_demo','emp');

Administering Policies on Schemas with SA_POLICY_ADMIN
To administer policies on schemas, a user must have EXECUTE privilege on the
SA_POLICY_ADMIN package, and must have been granted the policy_DBA role.
Authorized users can also use the Oracle Policy Manager to perform these
functions.

This section contains these topics:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

■ Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_
POLICY

■ Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

■ Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY

■ Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

■ Policy Issues for Schemas

Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
In addition to applying a policy to individual tables, you can apply a policy at the
schema level. The APPLY_SCHEMA_POLICY procedure applies the specified
policy to all of the existing tables in a schema (that is, to those which do not already

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

table_name The table

Administering Policies on Schemas with SA_POLICY_ADMIN

9-8 Oracle Label Security Administrator’s Guide

have the policy applied) and enables the policy for these tables. Then, whenever a
new table is created in the schema, the policy is automatically applied to that table,
using the schema's default options. No changes are made to existing tables in the
schema that already have the policy applied.

Syntax
PROCEDURE APPLY_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL);

If the default_options parameter is NULL, then the policy's default options will be
used to apply the policy to the tables in the schema.

Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The ALTER_SCHEMA_POLICY procedure changes the default enforcement options
for the policy. Any new tables created in the schema will automatically have the
new enforcement options applied; existing tables in the schema are not affected.

Syntax
PROCEDURE ALTER_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2);

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

default_options The default options to be used for tables in the schema.

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

default_options The default options to be used for new tables in the schema.

Administering Policies on Schemas with SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 9-9

To change enforcement options on a table (rather than a schema) you must first
drop the policy from the table, make the change, and then re-apply the policy.

If you alter the enforcement options on a schema, this will take effect the next time a
table is created in the schema. As a result, different tables within a schema may
have different policy enforcement options in force.

Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The REMOVE_SCHEMA_POLICY procedure removes the specified policy from a
schema. The policy will be removed from all of the tables in the schema and,
optionally, the label column for the policy will be dropped from all of the tables.

Syntax
PROCEDURE REMOVE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 drop_column IN BOOLEAN DEFAULT FALSE);

Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The DISABLE_SCHEMA_POLICY procedure disables the enforcement of the policy
for all of the tables in the specified schema, without changing the enforcement
options, labeling function, or predicate values. It removes the RLS predicate and
DML triggers from all the tables in the schema.

Syntax
PROCEDURE DISABLE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

drop_column If TRUE, the policy's column will be dropped from the tables;
otherwise, the column will remain.

Parameter Specifies

policy_name An existing policy

Administering Policies on Schemas with SA_POLICY_ADMIN

9-10 Oracle Label Security Administrator’s Guide

Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The ENABLE_SCHEMA_POLICY procedure re-enables the current enforcement
options, labeling function, and predicate for the tables in the specified schema by
re-applying the RLS predicate and DML triggers.

Syntax
PROCEDURE ENABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

The result is like enabling a policy for a table, but it covers all tables in the schema.

Policy Issues for Schemas
Note the following aspects of using Oracle Label Security policies with schemas:

■ If you apply a policy to an empty schema, then every time you create a table
within that schema, the policy is applied. Once the policy is applied to the
schema, the default options you choose are applied to every table added.

■ If you remove the policy from a table so that it is unprotected, and then execute
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY, the table will remain
unprotected. If you wish to protect the table once again, you must apply the
policy to the table, or re-apply the policy to the schema.

If you apply a policy to a schema that already contains tables protected by the
policy, then all future tables will have the new options that were specified when you
applied the policy. The existing tables will keep the options they already had.

schema_name The schema that contains the table

Parameter Specifies

policy_name An existing policy

schema_name The schema that contains the table

Parameter Specifies

Administering and Using Trusted Stored Program Units 10-1

10
 Administering and Using Trusted Stored

Program Units

This chapter explains how to use trusted stored program units to enhance system
security. It contains these topics:

■ Introduction to Trusted Stored Program Units

■ Managing Program Unit Privileges with SET_PROG_PRIVS

■ Creating and Compiling Trusted Stored Program Units

■ Using SA_UTL Functions to Set and Return Label Information

Introduction to Trusted Stored Program Units
Oracle9i stored procedures, functions, and packages are sets of PL/SQL statements
stored in a database in compiled form. The single difference between functions and
procedures is that functions return a value and procedures do not. Trusted stored
program units are just like any other stored program units in Oracle9i: the
underlying logic is the same.

A package is a set of procedures and functions, together with the cursors and variables they
use, stored as a unit. There are two parts to a package: the package specification and
the package body. The package specification declares the external definition of the
public procedures, functions, and variables that the package contains. The package
body contains the actual text of the procedures and functions, as well as any private
procedures and variables.

A trusted stored program unit is a stored procedure, function, or package that has
been granted one or more Oracle Label Security privileges. Trusted stored program
units are typically used to let users perform privileged operations in a controlled

Introduction to Trusted Stored Program Units

10-2 Oracle Label Security Administrator’s Guide

manner, or update data at several labels. This is the optimal approach to permit
users to access data beyond their authorization.

Trusted stored program units provide fine-grained control over the use of
privileges. Although you can potentially grant privileges to many users, the
granting of privileges should be done with great discretion; doing so may violate
the security policy established for your application. Rather than assigning privileges
to users, you can identify any application operations requiring privileges, and
implement them as trusted program units. When you grant privileges to these
stored program units, you effectively restrict the Oracle Label Security privileges
required by users. This approach employs the principle of least privilege.

For example, if a user with the label CONFIDENTIAL needs to insert data into
SENSITIVE rows, you can grant the WRITEUP privilege to a trusted stored
program to which the user has access. In this way, the user can perform the task by
means of the trusted stored program, while staying at the CONFIDENTIAL level.

The trusted program unit performs all the actions on behalf of the user. You can
thus effectively encapsulate the security policy into a module that can be verified to
make sure that it is valid.

How a Trusted Stored Program Unit Executes
A trusted stored program unit executes using its own privileges, and the invoker's
labels. It can thus perform privileged operations on the set of rows constrained by
the user's labels.

Oracle9i system and object privileges are intended to be bundled into roles. Users
are then granted roles as necessary. By contrast, Oracle Label Security privileges can
only be assigned to users or to stored program units. These trusted stored program
units provide a more manageable mechanism than roles to control the use of Oracle
Label Security privileges.

Trusted Stored Program Unit Example
A trusted stored program unit with READ privilege can read all unprotected data,
and all data protected by this policy in the database. Consider, for example, a user
who is responsible for creating purchasing forecast reports. She must perform a
summation operation on the amount of all purchases—regardless of whether or not
her own labels authorize access to the individual purchase orders. The syntax for
creating the summation procedure in this example is as follows:

CREATE FUNCTION sum_purchases RETURN NUMBER IS
 psum NUMBER;
BEGIN

Managing Program Unit Privileges with SET_PROG_PRIVS

Administering and Using Trusted Stored Program Units 10-3

 SELECT SUM(amount) INTO psum
 FROM purchase_orders;
RETURN psum;
END sum_purchases;

In this way, the program unit can gather information the end user is not able to
gather, and can make it available by means of a summation.

Note that to execute SUM_PURCHASES, the user would need to be granted the
standard Oracle9i EXECUTE object privilege upon this procedure.

Managing Program Unit Privileges with SET_PROG_PRIVS
To grant privileges to a stored program unit, you must have the policy_DBA role,
and EXECUTE permission on the SA_USER_ADMIN package. You can use either
the SA_USER_ADMIN package or the Oracle Policy Manager to manage Oracle
Label Security privileges.

Use the SA_USER_ADMIN.SET_PROG_PRIVS procedure to set policy-specific
privileges for program units. If the privileges parameter is NULL, the program unit's
privileges for the policy are removed.

Syntax:

PROCEDURE SET_PROG_PRIVS (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 program_unit_name IN VARCHAR2,
 privileges IN VARCHAR2);

For example, to give READ privilege to the SUM_PURCHASES function (described
in "Trusted Stored Program Unit Example" on page 10-2), you could enter:

EXECUTE sa_user_admin.set_prog_privs (
'HR','myschema','sum_purchases','READ');

See Also: Chapter 3, "Understanding Access Controls and
Privileges"

Parameter Specifies

policy_name The policy name of an existing policy.

program_unit_name Specifies the program unit to be granted privileges

privileges A comma-delimited character string of policy-specific privileges

Creating and Compiling Trusted Stored Program Units

10-4 Oracle Label Security Administrator’s Guide

When the SUM_PURCHASES procedure is then called, it executes with the READ
privilege as well as the current user's Oracle Label Security privileges. Using this
technique, the user can be allowed to find the value of the total corporate payroll,
without learning what salary any individual employee receives.

Creating and Compiling Trusted Stored Program Units
This section contains these topics:

■ Creating Trusted Stored Program Units

■ Setting Privileges for Trusted Stored Program Units

■ Re-Compiling Trusted Stored Program Units

■ Recreating Trusted Stored Program Units

■ Executing Trusted Stored Program Units

Creating Trusted Stored Program Units
You create a trusted stored program unit in the same way that you create a standard
procedure, function, or package: using the statement CREATE PROCEDURE,
CREATE FUNCTION, or CREATE PACKAGE and CREATE PACKAGE BODY. The
program unit becomes trusted when you grant it Oracle Label Security privileges.

Setting Privileges for Trusted Stored Program Units
When a developer creates a stored program unit, the Oracle Label Security
administrator can verify the correctness of the code before granting the necessary
privileges to the stored program unit. Whenever the trusted stored program unit is
re-created or replaced, its privileges are removed. The Oracle Label Security
administrator must then re-verify the code and grant the privileges once again.

Warning: When you create a trusted stored program unit, have
the Oracle Label Security administrator review it carefully and
evaluate the privileges you are granting to it. Ensure, for example,
that procedures in trusted packages do not perform privileged
database operations and then write result or status information into
a public variable of the package. In this way you can make sure that
no violations of your site's Oracle Label Security policy can occur.

See Also: Oracle Database SQL Reference

Creating and Compiling Trusted Stored Program Units

Administering and Using Trusted Stored Program Units 10-5

Re-Compiling Trusted Stored Program Units
Re-compiling a trusted stored program unit, either automatically or manually
(using ALTER PROCEDURE), does not affect its Oracle Label Security privileges.
You must, however, re-grant the EXECUTE privilege on the program unit after
re-compiling.

Recreating Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE OR
REPLACE operation on a trusted stored program unit. This limits the potential for
misuse of a procedure's Oracle Label Security privileges. Note that the procedure,
function, or package can still execute even if the Oracle Label Security privileges
have been removed.

If you re-create a procedure, function, or package, you should carefully review its
text. When you are certain that the re-created program unit does not violate your
site's Oracle Label Security policy, you can then re-grant it the required privileges.

In a development environment where trusted stored program units must frequently
be replaced (for example, during the first few months of a live system), it is
advisable to create a script that can grant the appropriate Oracle Label Security
privileges, as required.

Executing Trusted Stored Program Units
Under Oracle Label Security all of the standard Oracle9i controls on procedure
invocation (regarding access to tables and schemas) are still in force. Oracle Label
Security complements these security mechanisms by controlling access to rows.
When a trusted stored program unit is executed, the policy privileges in force are a
union of the invoking user's privileges and the program unit's privileges. Whether a
trusted stored program unit calls another trusted program unit or a non-trusted
program unit, the program unit called runs with the same privileges as the original
program unit.

If a sequence of non-trusted and trusted stored program units is executed, the first
trusted program unit will determine the privileges of the entire calling sequence
from that point on. Consider the following sequence:

Procedure A (non-trusted)
Procedure B with WRITEUP
Procedure C with WRITEDOWN
Procedure D (non-trusted)

Using SA_UTL Functions to Set and Return Label Information

10-6 Oracle Label Security Administrator’s Guide

Here, Procedures B, C, and D all execute with WRITEUP privilege, because B was
the first trusted procedure in the sequence. When the sequence ends, the privilege
pertaining to Procedure B is no longer in force for subsequent procedures.

Using SA_UTL Functions to Set and Return Label Information
The SA_UTL package provides several functions for use within PL/SQL programs.
These functions return information about the current values of the session security
attributes, in the form of numeric label values. While they can be used in program
units that are not trusted, these functions are primarily for use in trusted stored
program units.

Note that these are public functions; you do not need the policy_DBA role to use
them. In addition, each of the functions has a parallel SA_SESSION function that
returns the same labels in character string format.

■ Viewing Session Label and Row Label Using SA_UTL

■ Setting the Session Label and Row Label Using SA_UTL

■ Returning Greatest Lower Bound and Least Upper Bound

Viewing Session Label and Row Label Using SA_UTL

SA_UTL.NUMERIC_LABEL
This procedure returns the current session label. It takes a policy name as the input
parameter and returns a NUMBER value.

SA_UTL.NUMERIC_LABEL (policy_name) RETURN NUMBER;

Note: Unhandled exceptions raised in trusted program units are
caught by Oracle Label Security. This means that error messages
may not be displayed to the user. For this reason, you should
always thoroughly test and debug any program units before
granting them privileges.

See Also: "Viewing Session Attributes with SA_SESSION
Functions" on page 4-22

Using SA_UTL Functions to Set and Return Label Information

Administering and Using Trusted Stored Program Units 10-7

SA_UTL.NUMERIC_ROW_LABEL
This procedure returns the current row label. It takes a policy name as the input
parameter and returns a NUMBER value.

SA_UTL.NUMERIC_ROW_LABEL (policy_name) RETURN NUMBER;

SA_UTL.DATA_LABEL
This function returns TRUE if the label is a data label.

FUNCTION DATA_LABEL(label IN NUMBER)
RETURN BOOLEAN;

Setting the Session Label and Row Label Using SA_UTL
These procedures use numeric labels instead of character strings as input values.
Available SA_SESSION procedures perform the same functions as these, but in
character string format.

SA_UTL.SET_LABEL
Use this procedure to set the label of the current database session. The session's
write label and row label are set to the subset of the label's compartments and
groups that are authorized for write access.

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN NUMBER);

SA_UTL.SET_ROW_LABEL
Use this procedure to set the row label of the current database session. The
compartments and groups in the label must be a subset of compartments and
groups in the session label that are authorized for write access.

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN NUMBER);

Parameter Specifies

policy_name The name of an existing policy.

label The label to set as the session label

Using SA_UTL Functions to Set and Return Label Information

10-8 Oracle Label Security Administrator’s Guide

Returning Greatest Lower Bound and Least Upper Bound

GREATEST_LBOUND
This function returns a label that is the greatest lower bound of the two label
arguments.

Syntax:

FUNCTION GREATEST_LBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

LEAST_UBOUND
This function returns an Oracle Label Security label that is the least upper bound of
the label arguments.

Syntax:

FUNCTION LEAST_UBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

Parameter Specifies

policy_name The name of an existing policy.

row_label The label to set as the session default row label

See Also: "Changing Your Session and Row Labels with SA_
SESSION" on page 4-18

See Also: "Determining Upper and Lower Bounds of Labels" on
page 4-11. The functions described here are the same as those
described in Chapter 4, except that these return a number instead of
a character string.

Auditing Under Oracle Label Security 11-1

11
Auditing Under Oracle Label Security

The Oracle9i audit facility lets you hold database users accountable for the
operations they perform. It can track specific database objects, operations, users,
and privileges. Oracle Label Security supplements this by tracking use of its own
administrative operations and policy privileges. It provides the SA_AUDIT_
ADMIN package to set and change the policy auditing options.

This chapter explains how to use Oracle Label Security auditing. It contains these
topics:

■ Overview of Oracle Label Security Auditing

■ Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

■ Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

■ Creating and Dropping an Audit Trail View for Oracle Label Security

■ Oracle Label Security Auditing Tips

Overview of Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle9i auditing by tracking
use of its own administrative operations, and use of the policy privileges. You can
use either the SA_AUDIT_ADMIN package or Oracle Policy Manager to set and
change the auditing options for an Oracle Label Security policy.

When you create a new policy, a label column for that policy is added to the
database audit trail. The label column is created regardless of whether auditing is
enabled or disabled, and independent of whether database auditing or operating
system auditing is used. Whenever a record is written to the audit table, each policy
provides a label for that record to indicate the session label. The administrator can

Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

11-2 Oracle Label Security Administrator’s Guide

create audit views to display these labels. Note that in the audit table, the label does
not control access to the row; instead, it simply records the sensitivity of the row.

The auditing options that you specify apply only to subsequent sessions, not to the
current session. You can specify audit options even if auditing is disabled; no
overhead is created simply by making these specifications. When you do enable
Oracle Label Security auditing, the options come into effect, and overhead is created
beyond that created by standard Oracle9i auditing.

Note that Oracle Label Security does not provide labels for audit data written to the
operating system audit trial. All Oracle Label Security audit records are written
directly to the database audit trail, even if operating system auditing is enabled. If
auditing is disabled, then no Oracle Label Security audit records are generated.

Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
For Oracle Label Security to generate audit records, you must first enable
systemwide auditing by setting the Oracle9i AUDIT_TRAIL initialization parameter
in the database's parameter file. The parameter can be set to one of the following
values:

Table 11–1 AUDIT_TRAIL Parameter Settings

Setting Explanation

DB Enables database auditing and directs all audit records to the
database audit trail. This approach is recommended by Oracle
Corporation.

Note that even with AUDIT_TRAIL set to DB, some records are
always sent to the operating system audit trail. These include
STARTUP and SHUTDOWN statements, as well as CONNECT
AS SYSOPER or SYSDBA.

DB_EXTENDED Does all actions of AUDIT_TRAIL=DB and also populates the
SqlBind and SqlText CLOB-type columns of the AUD$ table.

OS Enables operating system auditing. This directs most of your
Oracle9i audit records to the operating system, rather than to
the database; the records will not contain Oracle Label Security
labels. By contrast, any Oracle Label Security auditing will go
to the database, with labels.

If you set AUDIT_TRAIL to OS, the Oracle Label
Security-specific audit records are written to the database audit
trail and the other Oracle9i audit records are written to the
operating system audit trail (with no policy column in the
operating system data).

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

Auditing Under Oracle Label Security 11-3

After you have edited the parameter file, restart the database instance to enable or
disable database auditing as specified.

Set the AUDIT_TRAIL parameter before you set audit options. If you do not set this
parameter, you are still able to set audit options. However, audit records are not
written to the database until the parameter is set and the database instance is
restarted.

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN
After you have enabled systemwide auditing, you can use SA_AUDIT_ADMIN
procedures to enable or disable Oracle Label Security auditing. To use Oracle Label
Security auditing, you must have the policy_type role.

■ Auditing Options for Oracle Label Security

■ Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT

■ Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT

■ Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

Auditing Options for Oracle Label Security
The AUDIT and NOAUDIT options are as follows:

NONE Disables auditing. This is the default.

See Also: For information about enabling and disabling
systemwide auditing, setting audit options, and managing the
audit trail, see Oracle Database Administrator's Guide

For information about editing initialization parameters, see Oracle
Database Reference

For details about systemwide AUDIT and NOAUDIT functioning,
see Oracle Database SQL Reference

Table 11–1 AUDIT_TRAIL Parameter Settings (Cont.)

Setting Explanation

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

11-4 Oracle Label Security Administrator’s Guide

Table 11–2 Auditing Options for Oracle Label Security

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT
Use the AUDIT procedure to enable policy-specific auditing.

Syntax:

PROCEDURE AUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL,
 type IN VARCHAR2 DEFAULT NULL,
 success IN VARCHAR2 DEFAULT NULL);

Option Description

APPLY Audits application of specified Oracle Label Security policies to
tables and schemas

REMOVE Audits removal of specified Oracle Label Security policies from
tables and schemas

SET Audits the setting of user authorizations, and user and program
privileges

PRIVILEGES Audits use of all policy-specific privileges

Parameter Description Default Behavior

policy_name Required. Specifies the name of an existing policy.
Auditing of each policy is independent of all others.)

None

users Optional. A comma-delimited list of user names to
audit. If not specified, all users are audited.

All users

option Optional. A comma-delimited list of options to be
audited. See Table 11–2.

If not specified, all default options (that is, options not
including privileges) are audited. Audit options for
privileged operations should be set explicitly by
specifying the PRIVILEGES option, which sets audit
options for all privileges.

All options

type Optional. BY ACCESS or BY SESSION. If not specified,
audit records are written by session.

BY SESSION

success Optional. SUCCESSFUL or NOT SUCCESSFUL. If not
specified, audit is written for both.

SUCCESSFUL
and NOT
SUCCESSFUL

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

Auditing Under Oracle Label Security 11-5

If the administrator does not specify any audit options, then all options except the
privilege-related ones are audited. Auditing of privileges must be specified
explicitly. For example, if the administrator enters

SA_AUDIT_ADMIN.AUDIT ('HR');

then default auditing options are set for the HR policy. When the administrator
enables auditing, it will be performed on all users by session, whether successful or
not.

When you set auditing parameters and options, the new values apply only to
subsequent sessions, not to the current session.

Consider also a case in which one AUDIT call (with no users specified) enables
auditing for APPLY operations for all users, and then a second call enables auditing
of REMOVE operations for a specific user. For example:

SA_AUDIT_ADMIN.AUDIT ('HR', NULL, 'APPLY');
SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT', 'REMOVE');

In this case, SCOTT is audited for both APPLY and REMOVE operations.

Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT
To disable policy-specific auditing, use the SA_AUDIT_ADMIN.NOAUDIT
procedure.

Syntax:

PROCEDURE NOAUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL);

Parameter Description Default Behavior

policy_name Required. Specifies the name of an existing policy. None

users Optional. A comma-delimited list of user names to
audit. If not specified, auditing is disabled for all
users.

All users

option Optional. A comma-delimited list of options to be
disabled. See Table 11–2. If not specified, all default
options are disabled. Privileges must be disabled
explicitly.

All options

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

11-6 Oracle Label Security Administrator’s Guide

You can disable auditing for all enabled options, or only for a subset of enabled
options. All auditing for the specified options is disabled for all specified users (or
all users, if the users parameter is NULL). For example, the following statement
disables auditing of the APPLY and REMOVE operations for users John, Mary, and
Scott:

SA_AUDIT_ADMIN.NOAUDIT ('HR', 'JOHN, MARY, SCOTT', 'APPLY, REMOVE');

Consider also a case in which one AUDIT call enables auditing for a specific user,
and a second call (with no user specified) enables auditing for all users. For
example:

SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT');
SA_AUDIT_ADMIN.AUDIT ('HR');

In this case, a subsequent call to NOAUDIT with no users specified (such as the
following)

SA_AUDIT_ADMIN.NOAUDIT ('HR');

does not reverse the auditing that was set for SCOTT explicitly in the first call.
Auditing thus continues to be performed on SCOTT. In this way, even if NOAUDIT
is set for all users, Oracle Label Security still audits any users for whom auditing
was explicitly set.

Auditing of privileged operations must be specified explicitly. If you execute
NOAUDIT with no options, Oracle Label Security will nonetheless continue to
audit privileged operations. For example, if auditing is enabled and you enter

SA_AUDIT_ADMIN.NOAUDIT ('HR');

then auditing will continue to be performed on the privileged operations (such as
WRITEDOWN).

 NOAUDIT parameters and options that you set apply only to subsequent sessions,
not to current sessions.

If you try to enable an audit option that has already been set, or if you try to disable
an audit option that has not been set, Oracle Label Security processes the statement
without indicating an error. An attempt to specify an invalid option results in an
error message.

Managing Policy Label Auditing

Auditing Under Oracle Label Security 11-7

Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View
This section describes the view that displays the Oracle Label Security auditing
options and privileges.

The DBA_SA_AUDIT_OPTIONS view contains the following columns:

Output is similar to the following:

Managing Policy Label Auditing
This section describes procedures available to manage policy label auditing:

■ Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL

■ Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL

■ Finding Label Audit Status with AUDIT_LABEL_ENABLED

Table 11–3 Columns in the DBA_SA_AUDIT_OPTIONS View

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

APY VARCHAR2(3)

REM VARCHAR2(3)

SET_ VARCHAR2(3)

PRV VARCHAR2(30

Table 11–4 DBA_SA_AUDIT_OPTIONS Sample Output

POLICY_
NAME USER_NAME APY REM SET PRV

HR SCOTT -/- -/- -/- A/A

HR LBACSYS S/S S/S S/S -/-

See Also: Chapter 11 of the Oracle Database Security Guide

Creating and Dropping an Audit Trail View for Oracle Label Security

11-8 Oracle Label Security Administrator’s Guide

Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL
Use the AUDIT_LABEL procedure to record policy labels during auditing. It causes
the user's session label to be stored in the audit table.

Syntax:

PROCEDURE AUDIT_LABEL (
 policy_name IN VARCHAR2);

Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL
Use the NOAUDIT_LABEL procedure to disable auditing of policy labels.

Syntax:

PROCEDURE NOAUDIT_LABEL (
 policy_name IN VARCHAR2);

Finding Label Audit Status with AUDIT_LABEL_ENABLED
Use the AUDIT_LABEL_ENABLED function to show whether labels are being
recorded in audit records for the policy.

Syntax:

FUNCTION AUDIT_LABEL_ENABLED (policy_name IN VARCHAR2)
 RETURN boolean;

Creating and Dropping an Audit Trail View for Oracle Label Security
This section contains these topics:

■ Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW

■ Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW

Parameter Description Default

policy_name Required. Specifies the name of an existing policy. None

Parameter Description Default

policy_name Required. Specifies the name of an existing policy. None

Oracle Label Security Auditing Tips

Auditing Under Oracle Label Security 11-9

Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW
The CREATE_VIEW procedure creates an audit trail view named DBA_policyname_
AUDIT_TRAIL, which contains the specified policy's label column as well as all the
entries in the audit trail written on behalf of this policy. If the view name exceeds
the database limit of 30 characters, the user can optionally specify a shorter view
name.

Syntax:

PROCEDURE CREATE_VIEW (
 policy_name IN VARCHAR2);
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of an existing policy

Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW
The DROP_VIEW procedure drops the audit trail view for the specified policy.

Syntax:

PROCEDURE DROP_VIEW (
 policy_name IN VARCHAR2);
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of a policy. View_name is an optional
parameter that can have a maximum of 14 characters.

Oracle Label Security Auditing Tips
This section contains these topics:

■ Strategy for Setting SA_AUDIT_ADMIN Options

■ Auditing Privileged Operations

Note: When sa_audit_admin.create_view was used to create a
pre-10i audit view, that view does not show the timestamp field for
the audit records in 10i. Oracle Label Security (OLS) recommends
that all pre-10i OLS audit views be dropped and re-created, by
using sa_audit_admin.drop_view and sa_audit_admin.create_
view.

Oracle Label Security Auditing Tips

11-10 Oracle Label Security Administrator’s Guide

Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy that
monitors events of interest, without recording extraneous events. You should
periodically review this strategy, because applications, user base, configurations,
and other external factors can change.

The Oracle Label Security options, and those provided by the Oracle9i audit facility,
might not directly address all of your specific or application-dependent auditing
requirements. However, through use of database triggers, you can audit specific
events and record specific information that you cannot audit and record using the
more generic audit facility.

Auditing Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.
Because these privileges perform sensitive operations, and because their abuse
could jeopardize security, you should closely monitor their dissemination and use.

See Also: For more information about using triggers for
auditing, see Oracle Database Concepts

Using Oracle Label Security with a Distributed Database 12-1

12
Using Oracle Label Security with a

Distributed Database

This chapter describes special considerations for using Oracle Label Security in a
distributed configuration. It contains the following sections:

■ An Oracle Label Security Distributed Configuration

■ Connecting to a Remote Database Under Oracle Label Security

■ Establishing Session Label and Row Label for a Remote Session

■ Setting Up Labels in a Distributed Environment

■ Using Oracle Label Security Policies in a Distributed Environment

■ Using Replication with Oracle Label Security

An Oracle Label Security Distributed Configuration
A network configuration that supports distributed databases can include multiple
Oracle9i servers, or other database servers, running on the same or different
operating systems. Each cooperative server in a distributed system communicates
with other clients and servers over a network.

Figure 12–1 illustrates a distributed database that includes clients and servers with
and without Oracle Label Security. As described in this chapter, if you establish
database links from the WESTERN_REGION database to the EASTERN_REGION
database, you can access data if your userid on EASTERN_REGION is authorized
to see it, even if locally (on WESTERN_REGION) you do not have this access.

An Oracle Label Security Distributed Configuration

12-2 Oracle Label Security Administrator’s Guide

Figure 12–1 Using Oracle Label Security with a Distributed Database

Oracle9i

WESTERN_
REGION

ServerClients

Oracle Label
Security policy
installed: HR

Oracle Net and TCP/IP

Oracle9i

EASTERN_
REGION

ServerClients

Oracle Label
Security policies
installed: HR and
DEFENSE

Oracle Net and TCP/IP

Oracle9i

HQ

ServerClients

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Establishing Session Label and Row Label for a Remote Session

Using Oracle Label Security with a Distributed Database 12-3

Connecting to a Remote Database Under Oracle Label Security
Distributed databases behave in the standard way with Oracle Label Security: the
local user ends up connected as a particular remote user. Oracle Label Security
protects the labeled data, whether you connect locally or remotely. If the remote
user has the appropriate labels, you can access the data. If not, you cannot access
the data.

The database link sets up the connection to the remote database and identifies the
user that will be associated with the remote session. Your Oracle Label Security
authorizations on the remote database are based upon those of the remote user
identified in the database link.

For example, local user JANE might connect as remote user AUSTEN, in the
database referenced by the connect string sales, as follows:

CREATE DATABASE LINK sales
 CONNECT TO austen IDENTIFIED BY pride
 USING 'sales'

When JANE connects, her authorizations are based on the labels and privileges of
remote user AUSTEN, since AUSTEN is the user identified in the database link.
When JANE issues the first reference to the remote database, the remote session is
actually established. For example, the remote session would be created if JANE
enters:

SELECT * FROM emp@sales

You need not be an Oracle Label Security policy user in the local database. If you
connect as a policy user on the remote database, you can access protected data.

Establishing Session Label and Row Label for a Remote Session
When connecting remotely, you can directly control the session label and row label
in effect when you establish the connection. When you connect, Oracle Label
Security passes these values (for all policies) over to the remote database. Notice
that:

■ The local session label and row label are used as the default for the remote
session, if they are valid for the remote user.

■ The remote session is constrained by the minimum and maximum
authorizations of the remote user.

Setting Up Labels in a Distributed Environment

12-4 Oracle Label Security Administrator’s Guide

■ Although the local user's session labels are passed to the remote database, the
local user's privileges are not passed. The privileges for the remote session are
those associated with the remote user.

Consider a local user, Diana, with a maximum level of HS, and a session level of S.
On the remote database, the remote user identified in the database link has a
maximum level of S.

■ If Diana's session label is S when the database link is established, the S label is
passed over. This is a valid label; Diana can connect and read SENSITIVE data.

■ If Diana's session label is HS when the database link is established, the HS level
is passed across, but it is not valid for the remote user. Diana will pick up the
remote user's default label (S).

Be aware of the label at which you are running the first time you connect to the
remote database. The first time you reference a database link, your local session
labels are sent across to the remote system when a connection is made. Afterward
you can change the label, but to do so you must execute the SA_SESSION.SET_
LABEL procedure on the remote database.

Diana can connect at level HS, set the label to S, and then perform a remote access.
Connection is implicitly made when the database link is established. Her default
label is S on the remote database.

On the local database, Diana can set her session label to her maximum level of HS,
but if the label of the remote user is set to S, then she can only retrieve S data from
the remote database. If she performs a distributed query, she will get HS data from
the local database, and S data from the remote database.

Setting Up Labels in a Distributed Environment
It is advisable to use the same label component definitions and label tags on any
database that is to be protected by the policy.

■ Setting Label Tags in a Distributed Environment

■ Setting Numeric Form of Label Components in a Distributed Environment

Setting Label Tags in a Distributed Environment
In a distributed environment you may choose to use the same label tags across
multiple databases. However, if you choose not to use the same tags across multiple
databases, you should retrieve the character form of the label when performing
remote operations. This will ensure that the labels are consistent.

Setting Up Labels in a Distributed Environment

Using Oracle Label Security with a Distributed Database 12-5

In the following example the character string representation of the label string is the
same; the label tag, however, does not match. If the retrieved label tag has a value of
11 on the WESTERN_REGION database, but a tag of 2001 on the EASTERN_
REGION database, the tags have no meaning. Serious consequences can result.

Figure 12–2 Label Tags in a Distributed Database

When retrieving labels from a remote system, you should return the character string
representation (rather than the numeric label tag), unless you are using the same
numeric labels on both databases.

If you allow Oracle Label Security to automatically generate labels on different
databases, the label tags will not be identical. Character strings will have meaning,
but the numeric values will not, unless you have predefined labels with the same
label tags on both instances.

To avoid the complexities of label tags, you can simply convert labels to strings
upon retrieval (using LABEL_TO_CHAR) and use CHAR_TO_LABEL when you
store labels. Operations will succeed as long as the component names are the same.

Setting Numeric Form of Label Components in a Distributed Environment
In a distributed environment you should use the same relative ranking of the
numeric form of the level component, in order to ensure proper sorting of the labels.

In the following example, the levels in the two databases are effectively the same.
Although the numeric form is different, the relative ranking of the levels' numeric
form is the same. As long as the relative order of the components is the same, the
labels are perceived as identical.

Label Tag

EASTERN_REGION WESTERN_REGION

Label 600

S:A S:A

C:A

Label

3001

C:A 2001

10U

11

6

Label Tag

U 5

Using Oracle Label Security Policies in a Distributed Environment

12-6 Oracle Label Security Administrator’s Guide

Figure 12–3 Label Components in a Distributed Database

Using Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle9i distributed configurations.
Whether or not you can access protected data depends on the policies installed in
each distributed database.

Be sure to take into account the relationships between databases in a distributed
environment:

■ If the same application runs on two databases, and you want them to have the
same protection, you must apply the same Oracle Label Security policy to both
the local and the remote database.

■ If the local and remote databases have a policy in common, then your local
session label and row label will override the default labels for the remote user.

■ If the remote database has a different policy from the local database, then the
remote policy can restrict access to the data independent of your local policies.
On the other hand, when you make a connection as a remote user who has
authorization on the remote policy, you can access any data to which the remote
user has access—regardless of your local authorizations.

If the remote database has no policy applied to it, you can access its data just as you
would with a standard distributed database.

Consider a situation in which three databases exist, with different Oracle Label
Security policies in force:

Database 1 has Policy A and Policy B
Database 2 has Policy A
Database 3 had Policy C

Numeric
Form

EASTERN_REGION WESTERN_REGION

Level 600

S S

C

Level

30

C 20

10U

6

5

Numeric
Form

U 4

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 12-7

Users authorized for Policy A can obtain protected data from Database 1 and
Database 2. If the remote user is authorized for Policy C, this user can obtain data
from Database 3 as well.

Using Replication with Oracle Label Security
This section explains how to use the replication option with tables protected by
Oracle Label Security policies. It contains these topics:

■ Introduction to Replication Under Oracle Label Security

■ Contents of a Materialized View

■ Requirements for Creating Materialized Views Under Oracle Label Security

■ How to Refresh Materialized Views

Introduction to Replication Under Oracle Label Security
This section introduces the use of replication under Oracle Label Security. It
contains the following topics:

■ Replication Functionality Supported by Oracle Label Security

■ Row Level Security Restriction on Replication Under Oracle Label Security

Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports standard replication and Advanced Replication,
including multimaster replication and updatable materialized views (snapshots).

Oracle9i uses materialized views for replicating data. A materialized view is a local
copy of a local or remote master table that reflects a recent state of the master table.

As illustrated in Figure 12–4, a master table is a table you wish to replicate, on a
node that you designate as the master node. Using a dblink account (such as
REPADMIN), you can create a materialized view of the table in a different database.

See Also:

■ For a complete explanation of replication in Oracle9i, and how
to set up the replication environment, see Oracle Database
Advanced Replication.

■ For general information about using materialized views, see
Oracle Database Concepts and
Oracle Data Warehousing Guide

Using Replication with Oracle Label Security

12-8 Oracle Label Security Administrator’s Guide

(This can also be done in the same database, and on the same machine.) You can
select rows from the remote master table, and copy them into the local materialized
view. Here, mvEMP represents the materialized view of table EMP, and mlog$_EMP
represents the materialized view log.

Figure 12–4 Use of Materialized Views for Replication

In a distributed environment, a materialized view alleviates query traffic over the
network and increases data availability when a node is not available.

Row Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if
READ_CONTROL is specified as one of the policy options. Problems occur if both of
the following conditions are true:

■ The Oracle Label Security policy is applied to any table relevant to replication
(such as the master table, materialized view, or materialized view log), and

■ The policy returns a predicate in the WHERE clause of SELECT statements.

To avoid the additional predicate (and thus avoid this problem), the users involved
in a replication environment should be given the necessary Oracle Label Security
privileges. To be specific, the designated users in the database link (such as
REPADMIN and/or the materialized view owner) must have READ or FULL
privilege. As a result, the queries used to perform the replication will not be
modified by RLS.

Contents of a Materialized View
This section discusses the contents of materialized views.

■ How Materialized View Contents Are Determined

See Also: Oracle Database Concepts

dblink account:
REPADMIN

Master Node

EMP mvEMP

mlog$_EMP

Local Node

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 12-9

■ Complete Materialized Views

■ Partial Materialized Views

How Materialized View Contents Are Determined
Oracle Label Security performs the following steps when creating materialized
views. These steps determine the contents of the view.

1. It reads the definition of the master table in the remote database.

2. It reads the rows in the master table that meet the conditions defined in the
materialized view definition.

3. It writes these rows to the materialized view in the local database.

Because Oracle Label Security only writes those rows to which you have write
access in the local database, the contents of the materialized view vary according to:

■ The policy options in effect

■ The privileges you have defined in the local database

■ The session label

Complete Materialized Views
If you read all of the rows in the master table and have write access in the local
database to each label in the materialized view, the result is a complete materialized
view of the master table. To ensure that the materialized view is complete, ensure
that you have read access to all of the data in the master table and write access in
the local database to all labels at which data is stored in the master table.

Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the
materialized view definition. This is a convenient way to pass subsets of data to a
remote database.

Note: Never revoke privileges that you granted when you created
the materialized view. If you do, you may not be able to perform a
replication refresh.

Note: To create a partial materialized view you must have write
access to all the rows being replicated.

Using Replication with Oracle Label Security

12-10 Oracle Label Security Administrator’s Guide

Requirements for Creating Materialized Views Under Oracle Label Security
Requirements for creating a materialized view depend upon the type of
materialized view you are creating.

■ Requirements for the REPADMIN Account

■ Requirements for the Owner of the Materialized View

■ Requirements for Creating Partial Multilevel Materialized Views

■ Requirements for Creating Complete Multilevel Materialized Views

Requirements for the REPADMIN Account
Requirements for the REPADMIN account vary depending on the configuration. In
general, however, it should meet the following requirements:

■ It must have the FULL Oracle Label Security privilege (mandatory for all
configurations).

■ It must have SELECT privilege on the master table.

■ It must be the account that establishes the database link from the remote node
to the database containing the master table.

Requirements for the Owner of the Materialized View
Remember that the privileges belonging to the owner of the materialized view are
used during the refresh of the materialized view. If these privileges are not
sufficient, then there are two options:

■ The materialized view can be created in the REPADMIN account, or

■ Additional privileges must be granted to the owner of the materialized view.

Consider, for example, the following materialized view created by user SCOTT:

CREATE MATERIALIZED VIEW mvemp as
SELECT *
FROM EMP@link_to_master
WHERE label_to_char(sa_label) = 'HS';

Here, SCOTT should have permission to insert records at the HS level in the local
database. If Oracle Label Security policies are applied on the materialized view,
then SCOTT must have the FULL privilege to avoid the RLS restriction.

See Also: Oracle Database Advanced Replication

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 12-11

Different configurations can be set up depending on whether Oracle Label Security
policies are applied on the materialized view, what privileges are granted to the
owner of the materialized view, and so on. If Oracle Label Security policies are
applied to the materialized view, but SCOTT should not be granted the FULL
privilege, then the REPADMIN account must be used to create the materialized
view. SCOTT can then be granted the SELECT privilege on that table.

If no policies are applied to the materialized view, then the view can be created in
SCOTT's schema without any additional privileges. In this case, the materialized
view should be created in such a way that a WHERE condition limits the records to
those which SCOTT can read.

Finally, if SCOTT can be granted the FULL privilege, then the materialized view can
be created in SCOTT's schema, and Oracle Label Security policies can also be
applied on the materialized view.

Note that the master table can have Oracle Label Security policies containing any
set of policy options. If SCOTT has the FULL or READ privilege, he can select all
rows, regardless of policy options.

Requirements for Creating Partial Multilevel Materialized Views
To create a partial materialized view that includes only some of the rows in a remote
master table protected by Oracle Label Security, you must have sufficient privileges
to WRITE in the local database at every label retrieved by your query.

Requirements for Creating Complete Multilevel Materialized Views
To create a complete materialized view that includes every row in a remote master
table protected by Oracle Label Security, you must be able to WRITE in the local
database at the labels of all of the rows retrieved by the defined materialized view
query.

How to Refresh Materialized Views
If the contents or definition of a master table changes, refresh the materialized view
so that it accurately reflects the contents of the master table. To refresh a
materialized view of a remote multilevel table, you must also have privileges to

Using Replication with Oracle Label Security

12-12 Oracle Label Security Administrator’s Guide

write in the local database at the labels of all of the rows that the materialized view
query retrieves

To ensure an accurate materialized view refresh, use the optional materialized view
background processes, SNPn, to refresh the views automatically. These processes
must have sufficient privileges both to read all of the rows in the master table and to
write those rows to the materialized view, ensuring that the view is completely
refreshed. Remember that the privileges used by these processes are those of the
materialized view owner.

Warning: A materialized view can potentially contain outdated
rows if you refresh a partial or full materialized view but do not
have READ access to all of the rows in the master table, and
consequently do not overwrite the rows in the original
materialized view with the updated rows from the master table.

See Also: For information about SNPn background processes, see
Oracle Database Administrator's Guide

Performing DBA Functions Under Oracle Label Security 13-1

13
 Performing DBA Functions Under Oracle

Label Security

The standard Oracle9i utilities can be used under Oracle Label Security, but certain
restrictions apply, and extra steps may be required to get the expected results. This
chapter describes these special considerations. It assumes you are using policy label
columns of the NUMBER datatype.

The chapter contains these sections:

■ Using the Export Utility with Oracle Label Security

■ Using the Import Utility with Oracle Label Security

■ Using SQL*Loader with Oracle Label Security

■ Performance Tips for Oracle Label Security

■ Creating Additional Databases After Installation

Using the Export Utility with Oracle Label Security
The Export utility functions in the standard way under Oracle Label Security. There
are, however, a few differences resulting from the enforcement of Oracle Label
Security policies.

■ For any tables protected by an Oracle Label Security policy, only rows with
labels authorized for read access will be exported; unauthorized rows will not
be included in the export file. Consequently, to export all the data in protected
tables, you must have a privilege (such as FULL or READ) that gives you
complete access.

Using the Import Utility with Oracle Label Security

13-2 Oracle Label Security Administrator’s Guide

■ SQL statements to reapply policies are exported along with tables and schemas
that are exported. These statements are executed during import to reapply
policies with the same enforcement options as in the original database.

■ The HIDE property is not exported. When protected tables are exported, the
label columns in those tables are also exported (as numeric values). However, if
a label column is hidden, it is exported as a normal, unhidden column.

■ The LBACSYS schema cannot be exported due to the use of opaque types in
Oracle Label Security. An export of the entire database (parameter FULL=Y)
with Oracle Label Security installed can be done, except that the LBACSYS
schema would not be exported.

Using the Import Utility with Oracle Label Security
This section explains how the Import utility functions under Oracle Label Security:

■ Requirements for Import Under Oracle Label Security

■ Defining Data Labels for Import

■ Importing Labeled Data Without Installing Oracle Label Security

■ Importing Unlabeled Data

■ Importing Tables with Hidden Columns

Requirements for Import Under Oracle Label Security
To use the Import utility under Oracle Label Security, you must prepare the import
database and ensure that the import user has the proper authorizations.

Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare
the import database, as follows:

1. Install Oracle Label Security.

2. Create any Oracle Label Security policies that protect the data to be imported.
The policies must use the same column names as in the export database.

See Also: Oracle Database Utilities

See Also: Oracle Database Utilities

Using the Import Utility with Oracle Label Security

Performing DBA Functions Under Oracle Label Security 13-3

3. Define in the import database all of the label components and individual labels
used in tables being imported. Tag values assigned to the policy labels in each
database must be the same. (Note that if you are importing into a database from
which you exported, the components are most likely already defined.)

Verifying Import User Authorizations
To successfully import data under Oracle Label Security, the user running the
import operation must be authorized for all of the labels required to insert the data
and labels contained in the export file. Errors will be raised upon import if the
following requirements are not met:

Requirement 1: To assure that all rows can be imported, the user must have the
policy_DBA role for all policies with data being imported. After each schema or
table is imported, any policies from the export database are reapplied to the
imported objects.

Requirement 2: The user must also have the ability to write all rows that have been
exported. This can be accomplished by one of the following methods:

■ The user can be granted the FULL privilege.

■ A user-defined labeling function can be applied to the table.

■ The user can be given sufficient authorization to write all labels contained in the
import file.

Defining Data Labels for Import
The label definitions at the time of import must include all of the policy labels used
in the export file. You can use the views DBA_SA_LEVELS, DBA_SA_
COMPARTMENTS, DBA_SA_GROUPS, and DBA_SA_LABELS in the export
database to design SQL scripts that re-create the label components and labels for
each policy in the import database. The following example shows how to generate a
PL/SQL block that re-creates the individual labels for the HR policy:

set serveroutput on
BEGIN
 dbms_output.put_line('BEGIN');
 FOR l IN (SELECT label_tag, label
 FROM dba_sa_labels
 WHERE policy_name='HR'
 ORDER BY label_tag) LOOP
 dbms_output.put_line
 (' SA_LABEL_ADMIN.CREATE_LABEL(''HR'', ' ||

Using the Import Utility with Oracle Label Security

13-4 Oracle Label Security Administrator’s Guide

 l.label_tag || ', ''' || l.label || ''');');
 END LOOP;
 dbms_output.put_line ('END;');
 dbms_output.put_line ('/');
END;
/

If the individual labels do not exist in the import database with the same numeric
values and the same character string representations as in the export database, then the
label values in the imported tables will be meaningless. The numeric label value in
the table may refer to a different character string representation, or it may be a label
value that has not been defined at all in the import database.

If a user attempts to access rows containing invalid numeric labels, the operation
will fail.

Importing Labeled Data Without Installing Oracle Label Security
When policy label columns are defined as a NUMBER datatype, they can be
imported into databases that do not have Oracle Label Security installed. In this
case, the values in the policy label column are imported as numbers. Without the
corresponding Oracle Label Security label definitions, the numbers will not
reference any specific label.

Note that errors will be raised during the import if Oracle Label Security is not
installed, since the SQL statements to reapply the policy to the imported tables and
schemas will fail.

Importing Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label
Security policy. Either the LABEL_DEFAULT option or a labeling function must be
specified for each table being imported, so that the labels for the rows can be
automatically initialized as they are inserted into the table.

Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is
lost. If you want to preserve the hidden property of the label column, you must
pre-create the table in the import database.

Using SQL*Loader with Oracle Label Security

Performing DBA Functions Under Oracle Label Security 13-5

1. Before you perform the import, create the table and apply the policy with the
HIDE option. This causes the policy label column to be added to the table as a
hidden column.

2. Then remove the policy from the table, so that the enforcement options
specified in the export file can be re-applied to the table during the import
operation.

3. Perform the import. In this way, the hidden property of the label column is
preserved.

Using SQL*Loader with Oracle Label Security
SQL*Loader moves data from external files into tables in an Oracle9i database. This
section contains these topics:

■ Requirements for Using SQL*Loader Under Oracle Label Security

■ Oracle Label Security Input to SQL*Loader

Requirements for Using SQL*Loader Under Oracle Label Security
You can use SQL*Loader with the conventional path to load data into a database
protected by Oracle Label Security. Since SQL*Loader performs INSERT operations,
all of the standard requirements apply when using SQL*Loader on tables protected
by Oracle Label Security policies.

Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword
to convey this information to SQL*Loader.

To specify row labels in the input file, include the policy label column in the INTO
TABLE clause in the control file.

To load policy labels along with the data for each row, you can specify the CHAR_
TO_LABEL function or the TO_DATA_LABEL function in the SQL*Loader control
file.

See Also: For information about SQL*Loader, including log files,
discard files, and bad files, see Oracle Database Utilities

Using SQL*Loader with Oracle Label Security

13-6 Oracle Label Security Administrator’s Guide

You can use the following variations when loading Oracle Label Security data with
SQL*Loader:

For example, the following is a valid INTO TABLE clause in a control file that is
loading data into the DEPT table:

INTO TABLE dept
(hr_label HIDDEN POSITION (1:22) CHAR "CHAR_TO_LABEL('HR',:hr_label)",
deptno POSITION (23:26) INTEGER EXTERNAL,
dname POSITION (27:40) CHAR,
loc POSITION(41,54) CHAR)

The following could be an entry in the datafile specified by this control file:

HS:FN 231 ACCOUNTING REDWOOD SHORES

Note: When Oracle Label Security is installed to work with Oracle
Internet Directory (OID), dynamic label generation is not allowed,
because labels are managed centrally in OID, using olsadmintool
commands. (See Appendix B, "Command-line Tools for Label
Security Using Oracle Internet Directory".)

Therefore, when Oracle Label Security is directory-enabled, this
function, TO_DATA_LABEL, is not available and will generate an
error message if used.

Table 13–1 Input Choices for Oracle Label Security Input to SQL*Loader

Form of Data Explanation of Results

col1 hidden integer external Hidden column loaded with tag value of data directly from
data file

col2 hidden char(5)
"func(:col2)"

Hidden column loaded with character value of data from
data file. func() used to translate between the character label
and its tag value. Note: func() might be char_to_label().

col3 hidden "func(:col3)" Same as col2 above; fieldtype defaults to char

col4 hidden expression
"func(:col4)"

Hidden column not mapped to input data. func() will be
called to provide the label value. This could be a user
function.

Performance Tips for Oracle Label Security

Performing DBA Functions Under Oracle Label Security 13-7

Performance Tips for Oracle Label Security
This section explains how to achieve optimal performance with Oracle Label
Security.

■ Using ANALYZE to Improve Oracle Label Security Performance

■ Creating Indexes on the Policy Label Column

■ Planning a Label Tag Strategy to Enhance Performance

■ Partitioning Data Based on Numeric Label Tags

Using ANALYZE to Improve Oracle Label Security Performance
Run the ANALYZE command on the Oracle Label Security data dictionary tables in
the LBACSYS schema, so that the cost-based optimizer can improve execution plans
on queries. This will improve Oracle Label Security performance.

Running ANALYZE on application tables improves the application SQL
performance.

Creating Indexes on the Policy Label Column
By creating the appropriate type of index on the policy label column, you can
improve the performance of user-issued queries on protected tables.

If you have applied an Oracle Label Security policy on a database table in a
particular schema, you should compare the number of different labels to the
amount of data. Based on this information, you can decide which type of index to
create on the policy label column.

■ If the cardinality of data in the policy label column (that is, the number of labels
compared to the number of rows) is low, consider creating a bitmapped index.

■ If the cardinality of data in the policy label column is high, consider creating a
B-tree index.

Example 1:

Consider the following case, in which the EMP table is protected by an Oracle Label
Security policy with the READ_CONTROL enforcement option set, and HR_LABEL
is the name of the policy label column. A user issues the following query:

SELECT COUNT (*) FROM scott.emp;

Performance Tips for Oracle Label Security

13-8 Oracle Label Security Administrator’s Guide

In this situation Oracle Label Security adds a predicate based on the label column.
For example:

SELECT COUNT (*) FROM scott.emp
 WHERE hr_label=100;

In this way, Oracle Label Security uses the security label to restrict the rows that are
processed, based on the user's authorizations. To improve performance of this
query, you could create an index on the HR_LABEL column.

Example 2:

Consider a more complex query (once again, with READ_CONTROL applied to the
EMP table):

SELECT COUNT (*) FROM scott.emp
 WHERE deptno=10

Again, Oracle Label Security adds a predicate based on the label column:

SELECT COUNT (*) FROM scott.emp
 WHERE deptno=10
 AND hr_label=100;

In this case, you might want to create a composite index based on the DEPTNO and
HR_LABEL columns, to improve application performance.

Planning a Label Tag Strategy to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label tags.
In general, it is best to assign higher numeric values to labels with higher sensitivity
levels. This is because, typically, many more users can see data at comparatively
low levels; fewer users at higher levels can see many levels of data.

In addition, with READ_CONTROL set, Oracle Label Security generates a predicate
that uses a BETWEEN clause to restrict the rows to be processed by the query. As
illustrated in the following example, if the higher-sensitivity labels do not have a
higher label tag than the lower-sensitivity labels, then the query will potentially
examine a larger set of rows. This will affect performance.

See Also: Oracle Database Performance Tuning Guide

Performance Tips for Oracle Label Security

Performing DBA Functions Under Oracle Label Security 13-9

Consider, for example, label tags assigned as follows:

Here, a user whose maximum authorization is S:A can potentially access data at
labels S:A, S, and U:A. Consider what happens when this user issues the following
query:

SELECT COUNT (*) FROM scott.emp;

Oracle Label Security adds a predicate that includes a BETWEEN clause (based on
the user's maximum and minimum authorizations) to restrict the set of rows this
user can see:

SELECT COUNT (*) FROM scott.emp
 WHERE hr_label BETWEEN 10 AND 50;

Performance improves, because the query examines only a subset of data based on
the user's authorizations. It does not fruitlessly process rows that the user is not
authorized to access.

By contrast, unnecessary work would be performed if tag values were assigned as
follows:

In this case, the user with S:A authorization can see only some of the labels between
100 and 10—although he cannot see TS:A,B labels (that is, rows with a label tag of

Table 13–2 Label Tag Performance Example: Correct Values

Label Label Tag

TS:A,B 100

S:A 50

S 20

U:A 10

Table 13–3 Label Tag Performance Example: Incorrect Values

Label Label Tag

TS:A,B 50

S:A 100

S 20

U:A 10

Performance Tips for Oracle Label Security

13-10 Oracle Label Security Administrator’s Guide

50). A query would nonetheless pick up and process these rows, even though the
user ultimately will not have access to them.

Partitioning Data Based on Numeric Label Tags
If you are using a numeric ordering strategy with the numeric label tags that you
have applied to the labels, you can use this as a basis for Oracle9i data partitioning.
Depending upon the application, partitioning data based on label values may or
may not be useful.

Consider, for example, a business-hosting CRM application to which many
companies subscribe. In the same EMP table, there might be rows (and labels) for
Subscriber 1 and Subscriber 2. That is, information for both companies can be stored
in the same table, as long as it is labeled differently. In this case, employees of
Subscriber 1 will never need to access data for Subscriber 2, and so it might make
sense to partition based on label. You could put rows for Subscriber 1 in one
partition, and rows for Subscriber2 in a different partition. When a query is issued,
it will access only one or the other partition, depending on the label. Performance
improves because partitions that are not relevant are not examined by the query.

The following example shows how to do this. It places labels in the 2000 series on
one partition, labels in the 3000 series on another partition, and labels in the 4000
series on a third partition.

CREATE TABLE EMPLOYEE
 (EMPNO NUMBER(10) CONSTRAINT PK_EMPLOYEE PRIMARY KEY,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(4),
 HR_LABEL NUMBER(10))
 TABLESPACE PERF_DATA
 STORAGE (initial 2M
 NEXT 1M
 MINEXTENTS 1
 MAXEXTENTS unlimited)
 PARTITION BY RANGE (hr_label)
 (partition sx1 VALUES LESS THAN (2000) NOLOGGING,
 partition sx2 VALUES LESS THAN (3000),
 partition sx3 VALUES LESS THAN (4000));

Creating Additional Databases After Installation

Performing DBA Functions Under Oracle Label Security 13-11

Creating Additional Databases After Installation
When you install the Oracle9i Enterprise Edition and Oracle Label Security, an
initial Oracle8i database is created. You can then install Oracle Label Security, as
described in the Oracle Label Security Installation Notes for your platform.

If you wish to create additional databases, Oracle Corporation recommends that
you do this using the Oracle Database Configuration Assistant. Alternatively, you
can create additional databases by following the steps listed in Chapter 2 of the
Oracle Database Administrator's Guide

Each time you create a new database, you must install into it the Oracle Label
Security data dictionary tables, views, and packages, and create the LBACSYS
account. For the first database, this is done automatically when you install Oracle
Label Security. For additional databases, you must perform the following tasks
manually.

1. In your initsid.ora file, set the COMPATIBLE parameter to the current Oracle9i
release that you are running. (This must be no lower than 8.1.7.)

Shut down and restart your database so that this change will take effect.

2. Connect to the Oracle9i instance as user SYS, using the AS SYSDBA syntax.

3. Run the script $ORACLE_HOME/rdbms/admin/catols.sql.

This script installs the label-based framework, data dictionary, datatypes, and
packages. After the script is run, the LBACSYS account exists, with the
password LBACSYS. All the Oracle Label Security packages exist under this
account.

4. Change the default password of the LBACSYS user.

Now you can proceed to create an Oracle Label Security policy.

Note: If you have not installed Oracle Label Security at least once
in your target Oracle environment, you must first do so using the
Oracle Universal Installer.

See Also: For a complete discussion of Oracle database creation,
see Oracle Database Administrator's Guide

Creating Additional Databases After Installation

13-12 Oracle Label Security Administrator’s Guide

Releasability Using Inverse Groups 14-1

14
 Releasability Using Inverse Groups

This chapter discusses the Oracle Label Security implementation of releasability
using inverse groups. It contains the following sections:

■ Introduction to Inverse Groups and Releasability

■ Comparing Standard Groups and Inverse Groups

■ How Inverse Groups Work

■ Algorithm for Read Access with Inverse Groups

■ Algorithm for Write Access with Inverse Groups

■ Algorithms for COMPACCESS Privilege with Inverse Groups

■ Session Labels and Inverse Groups

■ Changes in Behavior of Procedures with Inverse Groups

■ Dominance Rules for Labels with Inverse Groups

Introduction to Inverse Groups and Releasability
Inverse groups indicate releasability of information: they are used to mark the
dissemination of data. When you add an inverse group to a data label, the data
becomes less classified. For example, a user with inverse groups UK, US cannot
access data that only has inverse group UK. Adding US to that data makes it
accessible to all users with the inverse groups UK, US.

Note: The Oracle Policy Manager graphical user interface is not
supported for policies that contain inverse groups.

Comparing Standard Groups and Inverse Groups

14-2 Oracle Label Security Administrator’s Guide

When you assign releasabilities to a user, you mark the communication channel to
the user. For data to flow across the communication channel, the data releasabilities
must dominate the releasabilities assigned to the user. In other words, releasabilities
assigned to a data record must contain all the releasabilities assigned to a user.

The advantage of releasabilities lies in their power to broadly disseminate
information. Releasing data to the entire marketing organization becomes as simple
as adding the Marketing releasability to the data record.

Comparing Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations that own or access data. Like
standard groups, inverse groups control the dissemination of information.
However, the behavior of inverse groups differs from Oracle Label Security
standard group behavior. By default, all policies created in Oracle Label Security
use the standard group behavior.

The term, "releasabilities" is sometimes used to refer to the behavior provided by
inverse groups. When you include inverse groups in a data label, the effect is
similar to assigning label compartment authorizations to a user. When Oracle Label
Security evaluates whether a user can view a row of data assigned a label with
inverse groups, it checks to see whether the data, not the user, has the appropriate
group authorizations: does the data have all the inverse groups assigned to the
user? With standard groups, by contrast, Oracle Label Security checks to see
whether a user is authorized for at least one of the groups assigned to a row of data.

Consider a policy that contains 3 standard groups: Eastern, Western, and Southern.
User1's label authorizations include the groups Eastern and Western. Assuming
User1 has been assigned the appropriate level and compartment authorizations in
the policy, then:

■ With standard Oracle Label Security groups, User1 can view all data records
that have the group Eastern, or the group Western, or both Eastern and
Western.

■ With inverse groups, User1 can only view data records that have, at a minimum,
all the groups assigned to the user: that is, both Eastern and Western. She cannot
view records that have only the Eastern group, only the Western group, or that
have no groups at all.

Table 14–1 shows all the rows that User1 can potentially access, given the type of
group that is used in the policy.

How Inverse Groups Work

Releasability Using Inverse Groups 14-3

Standard groups indicate ownership of information: thus all data pertaining to a
certain department can have that department's group in the label. When you add a
group to a data label, the data becomes more classified. For example, a user with no
groups can access data that has no groups in its label. If you add the group US to
the data label, the user can no longer access the data.

How Inverse Groups Work
This section explains how inverse groups are implemented, and how they work. It
contains these topics:

■ Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option

■ Inverse Groups and Label Components

■ Computed Labels with Inverse Groups

■ Inverse Groups and Hierarchical Structure

■ Inverse Groups and User Privileges

Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option
When creating an Oracle Label Security policy, the administrator can specify
whether the policy can use inverse group functionality to implement releasability.

Table 14–1 Access to Standard Groups and Inverse Groups

If row label contains groups:
User1 access with
standard groups?

User1 access with
inverse groups?

none Y N

Eastern Y N

Western Y N

Southern N N

Eastern, Western Y Y

Eastern, Southern Y N

Western, Southern Y N

Eastern, Western, Southern Y Y

See Also: "Groups" on page 2-7

How Inverse Groups Work

14-4 Oracle Label Security Administrator’s Guide

To do this, he specifies INVERSE_GROUP as one of the default_options in the
CREATE_POLICY statement.

The INVERSE_GROUP option can only be set at policy creation time. Once a policy
is created, this option cannot be changed.

The INVERSE_GROUP option is thus policy-wide. It cannot be turned on or off
when the policy is applied to a table or schema. If you attempt to do so, using the
procedure APPLY_TABLE_POLICY or APPLY_SCHEMA_POLICY, then an error
will be generated.

Whereas other policy enforcement options can be dropped from a policy, the
INVERSE_GROUP policy configuration option cannot be dropped once it is set. To
remove the option you must drop, and then re-create, the policy.

The administrator can give individual users authorization for one or more inverse
groups.

Inverse Groups and Label Components
When an Oracle Label Security policy is created with the inverse group option, the
components in the policy label (levels, compartments, and groups) are the same as
with standard groups. With inverse groups, however, the user's read groups and
write groups have a different meaning and role in data access.

Consider the following policy example, with three levels, one compartment, and
three groups:

Table 14–2 Policy Example

Policy Component Abbreviation

Levels:

UNCLASSIFIED UN

CONFIDENTIAL CON

SECRET SE

Compartments:

FINANCIAL FIN

Groups:

EASTERN EAS

WESTERN WES

SOUTHERN SOU

How Inverse Groups Work

Releasability Using Inverse Groups 14-5

Two user labels have been assigned: CON:FIN and SE:FIN:EAS,WES

Two data labels have been assigned: CON:FIN:EAS and SE:FIN:EAS

User access to the data differs, depending on the type of group being used:

■ If the policy uses standard groups, then:

The user with the label CON: FIN cannot read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES can read SE:FIN:EAS data.

■ If the policy has the INVERSE GROUPS policy enforcement option, then:

The user with the label CON: FIN can read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES cannot read SE:FIN:EAS data.

Computed Labels with Inverse Groups
This section explains how inverse groups affect computed label values. It contains
these topics:

■ Computed Session Labels with Inverse Groups

■ Inverse Groups and Computed Max Read Groups and Max Write Groups

Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label Security
automatically computes a number of labels. With inverse groups these labels are as
follows:

Table 14–3 Computed Session Labels with Inverse Groups

Computed Label Definition

Max Read Label The user's maximum level combined with his or her
authorized compartments and the minimum set of inverse
groups that should be in the user label (session label).

Max Write Label The user's maximum level combined with the compartments
for which the user has been granted write access. Contains the
maximum authorized inverse groups that can be set in any
label. The user has write authorizations on all these inverse
groups.

Min Write Label The user's minimum level.

How Inverse Groups Work

14-6 Oracle Label Security Administrator’s Guide

Inverse Groups and Computed Max Read Groups and Max Write Groups
From the computed values in Table 14–3, two sets of groups are identified for label
evaluation of read and write access:

As shown in Table 14–5, for standard groups you can have READ ONLY and
READ/WRITE authorizations; for inverse groups you can have WRITE ONLY and
READ/WRITE authorizations.

Default Read Label The default level, combined with compartments and inverse
groups that have been designated as default for the user.

Default Write Label A subset of the default read label, containing the
compartments and inverse groups for which the user has been
granted write access. However the inverse groups component
has no significance as it is the Max Write Groups that is
always used for write access.

Default Row Label The combination of components between the user's minimum
write label and the maximum write label, which has been
designated as the default for the data label for inserted data.
The Inverse groups should be a superset of inverse groups in
the default label and a subset of Max Write Groups.

See Also: "Computed Session Labels" on page 3-8

Table 14–4 Sets of Groups for Evaluating Read and Write Access

Sets of Groups Meaning

Max Read Groups Max Read Groups are the groups contained in the Max Read
Label, identifying the minimum set of inverse groups that can
be set in any user label.

Max Write Groups Max Write Groups are the groups contained in the Max Write
Label, identifying the maximum authorized inverse groups that
can be set in any user label. This set of groups is checked at the
time of write access, and also when setting session labels.

Note that Max Write Groups is a superset of Max Read Groups.

Table 14–3 Computed Session Labels with Inverse Groups (Cont.)

Computed Label Definition

How Inverse Groups Work

Releasability Using Inverse Groups 14-7

Although Max Read Groups identifies the set of groups contained in the Max Read
Label, this value represents the minimum set of inverse groups that can be set. For
example:

Max Read Groups: S:C1:G1,G2

Max Write Groups: S:C1:G1,G2,G3,G4,G5

Here, the user can read data that contains at least the 2 groups listed in Max Read
Groups.

Note that in standard groups, there can never be a situation in which there are more
groups in the Max Write Label than in the Max Read Label.

Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, such that a group can be
associated with a parent group. For example, the EASTERN region can be the
parent of two subordinate groups: EAS_SALES, and EAS_HR.

In a policy with standard groups, if the user label has the parent group, then it can
access all data of the subordinate groups.

With inverse groups, parent-child relationships are not supported.

Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the
same.

When the user has no special privileges, then the read algorithm and the write
algorithm are different for standard groups and inverse groups. The differences are
described below, in "Algorithm for Read Access with Inverse Groups" on page 14-8
and "Algorithm for Write Access with Inverse Groups" on page 14-9.

Table 14–5 Read and Write Authorizations for Standard Groups and Inverse Groups

Type of
Group READ ONLY READ/WRITE WRITE ONLY

Standard
Groups

The group is present only
in Max Read Label, not
in Max Write Label.

The group is present in
both Max Read Label
and Max Write Label.

Not supported

Inverse
Groups

Not supported The group is present in
both Max Read Label
and Max Write Label.

The group is present only
in Max Write Label, not
in Max Read Label.

Algorithm for Read Access with Inverse Groups

14-8 Oracle Label Security Administrator’s Guide

The effect of inverse groups on the COMPACCESS privilege is described below, in
"Algorithms for COMPACCESS Privilege with Inverse Groups" on page 14-10.

Inverse groups have no impact upon the following user privileges:

■ PROFILE_ACCESS

■ WRITEUP

■ WRITEDOWN

■ WRITEACROSS

Algorithm for Read Access with Inverse Groups
This section describes the algorithm for read access with inverse groups.

To read data in a table with the INVERSE GROUP option in effect, the label
evaluation process proceeds from levels to groups to compartments, as illustrated in
Figure 14–1. (Note that the current session label is the label being evaluated.)

1. The user's level must be greater than or equal to the level of data

2. The user's label must include all the compartments assigned to the data

3. The groups in the data label must be a superset of the groups in the user label.

If the user's label passes these tests, then he can access the data. If not, he is denied
access. Note that if the data label is null or invalid, then the user is denied access.

Algorithm for Write Access with Inverse Groups

Releasability Using Inverse Groups 14-9

Figure 14–1 Read Access Label Evaluation with Inverse Groups

Algorithm for Write Access with Inverse Groups
This section describes the algorithm for write access with inverse groups.

To write data in a table with the INVERSE GROUP option, the label evaluation
process proceeds from levels to groups to compartments, as illustrated in
Figure 14–2. (Note that the current session label is the label being evaluated.)

1. The level in the data label must be greater than or equal to the user's minimum
level, and less than or equal to the user's session level.

2. One of the following conditions must be met:

The groups in the data label must be a superset of the groups in the user label.

or

The user has READ access privilege on the policy.

3. The user's Max Write Groups must be a superset of the data label groups.

Note: This flow diagram is true only when the user has no special
privileges.

See Also: "The Oracle Label Security Algorithm for Read Access"
on page 3-11

No
Access

 Access

Data
level =< user

level?

User has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N N
Data has all

groups in
user label?

Algorithms for COMPACCESS Privilege with Inverse Groups

14-10 Oracle Label Security Administrator’s Guide

4. The user label must have write access on all of the compartments in the data
label.

Note that if the data label is null or invalid, then the user is denied access.

Figure 14–2 Write Access Label Evaluation with Inverse Groups

Algorithms for COMPACCESS Privilege with Inverse Groups
This section describes the algorithms for read and write access with inverse groups,
for users who have COMPACCESS privilege.

The COMPACCESS privilege allows a user to access data based on the row's
compartments, independent of the row's groups.

Note: This flow diagram is true only when the user has no special
privileges.

See Also: "The Oracle Label Security Algorithm for Write Access"
on page 3-13

No
Access

 Access

Data level
=< user
level?

Data level
=> user min

level?

User
has groups?

Data
has

compartments?

Data has all
groups in user

label?

N NN N

Y YYYYY

Data
has

groups?

User's max_write
groups is superset

of datalabel?

Users has all
compartments

with write
access?

N

Y

N

N

Y

N

Algorithms for COMPACCESS Privilege with Inverse Groups

Releasability Using Inverse Groups 14-11

■ When compartments exist, and access to them is authorized, then the group
authorization is bypassed.

■ If a row has no compartments, then access is determined by the inverse group
authorizations.

Figure 14–3 and Figure 14–4 show the label evaluation process for read access and
write access for a user with COMPACCESS privilege. If the data label is null or
invalid, then the user is denied access.

(Note that the current session label is the label being evaluated.)

Figure 14–3 Read Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

No
Access

 Access

Data
level =< user

level?

User has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N

Y

N N
Data has all

groups in user
label?

Data has
compartments?

Session Labels and Inverse Groups

14-12 Oracle Label Security Administrator’s Guide

Figure 14–4 Write Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

Session Labels and Inverse Groups
This section describes how inverse groups affect session labels and row labels.

■ Setting Initial Session/Row Labels for Standard or Inverse Groups

■ Setting Current Session/Row Labels for Standard or Inverse Groups

■ Examples of Session Labels and Inverse Groups

Setting Initial Session/Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of Oracle Label Security procedures
that determine the session label. The SA_USER_ADMIN.SET_DEFAULT_LABEL
and SA_USER_ADMIN.SET_ROW_LABEL procedures set the user's initial session
label and row label, respectively, to the one specified.

No
Access

 Access

Data level
=< user
level?

Data level
=> user min

level?

User
has groups?

Data
has

compartments?

Data has all
groups in user

label?

N N N

Y YYYYY

Data
has

groups?

User's max_write
data has groups

is super
compartments?
Set of groups in

data label?

Users has all
compartments

with write
access?

Y

N N N

N

Y N

N

Data has
compartments?Y

Session Labels and Inverse Groups

Releasability Using Inverse Groups 14-13

Standard Groups: Rules for Changing Initial Session/Row Labels
A user's default session label can be changed using SA_USER_ADMIN.SET_
DEFAULT_LABEL. In the case of standard groups, the default session label can be
set to include any groups in the authorized list, as long as the current default row
label will still be dominated by the new write label. That is, the row label will have
the same or fewer standard groups than the new write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Inverse Groups: Rules for Changing Initial Session/Row Labels
In the case of inverse groups, the default session label can be set to include any
groups in the authorized list, as long as the current default row label will still be
dominated by the new write label. That is, the row label will have the same or more
inverse groups than the new write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Setting Current Session/Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and
SA_SESSION.SET_ROW_LABEL procedures, which can be used to set the user's
current session label and row label, respectively.

Standard Groups: Rules for Changing Current Session/Row Labels
With standard groups, the SA_SESSION.SET_LABEL procedure can be used to set
the session label to include any groups in the user's authorized group list.
(Subgroups of authorized groups are implicitly included in the authorized list.)
Note that if you change the session label, this may affect the value of the session's
row label.

Use the SET_ROW_LABEL procedure to set the row label value for the current
database session. The compartments and groups in the label must be a subset of
compartments and groups in the session label to which the user has write access.

See Also: "SA_USER_ADMIN.SET_DEFAULT_LABEL" on
page 7-12

"SA_USER_ADMIN.SET_ROW_LABEL" on page 7-13

"Dominance Rules for Labels with Inverse Groups" on page 14-24

Session Labels and Inverse Groups

14-14 Oracle Label Security Administrator’s Guide

Inverse Groups: Rules for Changing Current Session/Row Labels
With inverse groups, the addition of groups to the session label decreases a user's
ability to access sensitive data with fewer groups. The removal of groups enables
him to access more sensitive information. The user should thus be allowed to add
groups to the session label, as long as Max Read Groups is a subset of the groups in
the session label, and Max Write Groups is a superset of groups in the session label.
The same restriction applies when a user removes groups from his session label.

Note that there are no subgroups of authorized groups when using inverse groups.
This is because parent groups are not allowed in policies using inverse groups.

Use the SET_ROW_LABEL procedure to set the row label value for the current
database session. The compartments in the label must be a subset of compartments
in the session label to which the user has write access.

The user is allowed to add inverse groups to the row label, as long as the session
label inverse groups are a subset of the row label inverse groups, and Max Write
Groups is a superset of inverse groups in the row label.

For example:

■ If the user has the inverse groups UK, US as his Max Read Groups, and
UK,US,CAN as his Max Write Groups. He can set his session label to
C:ALPHA:UK,US,CAN but not to C:ALPHA:UK.

■ If the user has the inverse group UK as his Max Read Groups, and UK,CAN as
his Max Write Groups.assigned to him. He can set his session label to
C:ALPHA:UK,CAN but cannot change it to either C:ALPHA or
C:ALPHA:UK,US,CAN.

Examples of Session Labels and Inverse Groups
This section presents examples to illustrate the use of inverse groups.

Inverse Groups Example 1
Consider a User1, of a policy implementing inverse groups, with the following
labels:

See Also: "Changing the Session Label with SA_SESSION.SET_
LABEL" on page 4-19

"Changing the Row Label with SA_SESSION.SET_ROW_LABEL"
on page 4-20

Session Labels and Inverse Groups

Releasability Using Inverse Groups 14-15

The following conclusions can be drawn:

■ User1 can update data with label SE:ALPHA:G1,G2 as well as data with label
SE:ALPHA:G1,G2,G3. User1 cannot, however, update label SE:ALPHA:G1.

If standard groups were being used, rather than inverse groups, then User1
could update data with label SE:ALPHA:G1.

■ Data that User1 inserts has the label SE:ALPHA:G1,G2. (This is the same as
with standard groups.)

■ If User1 leaves the default label as is, and sets his row label to
SE:ALPHA:G1,G2,G3, then he will insert SE:ALPHA:G1,G2,G3 in new rows of
data he writes. (In standard groups, he can never set more groups in the row
label than in the default label.)

Inverse Groups Example 2
Consider a User01, of a policy implementing inverse groups, with the following
labels:

Table 14–6 Labels for Inverse Groups Example 1

Name Definition

Max Read Label SE:ALPHA,BETA:G1,G2

Max Write Label SE:ALPHA:G1,G2,G3

Default Read Label SE:ALPHA,BETA:G1,G2

Default Write Label SE:ALPHA:G1,G2

Default Row Label SE:ALPHA:G1,G2

From which the following values are derived:

Max Read Groups G1,G2

Max Write Groups G1,G2,G3

Table 14–7 Labels for Inverse Groups Example 2

Name Definition

Max Read Label C:ALPHA:

Max Write Label C:ALPHA:G1,G2,G3

Changes in Behavior of Procedures with Inverse Groups

14-16 Oracle Label Security Administrator’s Guide

The following conclusions can be drawn:

■ User01 can update any data with level C, compartment ALPHA, and any
combination of groups G1, G2, G3, or no groups. He inserts the label C:ALPHA:
in new data he writes.

■ User02, who has Max Read Groups of G1,G2 or G1,G3, and so on, will not be
able to view the data written by User01. This is because User01's Default Row
Label contains no groups.

■ User01 can choose to set inverse groups in his row label, as long as the inverse
groups in the session label dominates the row label (that is, his session label
contains the same or fewer groups than contained in the row label).

This is true because the row label must have at least the groups in the session
label, and can at most have the Maximum Write Groups. If the session label is
G1, then you can set the groups in the row label from G1 to the Max Write
Groups (G1,G2,G3).

■ If User01 sets his session label and row label to C:ALPHA:G1:G2:G3, then his
data becomes accessible to anyone who has any combination of G1,G2,G3 in his
Max Read Groups.

Changes in Behavior of Procedures with Inverse Groups
When the INVERSE_GROUP option is specified at the time the policy is created, a
change occurs in the algorithms that determine the read and write access of the user
to labeled data. This section describes how inverse groups affect the behavior of the
following procedures:

Default Read Label C:ALPHA:

Default Write Label C:ALPHA:

Default Row Label C:ALPHA:

From which the following values are derived:

Max Read Groups (an empty set)

Max Write Groups G1,G2,G3

See Also: "Computed Session Labels" on page 3-8

Table 14–7 Labels for Inverse Groups Example 2 (Cont.)

Name Definition

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 14-17

■ SYSDBA.CREATE_POLICY with Inverse Groups

■ SYSDBA.ALTER_POLICY with Inverse Groups

■ SA_USER_ADMIN.ADD_GROUPS with Inverse Groups

■ SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups

■ SA_USER_ADMIN.SET_GROUPS with Inverse Groups

■ SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups

■ SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups

■ SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups

■ SA_COMPONENTS.CREATE_GROUP with Inverse Groups

■ SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups

■ SA_SESSION.SET_LABEL with Inverse Groups

■ SA_SESSION.SET_ROW_LABEL with Inverse Groups

■ LEAST_UBOUND with Inverse Groups

■ GREATEST_LBOUND with Inverse Groups

SYSDBA.CREATE_POLICY with Inverse Groups
The CREATE_POLICY procedure under the SYSDBA package creates the policy,
defines an optional policy-specific column name, and specifies a set of default
policy options. With inverse group support the user has one more policy
enforcement option, INVERSE_GROUP. For example:

PROCEDURE CREATE_POLICY (
 HR IN VARCHAR2,
 SA_LABEL IN VARCHAR2 DEFAULT NULL,
 INVERSE_GROUP IN VARCHAR2 DEFAULT NULL);

See Also: "Creating a Policy with SA_SYSDBA.CREATE_
POLICY" on page 6-9

"Overview of Policy Enforcement Options" on page 8-2

Changes in Behavior of Procedures with Inverse Groups

14-18 Oracle Label Security Administrator’s Guide

SYSDBA.ALTER_POLICY with Inverse Groups
The ALTER_POLICY procedure under the SYSDBA package enables you to change
a policy's default enforcement options, except for the INVERSE_GROUP option.
Once a policy is configured for inverse groups, it cannot be changed.

SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The ADD_GROUPS procedure adds groups to a user, indicating whether the
groups are authorized for write as well as read.

 The type of access authorized depends on the access_mode parameter.

See Also: "Modifying Policy Options with SA_SYSDBA.ALTER_
POLICY" on page 6-10

See Also: Syntax for SA_USER_ADMIN.ADD_GROUPS on
page 7-8.

Table 14–8 Access Authorized by Values of access_mode Parameter

Access_Mode Parameter Meaning

READ_WRITE Indicates that write is authorized. (That is, the group is
contained in both Max Read Groups and Max Write Groups.)

WRITE_ONLY Indicates that the group is contained in Max Write Groups
and not in Max Read Groups

access_mode If access_mode is set to READ_WRITE, the group is added to
both Max Read Groups and Max Write Groups.

If access_mode is set to SA_UTL.WRITE_ONLY, the group is
added only to the Max Write Groups.

If access_mode is NULL, it is set to SA_UTL.READ_WRITE.

 in_def Specifies whether these groups should be in the default groups
(Y/N).

If in_def is NULL, then it will be set to Y or N as follows:

If access mode is READ_WRITE, in_def is set to Y.

If access mode is WRITE_ONLY, in_def is set to N.

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 14-19

Note that if in_def is Y in a row, then in_row must also be set to Y, but not vice
versa.

The same is the case with the in_row field.

SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The ALTER_GROUPS procedure changes the write access, the default label
indicator, and/or the row label indicator for each of the groups in the list.

The behavior of inverse groups is the same as described in the case of ADD_
GROUPS.

SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SET_GROUPS procedure assigns groups to a user and identifies default values
for the user's session label and row label.

Inverse groups are handled differently from standard groups, as follows:

 in_row Specifies whether these groups should be in the row label
(Y/N), using the identical criteria as for in_def.

However, if in_def is Y, then in_row must also be Y.

See Also: "Inverse Groups and Computed Max Read Groups and
Max Write Groups" on page 14-6

See Also: Syntax for SA_USER_ADMIN.ALTER_GROUPS on
page 7-9.

See Also: Syntax for SA_USER_ADMIN.SET_GROUPS on
page 7-4.

Table 14–9 Assigning Groups to a User

Group Set Name Meaning

read_groups A comma-separated list of groups that would be Max Read
Groups

Table 14–8 Access Authorized by Values of access_mode Parameter (Cont.)

Access_Mode Parameter Meaning

Changes in Behavior of Procedures with Inverse Groups

14-20 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SET_USER_LABELS procedure sets the user's levels, compartments, and
groups using a set of labels, instead of the individual components.

Inverse groups are handled differently from standard groups, as follows:

write_groups A comma-separated list of groups that would be Max Write
Groups. It must be a superset of read_groups.

If write_groups is NULL, they are set to the read_groups.

def_groups Specifies the default groups. It should at least have the read_
groups and write_groups should be a superset of def_groups.

If def_groups is NULL, they are set to the read_groups.

row_groups Specifies the row groups. It should at least have the def_groups
and should be a subset of max write groups.

If row_groups is NULL, they are set to the def_groups, since
for inverse groups, all the def_groups are also in write_groups.

See Also: Syntax for SA_USER_ADMIN.SET_USER_LABELS on
page 7-11.

Table 14–10 Inverse Group Label Definitions

Name Definition

max_read_label Specifies the label string to be used to initialize the user's
maximum authorized read label. Composed of the user's
maximum level, compartments authorized for read access, and
if inverse groups, minimum set of groups that can be set in
any label.(Max Read Groups)

Table 14–9 Assigning Groups to a User (Cont.)

Group Set Name Meaning

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 14-21

SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SET_DEFAULT_LABEL procedure sets the user's initial session label to the one
specified.

All the rules mentioned for setting inverse groups component of session label
mentioned in "Session Labels and Inverse Groups" are applicable here.

max_write_label Specifies the label string to be used to initialize the user's
maximum authorized write label. Composed of the user's
maximum level, compartments authorized for write access,
and if inverse groups, the maximum authorized groups that
can be set in any label (Max Write Groups). All the inverse
groups in this have write authorization also. It should be a
superset of groups in max_read_label. If the max_write_label
is not specified, it is set to max_read_label.

def_label Specifies the label string to be used to initialize the user's
session label, including level, compartments, and groups (a
subset of max_read_label). If the default_label is not specified,
it is set to the max_read_label. For inverse groups, component
it should at least have the groups in max_read_label, and
groups in max_write_label should be a superset of the groups
in the def_label.

row_label Specifies the label string to be used to initialize the program's
row label. Includes levels, compartments, and groups: subsets
of max_write_label and def_label. If row_label is not specified,
it is set to the def_label, with only the compartments and
groups authorized for write access. The inverse groups
component is set to same as that in def_label if the row_label is
not specified. The inverse groups in row label should at least
be those in default label and should be a subset of Max Write
Groups.

See Also: Syntax for SA_USER_ADMIN.SET_DEFAULT_LABEL
on page 7-12.

Table 14–10 Inverse Group Label Definitions (Cont.)

Name Definition

Changes in Behavior of Procedures with Inverse Groups

14-22 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
Use the SET_ROW_LABEL procedure to set the user's initial row label to the one
specified.

When specifying the row_label, the inverse groups component must contain at least
all the inverse groups in def_label and should be a subset of Max Write Groups.

SA_COMPONENTS.CREATE_GROUP with Inverse Groups
Use the CREATE_GROUP procedure to create a group and specify its short name
and long name, and optionally a parent group.

With inverse groups the parent_name field should always be NULL. If the user
specifies a value for this field, then an error message is displayed, indicating that
the group hierarchy is disabled.

SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
This function is disabled for policies with the inverse group option. An error
message is displayed if the user invokes this function.

SA_SESSION.SET_LABEL with Inverse Groups
Use the SET_LABEL procedure to set the label of the current database session.

For the current user, this procedure follows the same rules for setting the session
label as does the sa_user_admin.set_user_label function.

See Also: Syntax for SA_USER_ADMIN.SET_ROW_LABEL on
page 7-13.

See Also: "Setting Initial Session/Row Labels for Standard or
Inverse Groups" on page 14-12

See Also: Syntax for Creating a Group with SA_
COMPONENTS.CREATE_GROUP on page 6-17.

See Also: Syntax for Modifying a Group with SA_
COMPONENTS.ALTER_GROUP on page 6-17.

See Also: Syntax for Changing the Session Label with SA_
SESSION.SET_LABEL on page 4-19.

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 14-23

 SA_SESSION.SET_ROW_LABEL with Inverse Groups
Use the SET_ROW_LABEL procedure to set the default row label value for the
current database session.

For the current user, this procedure follows the same rules for setting the row label
as does the sa_user_admin.set_row_label function.

LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the
least upper bound of label1 and label2: that is, the one label that dominates both.

With standard groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the union of the groups in the labels.

With inverse groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the intersection of the inverse groups in the labels.

For example, with inverse groups the least upper bound of HIGHLY_
SENSITIVE:ALPHA:G1,G2 and SENSITIVE:BETA:G1 is HIGHLY_
SENSITIVE:ALPHA,BETA:G1

GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function can be used to determine the lowest
label of the data that can be involved in an operation, given two different labels. It
returns a character string label that is the greatest lower bound of label1 and label2.

With standard groups, the greatest lower bound is the lowest level, and the
intersection of the compartments in the labels and the groups in the labels.

With inverse groups, the greatest lower bound is the lowest level, and the intersection
of the compartments in the labels and the union of inverse groups in the labels.

See Also: "Setting Current Session/Row Labels for Standard or
Inverse Groups" on page 14-13

See Also: Syntax for Changing the Row Label with SA_
SESSION.SET_ROW_LABEL on page 4-20.

See Also: "Setting Initial Session/Row Labels for Standard or
Inverse Groups" on page 14-12

Dominance Rules for Labels with Inverse Groups

14-24 Oracle Label Security Administrator’s Guide

For example, with inverse groups the greatest lower bound of HIGHLY_
SENSITIVE:ALPHA:G1,G3 and SENSITIVE::G1 is SENSITIVE:G1,G3

Dominance Rules for Labels with Inverse Groups
Dominance rules for Oracle Label Security with standard groups can be
summarized as follows:

A user label dominates a data label if:

■ User level is greater than or equal to the data level

■ User compartments are a superset of the data compartments

■ User groups intersects (has at least one group from) the data groups

Dominance rules for Oracle Label Security with inverse groups can be summarized
as follows:

A user label dominates a data label if:

■ User level is greater than or equal to the data level

■ User compartments are a superset of the data compartments

■ Data groups are a superset of user groups

See: "Determining Upper and Lower Bounds of Labels" on
page 4-11

See Also: "Dominant and Dominated Labels" on page A-1

Part IV
Appendices

You should provide introductory text to introduce and a list of the chapters
included in the parts of your book. If you do not, users arrive at an empty HTML
page. Insert the list of chapters using cross-references so they are links in HTML.

This part contains the following chapter:

■ Appendix A, "Advanced Topics in Oracle Label Security"

■ Appendix B, "Command-line Tools for Label Security Using Oracle Internet
Directory"

■ Appendix C, "Reference"

Advanced Topics in Oracle Label Security A-1

A
Advanced Topics in Oracle Label Security

This appendix covers topics of interest to advanced users of Oracle Label Security.
It contains these sections:

■ Analyzing the Relationships Between Labels

■ OCI Interface for Setting Session Labels

Analyzing the Relationships Between Labels
This section describes relationships between labels. It contains these topics:

■ Dominant and Dominated Labels

■ Non-Comparable Labels

■ Using Dominance Functions

Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance. A user's
ability to access an object depends on whether the user's label dominates the label of
the object. If a user's label does not dominate the object's label, the user is not
allowed to access the object.

Label dominance is analyzed in terms of all its components: levels, compartments,
and groups.

Table A–1 Dominance in the Comparison of Labels

Factor Criteria for Dominance

Level For label1 to dominate label2, the level of label1 must be greater
than or equal to that of label2.

Analyzing the Relationships Between Labels

A-2 Oracle Label Security Administrator’s Guide

One label dominates another label if all of its components dominate the components
of the other label. For example, the label HIGHLY_
SENSITIVE:FINANCE,OPERATIONS dominates the label HIGHLY_
SENSITIVE:FINANCE. Similarly, the label HIGHLY_SENSITIVE::WR_AP
dominates the label HIGHLY_SENSITIVE::WR_AP, WR_AR.

Non-Comparable Labels
The relationship between two labels cannot always be defined by dominance. Two
labels are non-comparable if neither label dominates the other. If any compartments
differ between the two labels (as with HS:A and HS:B), then they are
non-comparable. Similarly, the labels HS:A and S:B are non-comparable.

Using Dominance Functions
You can use dominance functions to specify ranges in queries. The following
functions enable you to indicate dominance relationships between specified labels.

Compartment For label1 to dominate label2, the compartments of label1 must
contain all of the compartments of label2.

Group For label1 to dominate label2, label1 must contain at least one of
the groups of label2.

See Also: "Dominance Rules for Labels with Inverse Groups" on
page 14-24

Table A–2 Functions to Determine Dominance

Function Meaning

STRICTLY_DOMINATES The value of label1 dominates that of label2, and is not
equal to it.

DOMINATES The value of label1 dominates, or is equal to, that of
label2.

DOMINATED_BY The value of label1 is dominated by that of label2.

STRICTLY_DOMINATED_BY The value of label1 is dominated by that of label2, and is
not equal to it.

Table A–1 Dominance in the Comparison of Labels

Factor Criteria for Dominance

Analyzing the Relationships Between Labels

Advanced Topics in Oracle Label Security A-3

Note that there are two types of dominance function. Whereas the SA_UTL
dominance functions return BOOLEAN values, the standalone dominance functions
return integers.

■ DOMINATES Standalone Function

■ STRICTLY_DOMINATES Standalone Function

■ DOMINATED_BY Standalone Function

■ STRICTLY_DOMINATED_BY Standalone Function

■ SA_UTL.DOMINATES

■ SA_UTL.STRICTLY_DOMINATES

■ SA_UTL.DOMINATED_BY

■ SA_UTL.STRICTLY_DOMINATED_BY

DOMINATES Standalone Function
The DOMINATES (DOM) function returns 1 (TRUE) if label1 dominates label2, or 0
(FALSE) if it does not.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

STRICTLY_DOMINATES Standalone Function
The STRICTLY_DOMINATES (SDOM) function returns 1 (TRUE) if label1
dominates label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

See Also: "Ordering Labeled Data Rows" on page 4-11

Analyzing the Relationships Between Labels

A-4 Oracle Label Security Administrator’s Guide

DOMINATED_BY Standalone Function
The DOMINATED_BY (DOM_BY) function returns 1 (TRUE) if label1 is dominated
by label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

STRICTLY_DOMINATED_BY Standalone Function
The STRICTLY_DOMINATED_BY (SDOM_BY) function returns 1 (TRUE) if label1 is
dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates
label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-5

SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by
label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is
dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

OCI Interface for Setting Session Labels
When using OCI to connect, the policy's SYS_CONTEXT variables can be used to
initialize the session label and the row label. The variables are set using the
OCIAttrSet function to initialize "externally initialized" SYS_CONTEXT variables.
These are available in Release 8.1.7 only when Oracle Label Security is installed.

Each policy has a SYS_CONTEXT named SA$policy_name_X. There are two
variables that can be set: INITIAL_LABEL and INITIAL_ROW_LABEL.

When set to valid labels within the user's authorizations, the new values will be
used instead of the default values stored for the user. This is the same mechanism
used for remote connections

See Also: Chapter 12, "Using Oracle Label Security with a
Distributed Database"

OCI Interface for Setting Session Labels

A-6 Oracle Label Security Administrator’s Guide

OCIAttrSet
Additional attributes are defined for OCIAttrSet to insert context. Use OCI_ATTR_
APPCTX_SIZE to initialize the context array size with the desired number of
context attributes:

OCIAttrSet(session, OCI_HTYPE_SESSION,
 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

Note that size is ub4 type.

OCIAttrGet
Then call OCIAttrGet with OCI_ATTR_APPCTX_LIST to get a handle on the
application context list descriptor for the session:

OCIAttrGet(session, OCI_HTYPE_SESSION,
 (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Note that ctxl_desc is (OCIParam *) type[

OCIParamGet
Then use the application context list descriptor to obtain an individual descriptor
for the i-th application context:

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, i);

Note that ctx_desc is (OCIParam *) type.

OCIAttrSet
Set the appropriate values in the application context using the three new attributes
OCI_ATTR_APPCTX_NAME, OCI_ATTR_APPCTX_ATTR, and OCI_ATTR_
APPCTX_VALUE:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-7

 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE,
 error_handle);

Note that only character type is supported, because application context operations
are based on VARCHAR2 type.

OCI Example
The following example shows how to use externalized SYS_CONTEXT with Oracle
Label Security.

#ifdef RCSID
static char *RCSid =
 "$Header: ext_mls.c 09-may-00.10:07:08 jdoe Exp $ ";
#endif /* RCSID */

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*

 NAME
ext_mls.c - externalized SYS_CONTEXT with Label Security

 DESCRIPTION
Run olsdemo.sql script before executing this example.
Usage: <executable obtained with .c file> <user_name> <password>
<session-initial-label
Example: avg_sal sa_demo sa_demo L3:M,E:D10

 PUBLIC FUNCTION(S)
<list of external functions declared/defined - with one-line descriptions>

 PRIVATE FUNCTION(S)
<list of static functions defined in .c file - with one-line descriptions>

 RETURNS
The average salary in the EMP table of the SA_DEMO schema querying as the
specified user with the specified session label.

 NOTES
<other useful comments, qualifications, and so on>

 MODIFIED (MM/DD/YY)
jlev 09/18/03 - cleanup
jdoe 05/09/00 - cleanup

OCI Interface for Setting Session Labels

A-8 Oracle Label Security Administrator’s Guide

 jdoe 10/13/99 - standalone OCI program to test MLS SYS_CONTEXT
 jdoe 10/13/99 - Creation

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

/* get and print error */
static void checkerr(/*_OCIError *errhp, sword status _*/);
/* print error */
static void printerr(char *call);
static sword status;

/* return the average of employees' salary */
static CONST text *const selectstmt = (text *)
 "select avg(sal) from sa_demo.emp";

int main(argc, argv)
int argc;
char *argv[];
{
 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 dvoid *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;
 OCIStmt *stmtp = (OCIStmt *) 0;
 ub4 avg_sal = 0;
 sword status;

 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *) 0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0))
 printerr("OCIInitialize");

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-9

 if (OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0))
 printerr("OCIEnvInit");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_ERROR");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SERVER");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SVCCTX");

 if (OCIServerAttach(srvhp, errhp, (text *) "", strlen(""), 0))
 printerr("OCIServerAttach");

 /* set attribute server context in the service context */
 if (OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp))
 printerr("OCIAttrSet:OCI_HTYPE_SVCCTX");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SESSION");

 /* set application context to 1 */
 ctxsize = 1;

 /* set up app ctx buffer */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) &ctxsize,
 (ub4) 0, (ub4) OCI_ATTR_APPCTX_SIZE, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_SIZE");

 /* retrieve the list descriptor */
 if (OCIAttrGet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp))
 printerr("OCIAttrGet:OCI_ATTR_APPCTX_LIST");

 if (status = OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp,
 (dvoid **) &ctxedesc, 1))
 {
 if (status == OCI_NO_DATA)

OCI Interface for Setting Session Labels

A-10 Oracle Label Security Administrator’s Guide

 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 /* set context namespace to SA$<pol_name>_X */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "SA$HUMAN_RESOURCES_X",
 (ub4) strlen((char *) "SA$HUMAN_RESOURCES_X"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_NAME:SA$HUMAN_RESOURCES_X");

 /* set context attribute to INITIAL_LABEL */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "INITIAL_LABEL",
 (ub4) strlen((char *) "INITIAL_LABEL"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp))
 printerr("OCIAttrSet:OCI_DTYPE_PARAM:INITIAL_LABEL");

 /* set context value to argv[3] - initial label */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) argv[3],
 (ub4) strlen((char *) argv[3]),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp))
 printerr("OCIAttrSet:argv[3]");

 /* username first command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[1],
 (ub4) strlen((char *) argv[1]), (ub4) OCI_ATTR_USERNAME,
 errhp))
 printerr("OCIAttrSet:username");

 /* password second command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[2],
 (ub4) strlen((char *) argv[2]), (ub4) OCI_ATTR_PASSWORD,
 errhp))
 printerr("OCIAttrSet:password");

 if (OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
 printerr("OCISessionBegin");

 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 printerr("OCIAttrSet:OCI_ATTR_SESSION");

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-11

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmtp, OCI_HTYPE_STMT,
 0, 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_STMT");

 if (OCIStmtPrepare(stmtp, errhp, (CONST OraText *) selectstmt,
 (ub4) strlen((const char *) selectstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 printerr("OCIStmtPrepare");

 if (OCIDefineByPos(stmtp, &defnp, errhp, (ub4) 1, (dvoid *) &avg_sal,
 (sb4) sizeof(avg_sal), SQLT_INT, 0, 0, 0, OCI_DEFAULT))
 printerr("OCIDefineByPos");

 if (status = OCIStmtExecute(svchp, stmtp, errhp, 1, 0, NULL, NULL,
 OCI_DEFAULT))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 if (OCISessionEnd(svchp, errhp, authp, OCI_DEFAULT))
 printerr("OCISessionEnd");

 printf("average salary is: %d\n", avg_sal);
}

void checkerr(errhp, status)
 OCIError *errhp;
 sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *) errhp, 1, NULL, &errcode, errbuf,
 (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 printf("Error - %.*s\n", 512, errbuf);
 break;
 default:

OCI Interface for Setting Session Labels

A-12 Oracle Label Security Administrator’s Guide

 break;
 }
}

void printerr(call)
 char *call;
{
 printf("Error: %s\n", call);
}
/* end of file ext_mls.c */

Command-line Tools for Label Security Using Oracle Internet Directory B-1

B
Command-line Tools for Label Security

Using Oracle Internet Directory

When Oracle Label Security is used with Oracle Internet Directory, security
administrators must use certain commands to create and alter label security
attributes stored in the directory.

This Appendix describes these commands and the parameters they require. They
perform updates, inserts and deletes of entries in the directory and are
implemented through a script named "olsadmintool", which you invoke from
$ORACLE_HOME/bin/olsadmintool. This Appendix contains the sections and
tables listed below.

■ Table B–1 lists all the commands, in categories, with links to their explanations.
Some of these commands replace PL/SQL procedures (indicated in Table B–1)
that are used for the indicated purposes when Oracle Label Security is used
without Oracle Internet Directory. Sites already using Oracle Label Security that
add Oracle Internet Directory must replace the use of those PL/SQL procedures
by switching to use these new commands instead.

■ Table B–2 then lists the commands alphabetically, with links to their
explanations.

■ Command Explanations, after Table B–2, provides the individual explanations
and examples of the commands and their parameters, in alphabetical order.

■ Relating Parameters to Commands for olsadmintool follows Table B–2 with
Summaries in Table B–3 and Table B–4. These tables present summaries of the
commands' use of parameters by listing the commands and their parameters in
tabular format, enabling you to see patterns of parameter usage.

■ Table B–5 then gives a detailed explanation for each parameter, in alphabetical
order, and lists the commands in which it is used.

B-2 Oracle Label Security Administrator’s Guide

■ Examples of Using olsadmintool shows typical uses of the tool and the results
of the specific examples shown.

Table B–1 Oracle Label Security Commands in Categories

Command
Category

Purpose of
Command Command Replaces PL/SQL Statement

Policies Create Policy olsadmintool createpolicy SA_SYSDBA.CREATE_POLICY

Alter a Level olsadmintool alterpolicy SA_SYSDBA.ALTER_POLICY

Drop a Policy olsadmintool droppolicy SA_SYSDBA.DROP_POLICY

Add Policy
Creator

olsadmintool
addpolcreator

None; new

Drop Policy
Creator

olsadmintool
droppolcreator

None; new

Levels in a
Policy Create a Level olsadmintool createlevel SA_COMPONENTS.CREATE_LEVEL

Alter a Level olsadmintool alterlevel SA_COMPONENTS.ALTER_LEVEL

Drop a Level olsadmintool droplevel SA_COMPONENTS.DROP_LEVEL

Groups in a
Policy Create a Group olsadmintool creategroup SA_COMPONENTS.CREATE_GROUP

Alter a Group olsadmintool altergroup SA_COMPONENTS.ALTER_GROUP

(also a group
parent)

SA_COMPONENTS.ALTER_GROUP_PARENT

Drop a Group olsadmintool dropgroup SA_COMPONENTS.DROP_GROUP

Compartments
in a Policy Create a

Compartment
olsadmintool
createcompartment

SA_COMPONENTS.CREATE_COMPARTMENT

Alter a
Compartment

olsadmintool
altercompartment

SA_COMPONENTS.ALTER_COMPARTMENT

Drop a
Compartment

olsadmintool
dropcompartment

SA_COMPONENTS.DROP_COMPARTMENT

Data Labels

Create a Label olsadmintool createlabel SA_LABEL_ADMIN.CREATE_LABEL

Alter a Label olsadmintool alterlabel SA_LABEL_ADMIN.ALTER_LABEL

Command-line Tools for Label Security Using Oracle Internet Directory B-3

Drop a Label olsadmintool droplabel SA_LABEL_ADMIN.DROP_LABEL

Users

Add a User to a
Profile

olsadmintool adduser None; new

Drop a User olsadmintool dropuser SA_USER_ADMIN.DROP_USER_ACCESS

Profiles

Create a Profile olsadmintool
createprofile

Replaces the use of several methods. 1

List Profiles olsadmintool listprofile None; new

Describe a
Profile

olsadmintool
describeprofile

None; new

Drop a Profile olsadmintool dropprofile None; new

Policy
Administrators Drop Policy

Administrator
olsadmintool addadmin None; new.

Drop Policy
Administrator

olsadmintool dropadmin None; new.

Policy Access

Set Audit
Options

olsadmintool addpolaccess None; new.

Relating
Parameters to
Commands for
olsadmintool

olsadmintool
droppolaccess

None; new.

Auditing

Set Audit
Options

olsadmintool audit SA_AUDIT_ADMIN.AUDIT

olsadmintool noaudit SA_AUDIT_ADMIN.NOAUDIT

Help

Get Help for
olsadmintool

olsadmintool command
--help

None; new

1 Replaces several methods in SA_USER_ADMIN: SET_LEVELS, SET_USER_PRIVILEGES, and SET_DEFAULT_LABEL

Table B–1 Oracle Label Security Commands in Categories (Cont.)

Command
Category

Purpose of
Command Command Replaces PL/SQL Statement

B-4 Oracle Label Security Administrator’s Guide

Table B–2 olsadmintool Commands Linked to Their Explanations

Purpose of Command
(Links in Alphabetical Order) Command

Add a User to a Profile olsadmintool adduser

Add Policy Administrators olsadmintool addadmin

Add Policy Creator olsadmintool addpolcreator

Alter a Compartment olsadmintool altercompartment

Alter a Group olsadmintool altergroup

Alter a Label olsadmintool alterlabel

Alter a Level olsadmintool alterlevel

Alter a Level olsadmintool alterpolicy

Cancel Audit Options olsadmintool noaudit

Create a Compartment olsadmintool createcompartment

Create a Group olsadmintool creategroup

Create a Label olsadmintool createlabel

Create a Level olsadmintool createlevel

Create a Profile olsadmintool createprofile

Create Policy olsadmintool createpolicy

Describe a Profile olsadmintool describeprofile

Drop a Compartment olsadmintool dropcompartment

Drop a Group olsadmintool dropgroup

Drop a Label olsadmintool droplabel

Drop a Level olsadmintool droplevel

Drop a Policy olsadmintool droppolicy

Drop a Profile olsadmintool dropprofile

Drop a User olsadmintool dropuser

Drop Policy Administrator olsadmintool dropadmin

Drop Policy Creator olsadmintool droppolcreator

Get Help for an olsadmintool
Command

olsadmintool <command name> --help

Command Explanations

Command-line Tools for Label Security Using Oracle Internet Directory B-5

Command Explanations
In the command explanations that follow, some parameters are optional, which is
indicated by enclosing such a parameter within square brackets. The two most
common examples are [-b <admin context>] and [-p <port>], indicating that it is
optional to specify either the administrative context for the command or the port
through which to connect to Oracle Internet Directory. (Default port is 389.)

The use of two dashes (--, no space) is required for all parameters other than b, h, p,
D, and w, which are preceded by a single dash. The double dash indicates the need
to specify the full or long version of the name or parameter being used.

Each command appears in this listing on multiple lines for readability, but in reality
would be issued as a single long string on the command line.

Add a User to a Profile
olsadmintool adduser --polname <policy name> --profname <profilename> --userdn
<enterprise user DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the adduser command Use the adduser command to add an
enterprise user to a profile within a policy. Provide the profile and policy names and
the user DN.1

Example of the adduser command

olsadmintool adduser --polname tradesecret --profname topsales --userdn
'cn=perot'
-b 'cn=EDS' -h ford -p 1890 -D cn=lbacsys -w lbacsyspwrd

List Profiles olsadmintool listprofile

Set Audit Options olsadmintool audit

1 Command Footnote
Every command must include the directory hostname, the bind DN, and the bind password.

Any command may, as needed, also supply the subscriber admin- istrative context
(optional), the directory port number (also optional), or both. See also Table B–3,
"Summary: olsadmintool Command Parameters" for additional details on these
parameters.

Table B–2 olsadmintool Commands Linked to Their Explanations (Cont.)

Purpose of Command
(Links in Alphabetical Order) Command

Command Explanations

B-6 Oracle Label Security Administrator’s Guide

Add Policy Administrators
olsadmintool addadmin --polname <policy name> --admindn <admin DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the addadmin command Use the addadmin command to add an
enterprise user to the administrative group for a policy, so that s/he is able to create,
modify or delete the specified policy's metadata. Provide the policy name and the
new administrator's DN. Command Footnote

Example of the addadmin command
olsadmintool addadmin --polname defense --admindn 'cn=scott,c=us'
-h yippee -D cn=lbacsys -w lbacsys

Add Policy Creator
olsadmintool addpolcreator --userdn <user DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the addpolcreator command Use the addpolcreator command to
enable the specified user to create policies. Provide the DN for the user. Command

Footnote

Example of the addpolcreator command
olsadmintool addpolcreator --userdn 'cn=scott' -h yippee -D cn=lbacsys -w
lbacsys

Alter a Compartment
olsadmintool altercompartment --polname <policy name> --shortname <short
compartment name> --longname <new long compartment name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the altercompartment command Use the altercompartmentcommand
to change the long name of a compartment. Provide the name of the policy, the
short name of the compartment, and the new long name of the compartment.
Command Footnote

See Also: Please refer to the Oracle Advanced Security
Administrator's Guide, Chapter 13, Administering Enterprise User
Security, for further concepts, tools, steps, and procedures.

Command Explanations

Command-line Tools for Label Security Using Oracle Internet Directory B-7

Example of the altercompartment command
olsadmintool altercompartment --polname defense --shortname A --longname 'Allied
Forces' -h yippee -D cn=defense_admin -w welcome1

Alter a Group
olsadmintool altergroup --polname <policy name> --shortname <short group name>
--longname <new long group name> [--parentname <new short group name>]
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the altergroup command Use the altergroup command to change
the long name for a group component or parent group. Provide the name of the
policy, the short name of the group, the long name of the group, and optionally the
short name for the parent group. Command Footnote

Example of the altergroup command
olsadmintool altergroup --polname defense --shortname US --longname 'United
States of America' --parentname 'Earth' -h yippee -D cn=defense_admin -w
welcome1

Alter a Label
olsadmintool alterlabel --polname <policy name> --tag <tag number> --value <new
label value>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the alterlabel command Use the alterlabel command to change
the character string defining the label associated with a label tag. Provide the policy
name, the numeric tag of the label, and the new character string representing the
label. Command Footnote

Example of the alterlabel command
olsadmintool alterlabel --polname defense --tag 100 --value 'TS:A:US' -h yippee
-D cn=defense_admin -w welcome1

Alter a Level
olsadmintool alterlevel --polname <policy name> --shortname <short level name>
--longname <new long level name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Command Explanations

B-8 Oracle Label Security Administrator’s Guide

Description of the alterlevel command Use the alterlevel command to change
the long name of a level. Provide the name of the policy, the short name of the level,
and the new long name of the level. Command Footnote

Example of the alterlevel command
olsadmintool alterlevel --polname defense --shortname TS
--longname 'VERY TOP SECRET' -h yippee -D cn=defense_admin -w welcome1

Alter Policy
olsadmintool alterpolicy --name <policy name> --options <new options>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the alterpolicy command Use the alterpolicy command to alter
the options of a policy. Provide the name of the policy and the new options. Command

Footnote

Example of the alterpolicy command
olsadmintool alterpolicy --name defense --options 'READ_CONTROL,INSERT_CONTROL'
-h yippee -D cn=defense_admin -w welcome1

Cancel Audit Options
olsadmintool noaudit --polname <policy name> --options <audit option name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of noaudit command Use the noaudit command to cancel the audit
options for a policy. Provide the policy name and the options that are no longer to
be audited. Command Footnote

Example of the noaudit command
olsadmintool noaudit --polname defense --options 'APPLY,PRIVILEGES'
-h yippee -D cn=defense_admin -w welcome1

Create a Compartment
olsadmintool createcompartment --polname <policy name> --tag <tag number>
--shortname <short compartment name> --longname <long compartment name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Command Explanations

Command-line Tools for Label Security Using Oracle Internet Directory B-9

Description of the createcompartment command Use the createcompartment
command to create a new compartment component. Provide the name of the policy,
the tag numeric value of the compartment, the short name of the compartment, and
the long name of the compartment. Command Footnote

Example of the createcompartment command
olsadmintool createcompartment --polname defense --tag 100 --shortname A
--longname Alpha -h yippee -D cn=defense_admin -w welcome1

Create a Group
olsadmintool creategroup --polname <policy name> --tag <tag number> --shortname
<short group name> --longname <long group name>
[--parentname <parent group name>]
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the creategroup command Use the creategroup command to create
a new group component. Provide the name of the policy, the tag numeric value of
the group, the short name of the group, the long name of the group, and the parent
group name (optional). Command Footnote

Example of the creategroup command
olsadmintool creategroup --polname defense --tag 55 --shortname US
--longname 'United States' -h yippee -D cn=defense_admin -w welcome1

Create a Label
olsadmintool createlabel --polname <policy name> --tag <tag number> --value
<label value>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the createlabel command Use the createlabel command to create
a valid data label. Provide the policy name, the numeric tag of the label to be
created, and the character string representation of the label.Command Footnote

Example of the createlabel command
olsadmintool createlabel --polname defense --tag 100 --value 'TS:A,B:US,CA'
-h yippee -D cn=defense_admin -w welcome1

Command Explanations

B-10 Oracle Label Security Administrator’s Guide

Create a Level
olsadmintool createlevel --polname <policy name> --tag <tag number> --shortname
<short level name> --longname <long level name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the createlevel command Use the createlevel command to create
a new level component. Provide the name of the policy, the tag numeric value, the
short name of the level, and the long name of the level. Command Footnote

Example of the createlevel command
olsadmintool createlevel --polname defense --tag 100 --shortname TS
--longname 'TOP SECRET' -h yippee -D cn=defense_admin -w welcome1

Create a Profile
olsadmintool createprofile --polname <policy name> --profname <profile name>
--maxreadlabel <max read label> --maxwritelabel <max write label>
--minwritelabel <min write label> --defreadlabel <default read label>
--defrowlabel <default row label> --privileges <privileges separated by comma>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the createprofile command Use the createprofile command to
create a new profile. Provide the policy name, the profile name, and either
privileges, labels, or both privileges and labels. (A user profile can have either null
label information or null privilege information, but not both null at the same time.)
For labels, specify the maximum label users in this profile can use to read data, the
maximum label users in this profile can use to write data, the minimum label users
in this profile can use to write data, the default label for reading, the default row
label for writing. For privileges, enclose in quotes the list of privileges, separated by
commas, for members of this profile. Command Footnote

Example of the createprofile command
olsadmintool createprofile --polname topsecret --profname topsales
--maxreadlabel 'TS:A,B:US,CA' --maxwritelabel 'TS:A,B:US,CA' --minwritelabel
'C:A,B:US,CA' --defreadlabel 'TS:A,B:US,CA' --defrowlabel 'C:A,B:US,CA'
--privileges 'READ,COMPACCESS,WRITEACROSS'
-b EDS -h ford -p 1890 -D cn=lbacsys -w lbacsyspwrd

Create Policy
olsadmintool createpolicy --name <policy name> --colname <column name> --options
<options separated by commas>

Command Explanations

Command-line Tools for Label Security Using Oracle Internet Directory B-11

[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the createpolicy command Use the createpolicy command to
create a policy. Provide the name of the policy, the name of its label column, and the
options. Command Footnote

Example of the createpolicy command
olsadmintool createpolicy --name defense --colname defense_col --options 'READ_
CONTROL,UPDATE_CONTROL' -h yippee -p 389 -D cn=defense_admin -w welcome1

Describe a Profile
olsadmintool describeprofile --polname <policy name> --profname <profile name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the describeprofile command Use the describeprofile command
to see the contents of the specified profile in the specified policy. Provide the policy
name and the name of the profile. Command Footnote

Example of the describeprofile command
olsadmintool describeprofile --polname defense --profname contractors
-h yippee -D cn=defense_admin -w welcome1

Drop a Compartment
olsadmintool dropcompartment --polname <policy name> --shortname <short
compartment name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the dropcompartment command Use the dropcompartment command
to remove a compartment component. Provide the name of the policy and the short
name of the compartment. Command Footnote

Example of the dropcompartment command
olsadmintool dropcompartment --polname defense --shortname A
-h yippee -D cn=defense_admin -w welcome1

Drop a Group
olsadmintool dropgroup --polname <policy name> --shortname <short group name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Command Explanations

B-12 Oracle Label Security Administrator’s Guide

Description of the dropgroup command Use the dropgroup command to remove a
group component. Provide the policy name and the short group name. Command

Footnote

Example of the dropgroup command
olsadmintool dropgroup --polname defense --shortname US
-h yippee -D cn=defense_admin -w welcome1

Drop a Label
olsadmintool droplabel --polname <policy name> --value <label value>
-h yippee [-p <port>] -D <bind DN> -w <bind password>

Description of the droplabel command Use the droplabel command to drop a
label from the policy. Provide the policy name and the string representation of the
label. Command Footnote

Example of the droplabel command
olsadmintool droplabel --polname defense --value 'TS:A:US'
h yippee -D cn=defense_admin -w welcome1

Drop a Level
olsadmintool droplevel --polname <policy name> --shortname <short level name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the droplevel command Use the droplevel command to remove a
level component from a specified policy. Provide the name of the policy and the
short name of the level. Command Footnote

Example of the droplevel command
olsadmintool droplevel --polname defense --shortname TS
-h yippee -D cn=defense_admin -w welcome1

Drop a Policy
olsadmintool droppolicy --name <policy name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the droppolicy command Use the droppolicy command to drop a
policy. Provide the name of the policy to be dropped.Command Footnote For

Command Explanations

Command-line Tools for Label Security Using Oracle Internet Directory B-13

directory-enabled installations of Oracle Label Security, see also Subscribing
Policies in Directory-Enabled Label Security in Chapter 9, "Applying Policies to
Tables and Schemas".

Example of the droppolicy command
olsadmintool droppolicy --name defense -h yippee -D cn=defense_admin -w welcome1

Drop a Profile
olsadmintool dropprofile --polname <policy name> --profname <profile name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the dropprofile command Use the dropprofile command to
remove the specified profile. Provide the policy name and the name of the profile to
be dropped.Command Footnote

Example of the dropprofile command
olsadmintool dropprofile --name defense --profname employees
-h yippee -D cn=defense_admin -w welcome1

Drop a User
olsadmintool dropuser --polname <policy name> --profname <profilename>
--userdn <enterprise user DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the dropuser command Use the dropuser command to drop a user
from the specified profile in the specified policy. Provide the policy name, the name
of the profile, and the DN of the user. Command Footnote

Example of the dropuser command
olsadmintool dropuser --polname defense --profname contractors --userdn
'cn=hanssen,c=us' -h yippee -D cn=defense_admin -w welcome1

Note: Dropping a profile removes the authorization on that policy
for all the users in the dropped profile. They will be unable to see
data protected by that policy.

Command Explanations

B-14 Oracle Label Security Administrator’s Guide

Drop Policy Administrator
olsadmintool dropadmin --polname <policy name> --admindn <admin DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the dropadmin command Use the dropadmin command to remove an
enterprise user from the administrative group of a policy, so that s/he is no longer
able to create, modify or delete the specified policy's metadata. Provide the policy
name and the DN of the administrator to be removed from the administrative
group. Command Footnote

Example of the dropadmin command
olsadmintool dropadmin --polname defense --admindn 'cn=scott,c=us'
-h yippee -D cn=lbacsys -w lbacsys

Drop Policy Creator
olsadmintool droppolcreator --userdn <user DN>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the droppolcreator command Use the droppolcreator command to
cancel the ability of the specified user to create policies. Provide the user's DN.
Command Footnote

Example of the droppolcreator command
olsadmintool droppolcreator --userdn 'cn-scott,c=us'
-b UA -h yippee -p 1890 -D <bind DN> -w <bind password>

Get Help for an olsadmintool Command
olsadmintool <command name> --help

List Profiles
olsadmintool listprofile --polname <policy name>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the listprofile command Use the listprofile command to see a
list of all profiles in a given policy. Provide the policy name. Command Footnote

Example of the listprofile command
olsadmintool listprofile --polname defense -b CIA
-h yippee -D cn=defense_admin -w welcome1

Relating Parameters to Commands for olsadmintool

Command-line Tools for Label Security Using Oracle Internet Directory B-15

Set Audit Options
olsadmintool audit --polname <policy name> --options <audit option name> --type
<audit option type> --success <audit success type>
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Description of the audit command Use the audit command to set the audit
options for a policy. Provide the policy name, the options to be audited, the type of
audit and the type of success to be audited. Command Footnote

Example of the audit command
olsadmintool audit --polname defense --options 'APPLY,PRIVILEGE' --type session
--success success -h yippee -D cn=defense_admin -w welcome1

Relating Parameters to Commands for olsadmintool
All olsadmintool commands must specify connection parameters: the OID host, the
bind DN, the bind password and optionally the port through which the connection
to Oracle Internet Directory is to be made. (The default port is 389.)

All olsadmintool commands may specify, as needed, the
subscriber/administrative-context using the -b flag.

The fact that specifying a parameter is optional, such as a port or an administrative
context, is shown by enclosing the parameter within square brackets. The two most
common examples are [-b <admin context>] and [-p <port>].

Since every command must specify a host, bind DN, and password, and may if
needed also specify an administrative context, Table B–3 uses the abbreviation CON
to represent all of these connection parameters as a group:

[-b <admin context>] h <OID host> [-p <port>] -D <bind DN> -w <bind password>

Summaries
Table B–3 summarizes the commands in the following categories:

■ Policies: creating, altering, or dropping policies or their components, that
is, levels, groups, and compartments.

■ Data labels: creating, altering, or dropping them.

■ Administrators and policy creators: adding or dropping them.

Relating Parameters to Commands for olsadmintool

B-16 Oracle Label Security Administrator’s Guide

■ Users: adding or dropping users from a profile.

■ Auditing options: setting the options for what to audit for a policy

■ Profiles: creating, listing, describing, or dropping them.

■ Default read or row labels: setting them.

In Table B–3 and Table B–4, the column headings show only the parameters, not the
keywords that must precede them. For example, Table B–3 shows "policyname" and
"column-name" as parameters for the createpolicy command, without showing
the keywords that must precede them (--name and --colname). These keywords are
shown as required in each of the command descriptions, such as at Create Policy.

Table B–5 explains the individual parameters that are used as column headings in
the summaries of Table B–3 and Table B–4.

In all these tables, X means required, and O means unused or omitted.

Table B–3 Summary: olsadmintool Command Parameters

Command
Category

Commands &
Parameters

Policies Command policy
name

column-
name

optionsP CON

olsadmintool
createpolicy

X X X X

olsadmintool
alterpolicy

X O X X

olsadmintool
droppolicy

X O O X

Within a
Policy, Create:

Command policy
name

tag short
name

long
name

CON parent
name

a level olsadmintool
createlevel

X X X X X O

a group olsadmintool
creategroup

X X X X X [X]

a compartment olsadmintool
createcompartment

X X X X X O

Within a
Policy, Alter:

Relating Parameters to Commands for olsadmintool

Command-line Tools for Label Security Using Oracle Internet Directory B-17

a level olsadmintool
alterlevel

X O X X X O

a group or
group parent

olsadmintool
altergroup

X O X X X [X]

Command policy
name

tag short
name

long
name

CON parent
name

a compartment olsadmintool
altercompartment

X O X X X O

Within a
Policy, Drop:

level olsadmintool
droplevel

X O X O X O

group olsadmintool
dropgroup

X O X O X O

compartment olsadmintool
dropcompartment

X O X O X O

Data Labels Command policy
name

tag value CON

Create label olsadmintool
createlabel

X X X X

Alter data label olsadmintool
alterlabel

X X X X

Drop data label olsadmintool
droplabel

X O X X

Policy
Administrators

Command policy
name

userDN CON

Add an Admin olsadmintool
addadmin

X X X

Drop an Admin olsadmintool
dropadmin

X X X

Policy Creation olsadmintool
addpolcreator

O X X

Table B–3 Summary: olsadmintool Command Parameters (Cont.)

Command
Category

Commands &
Parameters

Relating Parameters to Commands for olsadmintool

B-18 Oracle Label Security Administrator’s Guide

olsadmintool
droppolcreator

O X X

Users Command policy
name

profile
name

userDN CON

Add a User olsadmintool adduser X X X X

Drop a User olsadmintool
dropuser

X X X X

Auditing olsadmintool audit X optionsA type success CON

olsadmintool noaudit X X X X X

Help on
olsadmintool

olsadmintool
<commandmame>
-- help

O O O O O

Table B–4 Summary of Profile & Default Command Parameters

Profile Action
Profile
Command

Policy
Name

Profile
Name

Max
Read
Label

Max
Write
Label

Min
Write
Label

Def
Read
Label

Def
Row
Label Priv's CON

Create a Profile1

1 In createprofile, specifying both privileges and labels is not required: a profile can specify labels, privileges, or both.

olsadmin
tool create
profile

X X X X X X X X X

List Profiles olsadmin
tool list
profile

X O O O O O O O X

Describe a Profile olsadmin
tool
describe
profile

X X O O O O O O X

Drop a Profile olsadmin
tool drop
profile

X X O O O O O O X

Table B–3 Summary: olsadmintool Command Parameters (Cont.)

Command
Category

Commands &
Parameters

Examples of Using olsadmintool

Command-line Tools for Label Security Using Oracle Internet Directory B-19

Examples of Using olsadmintool
The 12 subsections that follow illustrate using the olsadmintool commands in
typical tasks needed to set up Oracle Label Security in an Oracle Internet Directory
environment. Each command appears in this listing on multiple lines for readability,
but in reality would be issued as a single long string on the command line. The
summarized results of executing all these commands appear in Results of These
Examples, which follows the last example.

■ Make Other Users Policy Creators

■ Create Policies With Valid Options

■ Create Policy Administrators

■ Create Some Compartments

■ Create Some Groups

■ Create Some Labels

■ Create A Profile

■ Add A User To The Above Profile

■ Add Another User To The Above Profile

■ Set Some Audit Options

Make Other Users Policy Creators
ORACLE_HOME/bin/olsadmintool addpolcreator --userdn 'cn=snamudur,c=us'
 -b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=lbacsys,c=us' -w lbacsys

Create Policies With Valid Options
ORACLE_HOME/bin/olsadmintool createpolicy --name Policy1 --colname pol1
--options READ_CONTROL,WRITE_CONTROL -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 -D 'cn=snamudur,c=us' -w snamudur

ORACLE_HOME/bin/olsadmintool createpolicy --name Policy2 --colname pol2
--options READ_CONTROL -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 -D 'cn=lbacsys,c=us' -w lbacsys

Create Policy Administrators
ORACLE_HOME/bin/olsadmintool addadmin --polname Policy1
--admindn 'cn=shwong,c=us' -b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D
'cn=snamudur,c=us' -w snamudur

Examples of Using olsadmintool

B-20 Oracle Label Security Administrator’s Guide

ORACLE_HOME/bin/olsadmintool addadmin --polname Policy2
--admindn 'cn=shwong,c=us' -b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D
'cn=lbacsys,c=us' -w lbacsys

Create Some Levels
ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 100
--shortname TS --longname "TOP SECRET" -b 'ou=Americas,o=Oracle, c=US'
-h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 99
--shortname S --longname SECRET -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 98
--shortname U --longname UNCLASSIFIED -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Create Some Compartments
ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 100
--shortname A --longname ALPHA -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 99
--shortname B --longname BETA -b 'ou=Americas,o=Oracle,c=US'
-h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Create Some Groups
ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 100
--shortname G1 --longname GROUP1
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 99
--shortname G2 --longname GROUP2
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 98
--shortname G3 --longname GROUP3
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Examples of Using olsadmintool

Command-line Tools for Label Security Using Oracle Internet Directory B-21

Create Some Labels
ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1 --tag 100
--value TS:A:G1
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1 --tag 101
--value TS:A,B:G2
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Create A Profile
ORACLE_HOME/bin/olsadmintool createprofile --polname Policy1 --profname Profile1
--maxreadlabel TS:A:G1 --maxwritelabel TS:A:G1 --minwritelabel U::
--defreadlabel U:A:G1 --defrowlabel U:A:G1 --privileges WRITEUP,READ
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Add A User To The Above Profile
ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=nina,ou=Asia,o=microsoft,l=seattle,st=WA,c=US
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Add Another User To The Above Profile
ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=daniel,ou=France,o=oracle,l=madison,st=WI,c=US
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Set Some Audit Options
ORACLE_HOME/bin/olsadmintool audit --polname Policy1 --option 'SET,APPLY'
--type SESSION --success BOTH
-b 'ou=Americas,o=Oracle,c=US' -h yippee -p 389 -D 'cn=shwong,c=us' -w shwong

Results of These Examples
As a result of running the 12 sets of olsadmintool commands above, this sample
Oracle Label Security site has the following structure:

■ Policy creators: User snamudur

■ Policies: Policy1 and Policy2.

■ Policy Administrators: User shwong

Examples of Using olsadmintool

B-22 Oracle Label Security Administrator’s Guide

■ Levels, Compartments, and Groups: See Table B–5, "Label Component
Definitions from Using olsadmintool Commands"

■ Data labels: Tag 100 for TS:A:G1 and tag 101 for TS:A,B:G2

■ Users: Nina, from the Asia group of Microsoft, based in Seattle,
Washington, managed under the Americas organization of the US Oracle
organization, and Daniel, from the France group of Oracle in Madison,
Wisconsin, managed under the same organization.

■ Profiles: See Table B–6, "Contents of Profile1 from Using olsadmintool
Commands"

.

Table B–5 Label Component Definitions from Using olsadmintool Commands

Label
Component Tag Short Name Long Name

Level 100 TS TOP SECRET

99 S SECRET

98 U UNCLASSIFIED

Compartment 100 A ALPHA

99 B BETA

Group 100 G1 GROUP1

99 G2 GROUP2

98 G3 GROUP3

Table B–6 Contents of Profile1 from Using olsadmintool Commands

Profile Element Contents Long-name Expansion or Meaning

MaxReadLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MaxWriteLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MinWriteLabel U:: UNCLASSIFIED (not restricted to any
compartments or groups)

DefReadLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

DefRowLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

Privileges WRITE_UP, READ User can read any row and raise the
level of rows he writes.

Examples of Using olsadmintool

Command-line Tools for Label Security Using Oracle Internet Directory B-23

■ Auditing options: SET, APPLY, SESSION, and BOTH

Examples of Using olsadmintool

B-24 Oracle Label Security Administrator’s Guide

Reference C-1

C
Reference

This appendix provides the following reference information:

■ Oracle Label Security Data Dictionary Tables and Views

■ Oracle9i Data Dictionary Tables

■ Oracle Label Security Data Dictionary Views

■ Oracle Label Security Auditing Views

■ Restrictions in Oracle Label Security

■ CREATE TABLE AS SELECT Restriction in Oracle Label Security

■ Label Tag Restriction

■ Export Restriction in Oracle Label Security

■ Oracle Label Security Deinstallation Restriction

■ Shared Schema Support

■ Hidden Columns Restriction

■ Installing Oracle Label Security

■ Removing Oracle Label Security

Oracle Label Security Data Dictionary Tables and Views
■ Oracle9i Data Dictionary Tables

■ Oracle Label Security Data Dictionary Views

■ Oracle Label Security Auditing Views

Oracle Label Security Data Dictionary Tables and Views

C-2 Oracle Label Security Administrator’s Guide

Oracle9i Data Dictionary Tables
Oracle Label Security does not in any way label the Oracle9i data dictionary tables.
Access is controlled by standard Oracle9i system and object privileges. For a
description of all data dictionary tables and views, see the Oracle Database Reference

Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary tables. These
tables are exempt from any policy enforcement. This section lists the views that can
display information related to Oracle Label Security.

Note that access to the DBA views is granted by default to the SELECT_CATALOG_
ROLE, a standard Oracle9i role that lets you examine the Oracle9i data dictionary.

ALL_SA_AUDIT_OPTIONS

ALL_SA_COMPARTMENTS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

APY VARCHAR2(3)

REM VARCHAR2(3)

SET_ VARCHAR2(3)

PRV VARCHAR2(3)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COMP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

Oracle Label Security Data Dictionary Tables and Views

Reference C-3

ALL_SA_DATA_LABELS

ALL_SA_GROUPS

ALL_SA_LABELS
Access to ALL_SA_LABELS is PUBLIC, however only the labels authorized for read
access by the session are visible.

ALL_SA_LEVELS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

GROUP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

PARENT_NUM NUMBER(4)

PARENT_NAME VARCHAR2(30)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

LABEL_TYPE VARCHAR2(15)

Name Null? Type

POLICY_NAME VARCHAR2(30)

Oracle Label Security Data Dictionary Tables and Views

C-4 Oracle Label Security Administrator’s Guide

ALL_SA_POLICIES

ALL_SA_PROG_PRIVS

ALL_SA_SCHEMA_POLICIES

LEVEL_NUM NUMBER(4)

SHORT_NAME VARCHAR2(30)

LONG_NAME VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

POLICY_OPTIONS VARCHAR2(4000)

Name Null? Type

SCHEMA_NAME NOT NULL VARCHAR2(30)

PROGRAM_NAME NOT NULL VARCHAR(30)

POLICY_NAME NOT NULL VARCHAR2(30)

 PROGRAM_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

SCHEMA_OPTIONS VARCHAR2(4000)

Name Null? Type

Oracle Label Security Data Dictionary Tables and Views

Reference C-5

ALL_SA_TABLE_POLICIES

ALL_SA_USERS

ALL_SA_USER_LABELS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

TABLE_OPTIONS VARCHAR2(4000)

FUNCTION VARCHAR2(1024)

PREDICATE VARCHAR2(256)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

MAX_READ_LABEL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

USER_LABELS VARCHAR2(4000)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

Oracle Label Security Data Dictionary Tables and Views

C-6 Oracle Label Security Administrator’s Guide

ALL_SA_USER_LEVELS

ALL_SA_USER_PRIVS

MAX_READ_LABEL NOT NULL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

LABELS VARCHAR2(4000)

Note: The field USER_LABELS in ALL_SA_USERS and the field
LABELS in ALL_SA_USER_LABELS are retained solely for
backward compatibility and will be removed in the next release.

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

MAX_LEVEL NOT NULL VARCHAR2(30)

MIN_LEVEL NOT NULL VARCHAR2(30)

DEF_LEVEL NOT NULL VARCHAR2(30)

ROW_LEVEL NOT NULL VARCHAR2(30)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

Name Null? Type

Oracle Label Security Data Dictionary Tables and Views

Reference C-7

DBA_SA_AUDIT_OPTIONS

DBA_SA_COMPARTMENTS

DBA_SA_DATA_LABELS

USER_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

APY VARCHAR2(3)

REM VARCHAR2(3)

SET_ VARCHAR2(3)

PRV VARCHAR2(3)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COMP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

Name Null? Type

Oracle Label Security Data Dictionary Tables and Views

C-8 Oracle Label Security Administrator’s Guide

DBA_SA_GROUPS

DBA_SA_GROUP_HIERARCHY

DBA_SA_LABELS

DBA_SA_LEVELS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

GROUP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

PARENT_NUM NUMBER(4)

PARENT_NAME VARCHAR2(30)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

HIERARCHY_LEVEL NUMBER

GROUP_NAME VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

LABEL_TYPE VARCHAR2(15)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LEVEL_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

Oracle Label Security Data Dictionary Tables and Views

Reference C-9

DBA_SA_POLICIES

DBA_SA_PROG_PRIVS

DBA_SA_SCHEMA_POLICIES

DBA_SA_TABLE_POLICIES

LONG_NAME NOT NULL VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

POLICY_OPTIONS VARCHAR2(4000)

Name Null? Type

SCHEMA_NAME NOT NULL VARCHAR2(30)

PROGRAM_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

PROGRAM_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

SCHEMA_OPTIONS VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

Name Null? Type

Oracle Label Security Data Dictionary Tables and Views

C-10 Oracle Label Security Administrator’s Guide

DBA_SA_USERS

SCHEMA_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

TABLE_OPTIONS VARCHAR2(4000)

FUNCTION VARCHAR2(1024)

PREDICATE VARCHAR2(256)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

MAX_READ_LABEL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

USER_LABELS VARCHAR2(4000)

Note: The field USER_LABELS in DBA_SA_USERS is retained
solely for backward compatibility and will be removed in the next
release.

Name Null? Type

Oracle Label Security Data Dictionary Tables and Views

Reference C-11

DBA_SA_USER_COMPARTMENTS

DBA_SA_USER_GROUPS

DBA_SA_USER_LABELS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

COMP NOT NULL VARCHAR2(30)

RW_ACCESS VARCHAR2(5)

DEF_COMP NOT NULL VARCHAR2(1)

ROW_COMP NOT NULL VARCHAR2(1)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

GRP NOT NULL VARCHAR2(30)

RW_ACCESS VARCHAR2(5)

DEF_GROUP NOT NULL VARCHAR2(1)

ROW_GROUP NOT NULL VARCHAR2(1)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

MAX_READ_LABEL NOT NULL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

Oracle Label Security Data Dictionary Tables and Views

C-12 Oracle Label Security Administrator’s Guide

DBA_SA_USER_LEVELS

DBA_SA_USER_PRIVS

Oracle Label Security Auditing Views
Using the SA_AUDIT_ADMIN.CREATE_VIEW procedure, you can create an audit
trail view for the specified policy. By default, this view is named DBA_policyname_
AUDIT_TRAIL.

DEFAULT_ROW_LABEL VARCHAR2(4000)

LABELS VARCHAR2(4000)

Note: The field LABELS in DBA_SA_USER_LABELS is retained
solely for backward compatibility and will be removed in the next
release.

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

MAX_LEVEL NOT NULL VARCHAR2(30)

MIN_LEVEL NOT NULL VARCHAR2(30)

DEF_LEVEL NOT NULL VARCHAR2(30)

ROW_LEVEL NOT NULL VARCHAR2(30)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

Name Null? Type

Restrictions in Oracle Label Security

Reference C-13

The DBA_SA_AUDIT_OPTIONS view contains the columns POLICY_NAME,
USER_NAME, APY, SET_, and PRV.

Restrictions in Oracle Label Security
The following restrictions exist in this Oracle Label Security release:

■ CREATE TABLE AS SELECT Restriction in Oracle Label Security

■ Label Tag Restriction

■ Export Restriction in Oracle Label Security

■ Oracle Label Security Deinstallation Restriction

■ Shared Schema Support

■ Hidden Columns Restriction

CREATE TABLE AS SELECT Restriction in Oracle Label Security
If you attempt to perform CREATE TABLE AS SELECT in a schema that is protected
by an Oracle Label Security policy, the statement will fail.

Label Tag Restriction
Label tags must be unique across all policies in the database. When you use
multiple policies in a database, you cannot use the same numeric label tag in
different policies.

Export Restriction in Oracle Label Security
The LBACSYS schema cannot be exported due to the use of opaque types in Oracle
Label Security. An export of the entire database (parameter FULL=Y) with Oracle
Label Security installed can be done, except that the LBACSYS schema would not be
exported.

Oracle Label Security Deinstallation Restriction
Do not perform a DROP USER CASCADE on the LBACSYS account.

See Also: "Creating and Dropping an Audit Trail View for Oracle
Label Security" on page 11-8

Installing Oracle Label Security

C-14 Oracle Label Security Administrator’s Guide

Connect to the database as user SYS, using the AS SYSDBA syntax, and run the file
$ORACLE_HOME/rdbms/admin/catnools.sql to deinstall Oracle Label
Security.

Shared Schema Support
User accounts defined in the Oracle Internet Directory cannot be given individual
Oracle Label Security authorizations. However, authorizations can be given to the
shared schema to which the directory users are mapped.

The Oracle Label Security function SET_ACCESS_PROFILE can be used
programmatically to set the label authorization profile to use after a user has been
authenticated and mapped to a shared schema. Oracle Label Security does not
enforce a mapping between users who are given label authorizations in Oracle
Label Security and actual database users.

Hidden Columns Restriction
PL/SQL does not recognize references to hidden columns in tables. A compiler
error will be generated.

Installing Oracle Label Security
The person intending to install Oracle Label Security first selects the Custom
installation choice. Oracle Label Security is listed as one of the options in the custom
installation screen. After copying the Oracle Label Security files and relinking
Oracle, the installer software automatically launches the Database Configuration
Assistant (DBCA) during the database registration process, to configure options for
the database to be created.

In DBCA, if Oracle Internet Directory (OID) is to be enabled for Oracle Label
Security use, an additional option enables the installer users to configure the
password for the Directory Integration Platform (DIP) user. A DIP user with default
password DIP has been created by catproc.sql. If the password is set during this
configuration step, the DIP provisioning profile will be created with the new DIP
password.

Behind the scenes, DBCA does the following:

See Also: Your platform-specific Oracle installation
documentation

Removing Oracle Label Security

Reference C-15

■ runs catolsd.sql (as supposed to running catols.sql for a standalone Oracle Label
Security configuration)

■ creates the DIP provisioning profile with the given database DN for this
database

■ runs the bootstrap utility to refresh the database with policy information from
OID

■ adds database DN to the cn=DBServers group

Oracle Label Security and the SYS.AUD$ Table
Installing Oracle Label Security automatically moves the AUD$ table out of SYS
and into SYSTEM, and into a different tablespace.

Having the AUD$ table in the SYSTEM schema is supported when Oracle Label
Security is being used.

When Oracle Label Security is not installed, moving the SYS.AUD$ table out of the
SYSTEM tablespace is not supported because the Oracle code makes implicit
assumptions about the data dictionary tables, such as SYS.AUD$, in support of
upgrades and backup/recovery scenarios. Moving SYS.AUD$ is not supported
unless done by Oracle when Oracle Label Security is installed.

Removing Oracle Label Security
Perform the following steps to remove Oracle Label Security. Do not perform a
DROP USER CASCADE on the LBACSYS account to remove Oracle Label Security.

1. Connect AS SYSDBA.

2. Execute the $ORACLE_HOME/rdbms/admin/catnools.sql script to delete the
LBACSYS account.

3. Use the Oracle Universal Installer to remove Oracle Label Security.

Note: If this password is ever changed, Oracle Internet Directory
must be updated with this information, using the provisioning tool
oidprovtool.

See Also: Your platform-specific Oracle installation
documentation

Removing Oracle Label Security

C-16 Oracle Label Security Administrator’s Guide

Index-1

Index
A
access control

discretionary, 1-4, 1-5, 3-21
label-based, 1-9, 1-12
policies, 1-4
understanding, 3-1

access mediation
and views, 3-21
enforcement options, 3-23
introduction, 3-1
label evaluation, 3-9
program units, 3-21

ADD_COMPARTMENTS function, 7-6
ADD_GROUPS procedure, 7-8

inverse groups, 14-18
ALL_CONTROL option, 8-4, 8-5, 8-9
ALL_SA_AUDIT_OPTIONS view, C-2
ALL_SA_COMPARTMENTS view, C-2
ALL_SA_DATA_LABELS view, C-3
ALL_SA_GROUPS view, C-3
ALL_SA_LABELS view, C-3
ALL_SA_LEVELS view, C-3
ALL_SA_POLICIES view, C-4
ALL_SA_PROG_PRIVS view, C-4
ALL_SA_SCHEMA_POLICIES view, C-4
ALL_SA_TABLE_POLICIES view, C-5
ALL_SA_USER_LABELS view, C-5
ALL_SA_USER_LEVELS view, C-6
ALL_SA_USER_PRIVS view, C-6
ALL_SA_USERS view, C-5
ALTER_COMPARTMENT procedure, 6-15
ALTER_COMPARTMENTS procedure, 7-5
ALTER_GROUP procedure, 6-17

ALTER_GROUP_PARENT
inverse groups, 14-22

ALTER_GROUP_PARENT procedure, 6-18
ALTER_GROUPS function, 7-9
ALTER_GROUPS procedure

inverse groups, 14-19
ALTER_LABEL function, 6-21
ALTER_LEVEL procedure, 6-13, 6-14
ALTER_POLICY procedure, 6-10

inverse groups, 14-18
ALTER_SCHEMA_POLICY procedure, 9-3, 9-8
ANALYZE command, 13-7
APPLY_SCHEMA_POLICY procedure, 9-3, 9-7

with inverse groups, 14-4
APPLY_TABLE_POLICY procedure, 9-3, 9-4

with inverse groups, 14-4
architecture, Oracle Label Security, 1-5
AS SYSDBA clause, 13-11
AUDIT procedure, 11-4
AUDIT_LABEL procedure, 11-8
AUDIT_LABEL_ENABLED function, 11-8
AUDIT_TRAIL parameter, 11-2
auditing

audit trails, 1-5, 11-2, 11-9
options for Oracle Label Security, 11-3
Oracle Label Security, 11-1
security and, 11-4
strategy, 11-10
systemwide, 11-2
types of, 6-4
views, 11-9

Index-2

B
B-tree indexes, 13-7

C
CHAR_TO_LABEL function, 4-7, 4-16, 4-18
characters, valid, 2-3, 6-9
CHECK_CONTROL option

and label update, 8-18
and labeling functions, 8-16
definition, 8-3, 8-5
with other options, 8-11

child rows
deleting, 8-19
inserting, 8-16
updating, 8-19

Common Criteria, 1-3
COMP_READ function, 4-23
COMP_WRITE function, 4-23
COMPACCESS privilege, 3-16, 3-17

inverse groups, 14-7, 14-10
compartments

definition, 2-5
example, 2-6
setting authorizations, 3-6

COMPATIBLE parameter, 13-11
components. See label components
CREATE FUNCTION statement, 10-4
CREATE PACKAGE BODY statement, 10-4
CREATE PACKAGE statement, 10-4
Create Policy icon, 6-2, 6-8
CREATE PROCEDURE statement, 10-4
CREATE TABLE AS SELECT statement, C-13
CREATE_COMPARTMENT procedure, 6-15
CREATE_GROUP procedure, 6-17

inverse groups, 14-22
CREATE_LABEL procedure, 6-19
CREATE_LEVEL procedure, 6-13
CREATE_POLICY procedure, 6-2, 6-9

inverse groups, 14-17
CREATE_VIEW procedure, 11-9, C-12
creating databases, 13-11

D
DAC. See discretionary access control (DAC)
data

access rules, 1-7
label-based access, 2-1
sensitivity, 1-11, 6-21

data dictionary tables, 7-2, 7-17, 13-7, 13-11, C-2
DATA_LABEL function, 10-7
database links, 12-3
Database Management System Protection Profile

(DBMS PP), 1-3
databases, creating additional, 13-11
DBA_policyname_AUDIT_TRAIL view, C-12
DBA_SA_AUDIT_OPTIONS view, 11-7, C-7, C-13
DBA_SA_COMPARTMENTS view, 13-3, C-7
DBA_SA_DATA_LABELS view, C-7
DBA_SA_GROUP_HIERARCHY view, C-8
DBA_SA_GROUPS view, 13-3, C-8
DBA_SA_LABELS view, 13-3, C-8
DBA_SA_LEVELS view, 13-3, C-8
DBA_SA_POLICIES view, C-9
DBA_SA_PROG_PRIVS view, C-9
DBA_SA_SCHEMA_POLICIES view, 8-12, C-9
DBA_SA_TABLE_POLICIES view, 8-12, C-9
DBA_SA_USER_COMPARTMENTS view, 7-18,

C-11
DBA_SA_USER_GROUPS view, 7-18, C-11
DBA_SA_USER_LABELS view, C-11
DBA_SA_USER_LEVELS view, 7-18, C-12
DBA_SA_USER_PRIVS view, C-12
DBA_SA_USERS view, 7-16, C-10
default row label, 4-20
DELETE_CONTROL option, 8-3, 8-5, 8-19
DELETE_RESTRICT option, 8-20
deleting labeled data, 8-19
demobld.sql file, 6-6
DISABLE_POLICY procedure, 6-10
DISABLE_SCHEMA_POLICY procedure, 9-3, 9-9
DISABLE_TABLE_POLICY procedure, 9-3, 9-6
discretionary access control (DAC), 1-4, 3-21
distributed databases

connecting to, 12-3
multiple policies, 3-24
Oracle Label Security configuration, 12-1

Index-3

remote session label, 12-3
dominance

definition, 3-11, 3-12
functions, A-2
greatest lower bound, 4-12
inverse groups, 14-24
least upper bound, 4-12
overview, A-1

DOMINATED_BY function, A-2, A-4, A-5
DOMINATES function, A-1, A-2, A-3, A-4
DROP USER CASCADE restriction, C-13
DROP_ALL_COMPARTMENTS procedure, 7-7
DROP_ALL_GROUPS procedure, 7-10
DROP_COMPARTMENT procedure, 6-16
DROP_COMPARTMENTS function, 7-7
DROP_GROUP procedure, 6-19
DROP_GROUPS procedure, 7-10
DROP_LABEL function, 6-22
DROP_LEVEL procedure, 6-14
DROP_POLICY procedure, 6-11
DROP_USER_ACCESS procedure, 7-14
DROP_VIEW procedure, 11-9
duties, of security administrators, 6-4

E
ENABLE_POLICY procedure, 6-11
ENABLE_SCHEMA_POLICY procedure, 9-3, 9-10
ENABLE_TABLE_POLICY procedure, 9-3, 9-6
enforcement options

and UPDATE, 8-17
combinations of, 8-10
exemptions, 8-12
guidelines, 8-10
INVERSE_GROUP, 14-4
list of, 8-3
overview, 8-2
viewing, 8-12

Evaluation Assurance Level (EAL) 4, 1-3
EXEMPT ACCESS POLICY privilege, 8-12
Export utility

LBACSYS restriction, C-13
policy enforcement, 8-12
row labels, 3-17, 13-1, 13-3

F
FULL privilege, 3-16, 3-17, 3-19

G
GLBD function, 4-12
granularity, data access, 3-13
GREATEST_LBOUND function, 4-12, 10-8

inverse groups, 14-23
GROUP_READ function, 4-23
GROUP_WRITE function, 4-23
groups

definition, 2-7
example, 2-8
hierarchical, 2-8, 2-13, C-8
inverse, 14-2
parent, 2-7, 2-8, 3-10, 6-17, 6-18, 14-7
read/write access, 3-10
setting authorizations, 3-7

H
HIDE, 4-2, 6-9, 6-10
HIDE option

default, 6-9
discussion of, 8-6
example, 4-3
importing hidden column, 13-4
inserting data, 4-17
not exported, 13-2
per-table basis, 4-9
PL/SQL restriction, C-14
schema level, 8-2

I
Import utility

importing labeled data, 13-3
importing policies, 13-2
importing unlabeled data, 13-4
with Oracle Label Security, 13-2

indexes, 13-7
INITIAL_LABEL variable, A-5
INITIAL_ROW_LABEL variable, A-5
initialization parameters

Index-4

AUDIT_TRAIL, 11-2
COMPATIBLE, 13-11

INSERT_CONTROL option, 8-3, 8-5, 8-16
inserting labeled data, 4-15, 8-15
INTO TABLE clause, 13-5
inverse groups

and label components, 14-4
COMPACCESS privilege, 14-7, 14-10
computed labels, 14-5
dominance, 14-24
implementation of, 14-3
introduction, 14-2
Max Read Groups, 14-6
Max Write Groups, 14-6
parent-child unsupported, 14-7
read algorithm, 14-8
session labels, 14-12
SET_DEFAULT_LABEL, 14-12
SET_LABEL, 14-13
SET_ROW_LABEL, 14-12, 14-13
user privileges, 14-7
write algorithm, 14-9

INVERSE_GROUP enforcement option
behavior of procedures, 14-16
implementation, 14-4

L
label components

defining, 6-2, 6-12
in distributed environment, 12-4
industry examples, 2-9
interrelation, 2-13
valid characters, 2-3, 6-9

label evaluation process
COMPACCESS read, 3-18
COMPACCESS write, 3-18
inverse groups, COMPACCESS, 14-11
LABEL_UPDATE, 8-18
read access, 3-12
read access, inverse groups, 14-8
write access, 3-14
write access, inverse groups, 14-9

LABEL function, 4-23
label tags

converting from string, 4-7
converting to string, 4-7
distributed environment, 12-4
example, 4-4
inserting data, 4-16
introduction, 2-11
manually defined, 4-4, 4-5
strategy, 13-8
using in WHERE clauses, 4-10

LABEL_DEFAULT option
and labeling functions, 8-7, 8-13
authorizing compartments, 3-7
authorizing groups, 3-8
definition, 8-3
importing unlabeled data, 13-4
inserting labeled data, 4-16
with enforcement options, 8-10, 8-11
with SET_ROW_LABEL, 4-20

LABEL_TO_CHAR function, 4-7, 4-8, 4-11
LABEL_UPDATE option

and labeling functions, 8-7, 8-13
and privileges, 8-7
and WRITE_CONTROL, 8-9
and WRITEDOWN, 3-20
and WRITEUP, 3-16, 3-20
definition, 8-3, 8-4
evaluation process, 8-18
with enforcement options, 8-11

label-based security, 2-1
labeling functions

ALL_CONTROL and NO_CONTROL, 8-10
and CHECK_CONTROL, 8-16
and LABEL_DEFAULT, 8-7, 8-13
and LABEL_UPDATE, 8-7, 8-8
and LBACSYS, 8-14
creating, 8-14
example, 8-13
how they work, 8-14
importing unlabeled data, 13-4
in force, 8-7
inserting data, 4-16
introduction, 3-23
override manual insert, 8-16
specifying, 8-15
testing, 8-13

Index-5

UPDATE, 8-18
using, 8-13
with enforcement options, 8-10, 8-11

labels
administering, 2-15
and performance, 3-17
data and user, 2-12
merging, 4-13
non-comparable, A-2
relationships between, A-1
syntax, 2-10
valid, 2-11, 4-3
with inverse groups, 14-5

Labels property sheet, 6-2, 6-3
LBAC_DBA role, 6-8
LBAC_LABEL datatype, 8-14
LBACSYS schema

and labeling functions, 8-14
creating additional databases, 13-11
data dictionary tables, 13-7
export restriction, 13-2, C-13

LEAST_UBOUND function, 4-12, 4-14, 10-8
inverse groups, 14-23

levels
definition, 2-4
example, 2-4
setting authorizations, 3-5

LUBD function, 4-12

M
materialized views, 12-7, 12-10
Max Read Groups, 14-6
Max Write Group, 14-6
MAX_LEVEL function, 4-22
MERGE_LABEL function, 4-13, 4-14
MIN_LEVEL function, 4-22

N
NO_CONTROL option, 8-4, 8-5, 8-9
NOAUDIT procedure, 11-3, 11-5, 11-6, 11-8
NUMBER datatype, 4-2
NUMERIC_LABEL function, 10-6
NUMERIC_ROW_LABEL function, 10-7

O
object privileges

and Oracle Label Security privileges, 3-21
and trusted stored program units, 3-21, 10-2
discretionary access control, 1-5

OCI example, A-7
OCI interface, A-5
OCI_ATTR_APPCTX_LIST, A-6
OCI_ATTR_APPCTX_SIZE, A-6
OCIAttrGet, A-6
OCIAttrSet, A-5, A-6
OCIParamGet, A-6
Oracle Internet Directory Administrator’s

Guide, 5-15
Oracle Policy Manager

administering labels, 2-15
applying policies, 6-3, 9-4
authorizing trusted program units, 6-4
authorizing users, 6-4, 7-1
configuring auditing, 6-4
creating policies, 6-2, 6-8
defining label components, 6-2
identifying valid labels, 6-3
introduction, 6-6

ORDER BY clause, 4-10, 4-11

P
packages

Oracle Label Security, 6-5
trusted stored program units, 10-1

partitioning, 4-5, 13-10
performance, Oracle Label Security

ANALYZE command, 13-7
indexes, 13-7
label tag strategy, 13-8
partitioning, 13-10
READ privilege, 3-17

PL/SQL
creating VPD policies, 1-8
overloaded procedures, 6-13
recreating labels for import, 13-3
SA_UTL package, 10-6
trusted stored program units, 10-1

policies

Index-6

applying to schemas, 9-3, 9-7
applying to tables, 9-3, 9-4
creating, 6-2
enforcement guidelines, 8-10
enforcement options, 1-12, 3-23, 4-1, 8-2, 8-3,

8-10
managing, 6-8
multiple, 4-3, 7-2, C-13
privileges, 1-5, 1-11, 3-21, 7-14
terminology, 9-1

policy label column
indexing, 13-7
inserting data when hidden, 4-17
introduction, 4-2
retrieving, 4-7
retrieving hidden, 4-9
storing label tag, 2-11

policy_DBA role, 6-4, 6-8, 6-19, 7-1, 7-14, 9-4, 9-7
predicates

access mediation, 3-23
errors, 8-21
label tag performance strategy, 13-9
multiple, 8-21
used with policy, 8-20

privileges
COMPACCESS, 3-16, 3-17
FULL, 3-16, 3-17, 3-19
Oracle Label Security, 3-15
PROFILE_ACCESS, 3-16, 3-19
program units, 3-21
READ, 3-16
row label, 3-19
trusted stored program units, 10-5
WRITEACROSS, 3-16, 3-19, 3-20
WRITEDOWN, 3-16, 3-19, 3-20, 3-22
WRITEUP, 3-16, 3-19, 3-20

PRIVS function, 4-22
procedures, overloaded, 6-12
PROFILE_ACCESS privilege, 3-16, 3-19

R
read access

algorithm, 3-12, 3-17
introduction, 3-10

read label, 3-8
READ privilege, 3-16
READ_CONTROL option

algorithm, 3-11
and CHECK_CONTROL, 8-8
and child rows, 8-16
definition, 8-3, 8-4
referential integrity, 8-19
with other options, 8-11
with predicates, 8-20

READ_ONLY function, 7-6, 7-7, 7-8, 7-9
READ_WRITE function, 7-6, 7-7, 7-8, 7-9
reading down, 3-12
referential integrity, 8-16, 8-19
releasability, 14-2
remote users, 12-3
REMOVE_SCHEMA_POLICY procedure, 9-3, 9-9
REMOVE_TABLE_POLICY procedure, 9-3, 9-5
REPADMIN account, 12-7, 12-10, 12-11
replication

materialized views (snapshots), 12-7, 12-10,
12-11

with Oracle Label Security, 12-7, 12-8
RESTORE_DEFAULT_LABELS procedure, 4-19,

4-21
restrictions, Oracle Label Security, C-13
row label

default, 4-20
row labels

changing compartments, 7-5
default, 3-7, 3-8, 3-9, 4-19, 10-8
example, 3-3
in distributed environment, 12-3
inserting, 4-16
LABEL_DEFAULT option, 4-15, 8-7
privileges, 3-19
restoring, 4-21
saving defaults, 4-21
setting, 4-20, 10-7
setting compartments, 7-3
setting groups, 7-4
setting levels, 7-2
understanding, 3-3
updating, 3-20
viewing, 10-7

Index-7

ROW_LABEL function, 4-23

S
SA_COMPONENTS package, 6-12
SA_POLICY_ADMIN, 9-1
SA_POLICY_ADMIN package, 9-1
SA_SESSION functions

defined, 4-18
viewing security attributes, 4-22

SA_SYSDBA package, 6-8
SA_USER_ADMIN package

administering stored program units, 10-3
overview, 7-1

SA_USER_NAME function, 4-23, 7-16
SA_UTL package

dominance functions, A-4
overview, 10-6

SAVE_DEFAULT_LABELS procedure, 4-19, 4-21
schemas

applying policies to, 6-3, 6-10, 8-10
default policy options, 6-9
restrictions on shared, C-14

security
introduction, 1-2
standards, 1-3

security evaluations
EAL4, 1-3

security policies
introduction, 1-4
VPD, 1-9

session labels
changing, 4-19
computed, 3-8
distributed database, 12-3
example, 3-3
OCI interface, A-5
restoring, 4-21
SA_UTL.SET_LABEL, 10-7
saving defaults, 4-21
setting compartments, 7-3
setting groups, 7-4
setting levels, 7-2
understanding, 3-2
viewing, 10-6

SET_ACCESS_PROFILE function, C-14
SET_ACCESS_PROFILE procedure, 7-15, 7-16
SET_COMPARTMENTS procedure, 7-3
SET_DEFAULT_LABEL function, 7-12

inverse groups, 14-12
SET_DEFAULT_LABEL procedure

inverse groups, 14-21
SET_GROUPS procedure, 7-4

inverse groups, 14-19
SET_LABEL function

and RESTORE_DEFAULT_LABELS, 4-21
definition, 4-19, 4-23
inverse groups, 14-13
on remote database, 12-4
SA_UTL.SET_LABEL, 10-7
using, 4-19

SET_LABEL procedure
inverse groups, 14-22

SET_LEVELS procedure, 7-2
SET_PROG_PRIVS function, 10-3
SET_ROW_LABEL function

inverse groups, 14-12, 14-13
SET_ROW_LABEL procedure, 4-19, 4-20, 7-13,

10-7, 14-13, 14-14
inverse groups, 14-22, 14-23

SET_USER_LABELS procedure, 7-11
inverse groups, 14-20

SET_USER_PRIVS function, 7-14
shared schema restrictions, C-14
SQL*Loader, 13-5
STRICTLY_DOMINATED_BY function, A-2, A-4,

A-5
STRICTLY_DOMINATES function, A-2, A-3, A-4
SYS account

policy enforcement, 8-12
SYS_CONTEXT

and labeling functions, 8-13
variables, A-5

SYSDBA privilege, 11-2
system privileges, 1-5, 3-21

T
tasks, overview, 6-1
TO_DATA_LABEL function, 4-18, 6-2, 6-20

Index-8

TO_LBAC_DATA_LABEL function, 8-14
triggers, 8-14
trusted stored program units

creating, 10-4
error handling, 10-6
example, 10-2
executing, 10-5
introduction, 10-1
privileges, 3-21, 10-5
re-compiling, 10-5
replacing, 10-5

U
UPDATE_CONTROL option, 8-4, 8-5, 8-17
updating labeled data, 8-17
user authorizations

compartments, 3-6
groups, 3-7
levels, 3-5
understanding, 3-4

USER_SA_SESSION view, 4-22

V
views

access mediation, 3-21
ALL_SA_COMPARTMENTS, C-2
ALL_SA_GROUPS, C-3
ALL_SA_LABELS, C-3
ALL_SA_LEVELS, C-3
ALL_SA_POLICIES, C-4
ALL_SA_PROG_PRIVS, C-4
ALL_SA_SCHEMA_POLICIES, C-4
ALL_SA_TABLE_POLICIES, C-5
ALL_SA_USER_LABELS, C-5
ALL_SA_USER_LEVELS, C-6
ALL_SA_USER_PRIVS, C-6
ALL_SA_USERS, C-5
auditing, C-12
DBA_policyname_AUDIT_TRAIL, C-12
DBA_SA_AUDIT_OPTIONS, 11-7, C-7, C-13
DBA_SA_COMPARTMENTS, C-7
DBA_SA_DATA_LABELS, C-7
DBA_SA_GROUP_HIERARCHY, C-8

DBA_SA_GROUPS, C-8
DBA_SA_LABELS, C-8
DBA_SA_LEVELS, C-8
DBA_SA_POLICIES, C-9
DBA_SA_PROG_PRIVS, C-9
DBA_SA_SCHEMA_POLICIES, 8-12, C-9
DBA_SA_TABLE_POLICIES, 8-12, C-9
DBA_SA_USER_COMPARTMENTS, C-11
DBA_SA_USER_GROUPS, C-11
DBA_SA_USER_LABELS, C-11
DBA_SA_USER_LEVELS, C-12
DBA_SA_USER_PRIVS, C-12
DBA_SA_USERS, C-10
USER_SA_SESSION, 4-22

virtual private database (VPD)
policies, 1-8

W
write access

algorithm, 3-14, 3-17
introduction, 3-9

write label, 3-8
WRITE_CONTROL option

algorithm, 3-13
definition, 8-3, 8-5
introduction, 8-8
LABEL_UPDATE, 8-9
with INSERT, UPDATE, DELETE, 8-9
with other options, 8-11

WRITEACROSS privilege, 3-16, 3-19, 3-20, 8-3, 8-7,
8-17

WRITEDOWN privilege, 3-16, 3-19, 3-20, 3-22, 8-3,
8-7, 8-17

WRITEUP privilege, 3-16, 3-19, 3-20

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Part I Concepts
	1 Introduction to Oracle Label Security
	Computer Security and Data Access Controls
	Oracle Label Security and Security Standards
	Security Policies
	Access Control
	Discretionary Access Control
	Oracle Label Security
	How Oracle Label Security Works with Discretionary Access Control

	Oracle Label Security Architecture
	Features of Oracle Label Security
	Overview of Oracle Label Security Policy Functionality
	Oracle Enterprise Edition: Virtual Private Database Technology
	Oracle Label Security: An Out-of-the-Box Virtual Private Database
	Label Policy Features
	Data Labels
	Label Authorizations
	Policy Privileges
	Policy Enforcement Options
	Summary: Four Aspects of Label-Based Row Access

	Oracle Label Security Integration with Oracle Internet Directory

	2 Understanding Data Labels and User Labels
	Introduction to Label-Based Security
	Label Components
	Label Component Definitions and Valid Characters
	Levels
	Compartments
	Groups
	Industry Examples of Levels, Compartments, and Groups

	Label Syntax and Type
	How Data Labels and User Labels Work Together
	Administering Labels

	3 Understanding Access Controls and Privileges
	Introducing Access Mediation
	Understanding Session Label and Row Label
	The Session Label
	The Row Label
	Session Label Example

	Understanding User Authorizations
	Authorizations Set by the Administrator
	Authorized Levels
	Authorized Compartments
	Authorized Groups

	Computed Session Labels

	Evaluating Labels for Access Mediation
	Introducing Read/Write Access
	Difference Between Read and Write Operations
	Propagation of Read/Write Authorizations on Groups

	The Oracle Label Security Algorithm for Read Access
	The Oracle Label Security Algorithm for Write Access

	Using Oracle Label Security Privileges
	Privileges Defined by Oracle Label Security Policies
	Special Access Privileges
	READ
	FULL
	COMPACCESS
	PROFILE_ACCESS

	Special Row Label Privileges
	WRITEUP
	WRITEDOWN
	WRITEACROSS

	System Privileges, Object Privileges, and Policy Privileges
	Access Mediation and Views
	Access Mediation and Program Unit Execution
	Access Mediation and Policy Enforcement Options

	Working with Multiple Oracle Label Security Policies
	Multiple Oracle Label Security Policies in a Single Database
	Multiple Oracle Label Security Policies in a Distributed Environment

	Part II Using Oracle Label Security Functionality
	4 Working with Labeled Data
	The Policy Label Column and Label Tags
	The Policy Label Column
	Hiding the Policy Label Column
	Example 1: Numeric Column Datatype (NUMBER)
	Example 2: Numeric Column Datatype with Hidden Column

	Label Tags
	Manually Defining Label Tags to Order Labels
	Manually Defining Label Tags to Manipulate Data
	Automatically Generated Label Tags

	Assigning Labels to Data Rows
	Presenting the Label
	Converting a Character String to a Label Tag, with CHAR_TO_LABEL
	Converting a Label Tag to a Character String, with LABEL_TO_CHAR
	LABEL_TO_CHAR Examples
	Retrieving All Columns from a Table When Policy Label Column Is Hidden

	Filtering Data Using Labels
	Using Numeric Label Tags in WHERE Clauses
	Ordering Labeled Data Rows
	Ordering by Character Representation of Label
	Determining Upper and Lower Bounds of Labels
	Finding Least Upper Bound with LEAST_UBOUND
	Finding Greatest Lower Bound with GREATEST_LBOUND

	Merging Labels with the MERGE_LABEL Function

	Inserting Labeled Data
	Inserting Labels Using CHAR_TO_LABEL
	Inserting Labels Using Numeric Label Tag Values
	Inserting Data Without Specifying a Label
	Inserting Data When the Policy Label Column Is Hidden
	Inserting Labels Using TO_DATA_LABEL

	Changing Your Session and Row Labels with SA_SESSION
	SA_SESSION Functions to Change Session and Row Labels
	Changing the Session Label with SA_SESSION.SET_LABEL
	Changing the Row Label with SA_SESSION.SET_ROW_LABEL
	Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS
	Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS
	Viewing Session Attributes with SA_SESSION Functions
	USER_SA_SESSION View to Return All Security Attributes
	Functions to Return Individual Security Attributes

	5 Oracle Label Security Using Oracle Internet Directory
	Introducing Label Management on Oracle Internet Directory
	Configuring Oracle Internet Directory-Enabled Label Security
	Registering a Database and Configuring OID-enabled OLS
	Task 1. Configure Your Oracle Home for Directory Usage.
	Task 2 : Configure the Database for OID-Enabled OLS
	Alternate Method for Task 2, Configuring Database for OID-Enabled OLS
	Task3: Set the DIP Password and Connect Data

	Unregistering a Database with OID-enabled OLS

	Oracle Label Security Profiles
	Integrated Capabilities When Label Security Uses the Directory
	Oracle Label Security Policy Attributes in Oracle Internet Directory
	Restrictions on New Data Label Creation
	Two Types of Administrators
	Bootstrapping Databases
	Synchronizing the Database and Oracle Internet Directory
	Directory Integration Platform (DIP) Provisioning Profiles
	Disabling, Changing, and Enabling a Provisioning Profile

	Security Roles and Permitted Actions
	Superseded PL/SQL Statements
	Procedures for Policy Administrators Only

	Part III Administering an Oracle Label Security Application
	6 Creating an Oracle Label Security Policy
	Oracle Label Security Administrative Task Overview
	Step 1: Create the Policy
	Step 2: Define the Components of the Labels
	Step 3: Identify the Set of Valid Data Labels
	Step 4: Apply the Policy to Tables and Schemas
	Step 5: Authorize Users
	Step 6: Create and Authorize Trusted Program Units (Optional)
	Step 7: Configure Auditing (Optional)

	Organizing the Duties of Oracle Label Security Administrators
	Choosing an Oracle Label Security Administrative Interface
	Oracle Label Security Packages
	Oracle Label Security Demonstration File

	Oracle Policy Manager

	Using the SA_SYSDBA Package to Manage Security Policies
	Who Can Use the SA_SYSDBA Package
	Who Can Administer a Policy
	Valid Characters for Policy Specifications
	Creating a Policy with SA_SYSDBA.CREATE_POLICY
	Modifying Policy Options with SA_SYSDBA.ALTER_POLICY
	Disabling a Policy with SA_SYSDBA.DISABLE_POLICY
	Enabling a Policy with SA_SYSDBA.ENABLE_POLICY
	Removing a Policy with SA_SYSDBA.DROP_POLICY

	Using the SA_COMPONENTS Package to Define Label Components
	Using Overloaded Procedures
	Creating a Level with SA_COMPONENTS.CREATE_LEVEL
	Modifying a Level with SA_COMPONENTS.ALTER_LEVEL
	Removing a Level with SA_COMPONENTS.DROP_LEVEL
	Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT
	Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT
	Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT
	Creating a Group with SA_COMPONENTS.CREATE_GROUP
	Modifying a Group with SA_COMPONENTS.ALTER_GROUP
	Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT
	Removing a Group with SA_COMPONENTS.DROP_GROUP

	Using the SA_LABEL_ADMIN Package to Specify Valid Labels
	Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL
	Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL
	Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL

	7 Administering User Labels and Privileges
	Introduction to User Label and Privilege Management
	Managing User Labels by Component, with SA_USER_ADMIN
	SA_USER_ADMIN.SET_LEVELS
	SA_USER_ADMIN.SET_COMPARTMENTS
	SA_USER_ADMIN.SET_GROUPS
	SA_USER_ADMIN.ALTER_COMPARTMENTS
	SA_USER_ADMIN.ADD_COMPARTMENTS
	SA_USER_ADMIN.DROP_COMPARTMENTS
	SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
	SA_USER_ADMIN.ADD_GROUPS
	SA_USER_ADMIN.ALTER_GROUPS
	SA_USER_ADMIN.DROP_GROUPS
	SA_USER_ADMIN.DROP_ALL_GROUPS

	Managing User Labels by Label String, with SA_USER_ADMIN
	SA_USER_ADMIN.SET_USER_LABELS
	SA_USER_ADMIN.SET_DEFAULT_LABEL
	SA_USER_ADMIN.SET_ROW_LABEL
	SA_USER_ADMIN.DROP_USER_ACCESS

	Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS
	Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE
	Returning User Name with SA_SESSION.SA_USER_NAME
	Using Oracle Label Security Views
	View to Display All User Security Attributes: DBA_SA_USERS
	Views to Display User Authorizations by Component

	8 Implementing Policy Enforcement Options and Labeling Functions
	Choosing Policy Options
	Overview of Policy Enforcement Options
	The HIDE Policy Column Option
	The Label Management Enforcement Options
	LABEL_DEFAULT: Using the Session's Default Row Label
	LABEL_UPDATE: Changing Data Labels
	CHECK_CONTROL: Checking Data Labels

	The Access Control Enforcement Options
	READ_CONTROL: Reading Data
	WRITE_CONTROL: Writing Data
	INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

	The Overriding Enforcement Options
	Guidelines for Using the Policy Enforcement Options
	Exemptions from Oracle Label Security Policy Enforcement
	Viewing Policy Options on Tables and Schemas

	Using a Labeling Function
	Labeling Data Rows under Oracle Label Security
	Understanding Labeling Functions in Oracle Label Security Policies
	Creating a Labeling Function for a Policy
	Specifying a Labeling Function in a Policy

	Inserting Labeled Data Using Policy Options and Labeling Functions
	Evaluating Enforcement Control Options and INSERT
	Inserting Labels When a Labeling Function is Specified
	Inserting Child Rows into Tables with Declarative Referential Integrity Enabled

	Updating Labeled Data Using Policy Options and Labeling Functions
	Updating Labels Using CHAR_TO_LABEL
	Evaluating Enforcement Control Options and UPDATE
	Updating Labels When a Labeling Function Is Specified
	Updating Child Rows in Tables with Declarative Referential Integrity Enabled

	Deleting Labeled Data Using Policy Options and Labeling Functions
	Using a SQL Predicate with an Oracle Label Security Policy
	Modifying an Oracle Label Security Policy with a SQL Predicate
	Affecting Oracle Label Security Policies with Multiple SQL Predicates

	9 Applying Policies to Tables and Schemas
	Policy Administration Terminology
	Subscribing Policies in Directory-Enabled Label Security
	Subscribing to a Policy with SA_POLICY_ADMIN.POLICY_SUBSCRIBE
	Syntax

	Unsubscribing to a Policy with SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
	Syntax

	Policy Administration Functions for Tables and Schemas
	Administering Policies on Tables Using SA_POLICY_ADMIN
	Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY
	Syntax

	Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
	Syntax

	Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
	Syntax

	Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
	Syntax

	Administering Policies on Schemas with SA_POLICY_ADMIN
	Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
	Syntax

	Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
	Syntax

	Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
	Syntax

	Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
	Syntax

	Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
	Syntax

	Policy Issues for Schemas

	10 Administering and Using Trusted Stored Program Units
	Introduction to Trusted Stored Program Units
	How a Trusted Stored Program Unit Executes
	Trusted Stored Program Unit Example

	Managing Program Unit Privileges with SET_PROG_PRIVS
	Creating and Compiling Trusted Stored Program Units
	Creating Trusted Stored Program Units
	Setting Privileges for Trusted Stored Program Units
	Re-Compiling Trusted Stored Program Units
	Recreating Trusted Stored Program Units
	Executing Trusted Stored Program Units

	Using SA_UTL Functions to Set and Return Label Information
	Viewing Session Label and Row Label Using SA_UTL
	SA_UTL.NUMERIC_LABEL
	SA_UTL.NUMERIC_ROW_LABEL
	SA_UTL.DATA_LABEL

	Setting the Session Label and Row Label Using SA_UTL
	SA_UTL.SET_LABEL
	SA_UTL.SET_ROW_LABEL

	Returning Greatest Lower Bound and Least Upper Bound
	GREATEST_LBOUND
	LEAST_UBOUND

	11 Auditing Under Oracle Label Security
	Overview of Oracle Label Security Auditing
	Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
	Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN
	Auditing Options for Oracle Label Security
	Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT
	Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT
	Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

	Managing Policy Label Auditing
	Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL
	Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL
	Finding Label Audit Status with AUDIT_LABEL_ENABLED

	Creating and Dropping an Audit Trail View for Oracle Label Security
	Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW
	Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW

	Oracle Label Security Auditing Tips
	Strategy for Setting SA_AUDIT_ADMIN Options
	Auditing Privileged Operations

	12 Using Oracle Label Security with a Distributed Database
	An Oracle Label Security Distributed Configuration
	Connecting to a Remote Database Under Oracle Label Security
	Establishing Session Label and Row Label for a Remote Session
	Setting Up Labels in a Distributed Environment
	Setting Label Tags in a Distributed Environment
	Setting Numeric Form of Label Components in a Distributed Environment

	Using Oracle Label Security Policies in a Distributed Environment
	Using Replication with Oracle Label Security
	Introduction to Replication Under Oracle Label Security
	Replication Functionality Supported by Oracle Label Security
	Row Level Security Restriction on Replication Under Oracle Label Security

	Contents of a Materialized View
	How Materialized View Contents Are Determined
	Complete Materialized Views
	Partial Materialized Views

	Requirements for Creating Materialized Views Under Oracle Label Security
	Requirements for the REPADMIN Account
	Requirements for the Owner of the Materialized View
	Requirements for Creating Partial Multilevel Materialized Views
	Requirements for Creating Complete Multilevel Materialized Views

	How to Refresh Materialized Views

	13 Performing DBA Functions Under Oracle Label Security
	Using the Export Utility with Oracle Label Security
	Using the Import Utility with Oracle Label Security
	Requirements for Import Under Oracle Label Security
	Preparing the Import Database
	Verifying Import User Authorizations

	Defining Data Labels for Import
	Importing Labeled Data Without Installing Oracle Label Security
	Importing Unlabeled Data
	Importing Tables with Hidden Columns

	Using SQL*Loader with Oracle Label Security
	Requirements for Using SQL*Loader Under Oracle Label Security
	Oracle Label Security Input to SQL*Loader

	Performance Tips for Oracle Label Security
	Using ANALYZE to Improve Oracle Label Security Performance
	Creating Indexes on the Policy Label Column
	Planning a Label Tag Strategy to Enhance Performance
	Partitioning Data Based on Numeric Label Tags

	Creating Additional Databases After Installation

	14 Releasability Using Inverse Groups
	Introduction to Inverse Groups and Releasability
	Comparing Standard Groups and Inverse Groups
	How Inverse Groups Work
	Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option
	Inverse Groups and Label Components
	Computed Labels with Inverse Groups
	Computed Session Labels with Inverse Groups
	Inverse Groups and Computed Max Read Groups and Max Write Groups

	Inverse Groups and Hierarchical Structure
	Inverse Groups and User Privileges

	Algorithm for Read Access with Inverse Groups
	Algorithm for Write Access with Inverse Groups
	Algorithms for COMPACCESS Privilege with Inverse Groups
	Session Labels and Inverse Groups
	Setting Initial Session/Row Labels for Standard or Inverse Groups
	Standard Groups: Rules for Changing Initial Session/Row Labels
	Inverse Groups: Rules for Changing Initial Session/Row Labels

	Setting Current Session/Row Labels for Standard or Inverse Groups
	Standard Groups: Rules for Changing Current Session/Row Labels
	Inverse Groups: Rules for Changing Current Session/Row Labels

	Examples of Session Labels and Inverse Groups
	Inverse Groups Example 1
	Inverse Groups Example 2

	Changes in Behavior of Procedures with Inverse Groups
	SYSDBA.CREATE_POLICY with Inverse Groups
	SYSDBA.ALTER_POLICY with Inverse Groups
	SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
	SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
	SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
	SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
	SA_COMPONENTS.CREATE_GROUP with Inverse Groups
	SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
	SA_SESSION.SET_LABEL with Inverse Groups
	SA_SESSION.SET_ROW_LABEL with Inverse Groups
	LEAST_UBOUND with Inverse Groups
	GREATEST_LBOUND with Inverse Groups

	Dominance Rules for Labels with Inverse Groups

	Part IV Appendices
	A Advanced Topics in Oracle Label Security
	Analyzing the Relationships Between Labels
	Dominant and Dominated Labels
	Non-Comparable Labels
	Using Dominance Functions
	DOMINATES Standalone Function
	STRICTLY_DOMINATES Standalone Function
	DOMINATED_BY Standalone Function
	STRICTLY_DOMINATED_BY Standalone Function
	SA_UTL.DOMINATES
	SA_UTL.STRICTLY_DOMINATES
	SA_UTL.DOMINATED_BY
	SA_UTL.STRICTLY_DOMINATED_BY

	OCI Interface for Setting Session Labels
	OCIAttrSet
	OCIAttrGet
	OCIParamGet
	OCIAttrSet
	OCI Example

	B Command-line Tools for Label Security Using Oracle Internet Directory
	Command Explanations
	Relating Parameters to Commands for olsadmintool
	Summaries

	Examples of Using olsadmintool
	Make Other Users Policy Creators
	Create Policies With Valid Options
	Create Policy Administrators
	Create Some Levels
	Create Some Compartments
	Create Some Groups
	Create Some Labels
	Create A Profile
	Add A User To The Above Profile
	Add Another User To The Above Profile
	Set Some Audit Options
	Results of These Examples

	C Reference
	Oracle Label Security Data Dictionary Tables and Views
	Oracle9i Data Dictionary Tables
	Oracle Label Security Data Dictionary Views
	ALL_SA_AUDIT_OPTIONS
	ALL_SA_COMPARTMENTS
	ALL_SA_DATA_LABELS
	ALL_SA_GROUPS
	ALL_SA_LABELS
	ALL_SA_LEVELS
	ALL_SA_POLICIES
	ALL_SA_PROG_PRIVS
	ALL_SA_SCHEMA_POLICIES
	ALL_SA_TABLE_POLICIES
	ALL_SA_USERS
	ALL_SA_USER_LABELS
	ALL_SA_USER_LEVELS
	ALL_SA_USER_PRIVS
	DBA_SA_AUDIT_OPTIONS
	DBA_SA_COMPARTMENTS
	DBA_SA_DATA_LABELS
	DBA_SA_GROUPS
	DBA_SA_GROUP_HIERARCHY
	DBA_SA_LABELS
	DBA_SA_LEVELS
	DBA_SA_POLICIES
	DBA_SA_PROG_PRIVS
	DBA_SA_SCHEMA_POLICIES
	DBA_SA_TABLE_POLICIES
	DBA_SA_USERS
	DBA_SA_USER_COMPARTMENTS
	DBA_SA_USER_GROUPS
	DBA_SA_USER_LABELS
	DBA_SA_USER_LEVELS
	DBA_SA_USER_PRIVS

	Oracle Label Security Auditing Views

	Restrictions in Oracle Label Security
	CREATE TABLE AS SELECT Restriction in Oracle Label Security
	Label Tag Restriction
	Export Restriction in Oracle Label Security
	Oracle Label Security Deinstallation Restriction
	Shared Schema Support
	Hidden Columns Restriction

	Installing Oracle Label Security
	Oracle Label Security and the SYS.AUD$ Table

	Removing Oracle Label Security

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

