
Oracle® Database
Backup and Recovery Advanced User’s Guide

10g Release 1 (10.1)

Part No. B10734-01

December 2003

Oracle Database Backup and Recovery Advanced User’s Guide, 10g Release 1 (10.1)

Part No. B10734-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Antonio Romero

Contributing Author: Lance Ashdown

Contributors: Beldalker Anand, Tammy Bednar, Senad Dizdar, Muthu Olagappan, Francisco Sanchez,
Steve Wertheimer

Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle7, Oracle8, Oracle9i, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments ... xxi

Preface.. xxiii

Audience ... xxiv
Organization... xxiv
Related Documentation .. xxvi
Conventions... xxvii
Documentation Accessibility .. xxx

What’s New in Backup and Recovery? .. xxxiii

Oracle Database Release 10g New Features in Backup and Recovery..................................... xxxiv

Part I Recovery Manager Advanced Architecture and Concepts

1 Recovery Manager Architecture

About the RMAN Environment... 1-2
RMAN Session Architecture ... 1-3

RMAN Command Line Client ... 1-3
How RMAN Compiles and Executes Commands... 1-3
Issuing RMAN Commands... 1-4
RMAN Pipe Interface... 1-6

RMAN Repository .. 1-7
Storage of the RMAN Repository in the Recovery Catalog ... 1-7
Storage of the RMAN Repository in the Control File ... 1-10

iv

Media Management.. 1-11
Performing Backup and Restore with a Media Manager ... 1-11
Backup Solutions Program.. 1-12

2 RMAN Backups Concepts

About RMAN Channels .. 2-2
Automatic and Manual Channel Allocation... 2-3
Automatic Channel Device Configuration and Parallelism... 2-4
Automatic Channel Default Device Types.. 2-5
Automatic Channel Naming Conventions.. 2-6
Automatic Channel Generic Configurations .. 2-7
Automatic Channel-Specific Configurations.. 2-8
Clearing Automatic Channel Settings ... 2-8
Determining Channel Parallelism to Match Hardware Devices ... 2-9
Channel Control Options for Manual and Automatic Channels... 2-10
Channel Failover... 2-11

About RMAN Backups .. 2-12
About Image Copies... 2-12
About Proxy Copies ... 2-14
Storage of Backups on Disk and Tape ... 2-15
Backups of Archived Logs... 2-15
Multiplexed Backup Sets ... 2-16
Multiplexing by the Media Manager ... 2-18
Manual Parallelization of Backups... 2-18

Multiple Copies of RMAN Backups ... 2-20
Duplexed Backup Sets.. 2-20
Backups of Backup Sets.. 2-22
Backups of Image Copies... 2-24

RMAN Backup Options: Naming, Sizing, and Speed... 2-25
Filenames for Backup Pieces ... 2-25
Filenames for Image Copies .. 2-26
Tags for RMAN Backups ... 2-26
Size of Backup Pieces ... 2-28
Number and Size of Backup Sets.. 2-30
I/O Read Rate of Backups ... 2-31

v

RMAN Backup Types .. 2-32
Incremental Backups .. 2-33

 Control File and Server Parameter File Autobackups .. 2-38
How RMAN Performs Control File Autobackups .. 2-39
When RMAN Performs Control File Autobackups... 2-40

Backup Retention Policies .. 2-41
Recovery Window .. 2-43
Backup Redundancy .. 2-45
Batch Deletes of Obsolete Backups .. 2-46
Exempting Backups from the Retention Policy.. 2-47
Relationship Between Retention Policy and Flash Recovery Area Rules 2-48

Backup Optimization ... 2-49
Backup Optimization Algorithm.. 2-49
Requirements for Enabling and Disabling Backup Optimization....................................... 2-51
Effect of Retention Policies on Backup Optimization ... 2-52

Restartable Backups ... 2-54
Managing Backup Windows and Performance: BACKUP... DURATION............................. 2-55

Controlling RMAN Behavior when Backup Window Ends with PARTIAL..................... 2-55
Managing Backup Performance with MINIMIZE TIME and MINIMIZE LOAD 2-56

RMAN Backup Errors .. 2-57
Tests and Integrity Checks for Backups ... 2-58

Detecting Physical and Logical Block Corruption... 2-59
Detection of Logical Block Corruption.. 2-59
Detection of Fractured Blocks During Open Backups .. 2-60
Backup Validation with RMAN ... 2-60

3 RMAN Recovery Concepts

Restoring Files with RMAN ... 3-2
Mechanics of Restore Operations... 3-2
File Selection in Restore Operations .. 3-3
Restore Failover .. 3-4
Restore Optimization ... 3-5

Datafile Media Recovery with RMAN ... 3-5
RMAN Media Recovery: Basic Steps... 3-5
Mechanics of Recovery: Incremental Backups and Redo Logs.. 3-7

vi

Incomplete Recovery.. 3-9
Tablespace Point-in-Time Recovery... 3-10

Block Media Recovery with RMAN.. 3-10
When Block Media Recovery Should Be Used... 3-11
Block Media Recovery When Redo Is Missing... 3-12

Database Duplication with RMAN ... 3-13
Physical Standby Database Creation with RMAN .. 3-15

4 RMAN Maintenance Concepts

RMAN Reporting.. 4-2
Using the RMAN LIST Command ... 4-2
RMAN Reports.. 4-3
SHOW Command Output... 4-7

Crosschecks of RMAN Backups .. 4-7
Monitoring RMAN Through V$ Views.. 4-9

Correlating Server Sessions with RMAN Channels .. 4-10
Monitoring RMAN Job Progress .. 4-13
Monitoring RMAN Interaction with the Media Manager .. 4-16
Monitoring RMAN Job Performance... 4-17
Determining Which Datafiles Require Recovery ... 4-17

Deletion of RMAN Backups ... 4-18
Summary of RMAN Deletion Methods... 4-19
Removal of Backups with the DELETE Command ... 4-20
Behavior of DELETE Command When the Repository and Media Do Not Correspond 4-22
Removal of Backups with the BACKUP ... DELETE INPUT Command............................ 4-23

CHANGE AVAILABLE and CHANGE UNAVAILABLE with RMAN Backups 4-24
Changing Retention Policy Status of RMAN Backups ... 4-24

Part II Performing Advanced RMAN Backup and Recovery

5 Connecting to Databases with RMAN

Starting RMAN Without Connecting to a Database .. 5-2
Connecting to a Target Database and a Recovery Catalog .. 5-2

Connecting to the Target Database and Recovery Catalog from the Command Line 5-3

vii

Connecting to the Target Database and Recovery Catalog from the RMAN Prompt 5-3
Connecting to an Auxiliary Database ... 5-4

Connecting to an Auxiliary Database from the Command Line... 5-4
Connecting to an Auxiliary Database from the RMAN Prompt ... 5-4

Diagnosing Connection Problems... 5-5
Diagnosing Target and Auxiliary Database Connection Problems 5-5
Diagnosing Recovery Catalog Connection Problems ... 5-5

Hiding Passwords When Connecting to Databases... 5-5
Sending RMAN Output Simultaneously to the Terminal and a Log File 5-7
Executing RMAN Commands Through a Pipe ... 5-7

Executing Multiple RMAN Commands In Succession Through a Pipe: Example......... 5-8
Executing RMAN Commands In a Single Job Through a Pipe: Example 5-8

6 Configuring the RMAN Environment: Advanced Topics

Configuring the Flash Recovery Area: Advanced Topics.. 6-2
Configuring Online Redo Log Creation in the Flash Recovery Area 6-2
Configuring Control File Creation in the Flash Recovery Area .. 6-2
Archived Redo Log Creation in the Flash Recovery Area.. 6-3
RMAN File Creation in the Flash Recovery Area.. 6-4

Configuring RMAN to Make Backups to a Media Manager.. 6-5
Prerequisites for Using a Media Manager with RMAN ... 6-5
Locating the Media Management Library: The SBT_LIBRARY Parameter 6-6
Testing Whether the Media Manager Library Is Integrated Correctly................................. 6-7
Configuring Automatic Channels for Use with a Media Manager..................................... 6-11

Configuring Automatic Channels.. 6-12
Configuring Parallelism for Automatic Channels ... 6-12
Configuring a Generic Automatic Channel for a Device Type.. 6-13
Showing the Automatic Channel Configuration Settings .. 6-14
Configuring a Specific Channel for a Device Type.. 6-16
Clearing Channel and Device Settings .. 6-19

Configuring the Maximum Size of Backup Sets and Pieces .. 6-20
Configuring Backup Optimization.. 6-21
Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES 6-22
Configuring Tablespaces for Exclusion from Whole Database Backups 6-24
Configuring Auxiliary Instance Datafile Names: CONFIGURE AUXNAME 6-25

viii

Setting the Snapshot Control File Location ... 6-26
Default Location of the Snapshot Control File ... 6-27
Viewing the Configured Location of the Snapshot Control File ... 6-27
Setting the Location of the Snapshot Control File.. 6-28
Showing the Current Snapshot Control File Name... 6-28

Setting Up RMAN for Use with a Shared Server ... 6-29

7 Making Backups with RMAN: Advanced Topics

Configuring and Allocating Channels for Use in Backups .. 7-2
Configuring the Default Backup Type for Disk.. 7-3
Duplexing Backup Sets.. 7-3

Duplexing Backup Sets with CONFIGURE BACKUP COPIES... 7-3
Duplexing Backupsets with BACKUP... COPIES .. 7-4

Making Split Mirror Backups with RMAN... 7-5
Backing Up Backup Sets with RMAN .. 7-7
Backing Up Image Copies with RMAN ... 7-8
Restarting and Optimizing RMAN Backups... 7-8

Backing Up Files Using Backup Optimization ... 7-9
Restarting a Backup After It Partially Completes .. 7-9

Validating Backups with RMAN ... 7-10
RMAN Backup Examples .. 7-11

Specifying the Device Type on the BACKUP Command: Example.................................... 7-12
Skipping Tablespaces when Backing Up a Database: Example... 7-12
Restarting a Backup: Example .. 7-13
Spreading a Backup Across Multiple Disk Drives: Example ... 7-13
Backing Up a Large Database to Multiple File Systems: Example 7-14
Specifying the Size of Backup Sets: Example.. 7-15
Limiting the Size of Backup Pieces: Example ... 7-16
Backing Up Archived Redo Logs in a Failover Scenario: Example..................................... 7-17
Backing Up Archived Logs Needed to Recover an Online Backup: Example................... 7-17
Backing Up and Deleting Multiple Copies of an Archived Redo Log: Example 7-18
Performing Differential Incremental Backups: Example .. 7-19
Performing Cumulative Incremental Backups: Example ... 7-19
Determining How Channels Distribute a Backup Workload: Example............................. 7-20
Backing Up in NOARCHIVELOG Mode: Example... 7-20

ix

Cataloging User-Managed Datafile Copies: Example... 7-21
Keeping a Long-Term Backup: Example .. 7-22
Optimizing Backups: Examples ... 7-23
Handling Errors During Backups: Example... 7-26

8 Advanced RMAN Recovery Techniques

Performing Database Point-In-Time Recovery ... 8-2
Performing Point-in-Time Recovery with a Current Control File... 8-3
Point-in-Time Recovery to a Previous Incarnation.. 8-4

Performing Recovery with a Backup Control File ... 8-6
Performing Recovery with a Backup Control File and a Recovery Catalog........................ 8-7
Performing Recovery with a Backup Control File and No Recovery Catalog 8-8

Restoring the Database to a New Host ... 8-11
Specifying Filenames When Restoring to a New Host ... 8-12
Determining the SCN for Incomplete Recovery After Restore.. 8-13
Testing the Restore of a Database to a New Host: Scenario... 8-13

 Performing Disaster Recovery .. 8-18
Performing Block Media Recovery with RMAN.. 8-21

Recovering Datablocks By Using All Available Backups... 8-21
Recovering Datablocks By Using Selected Backups.. 8-22
Recovering Blocks Listed in V$DATABASE_BLOCK_CORRUPTION 8-23

RMAN Restore and Recovery Examples .. 8-24
Restoring Datafile Copies to a New Host: Example.. 8-24
Restoring When Multiple Databases in the Catalog Share the Same Name: Example 8-25
Recovering a Database in NOARCHIVELOG Mode: Example... 8-27
Recovering a Lost Datafile Without a Backup: Example .. 8-28
Transporting a Tablespace to a Different Database on the Same Platform: Example 8-29

9 Flashback Technology: Recovering from Logical Corruptions

Oracle Flashback Technology: Overview... 9-2
Oracle Flashback Query: Recovering at the Row Level .. 9-3
Oracle Flashback Table: Returning Individual Tables to Past States 9-4
Oracle Flashback Drop: Undo a DROP TABLE Operation .. 9-6

What is the Recycle Bin?.. 9-6
How Tables and Other Objects Are Placed in the Recycle Bin .. 9-6

x

Naming Convention for Objects in the Recycle Bin .. 9-7
Viewing and Querying Objects in the Recycle Bin .. 9-8
Recycle Bin Capacity and Space Pressure ... 9-9
Performing Flashback Drop on Tables in the Recycle Bin.. 9-10
Purging Objects from the Recycle Bin ... 9-12
Privileges and Security... 9-14
Limitations and Restrictions on Flashback Drop ... 9-15

Oracle Flashback Database: Alternative to Point-In-Time Recovery 9-15
Limitations of Flashback Database... 9-16
Requirements for Flashback Database... 9-17
Enabling Flashback Database.. 9-17
Sizing the Flash Recovery Area for Flashback Logs .. 9-18
Determining the Current Flashback Database Window... 9-19
Performance Tuning for Flashback Database... 9-19
Monitoring Flashback Database ... 9-20
Running the FLASHBACK DATABASE Command from RMAN...................................... 9-21
Running the FLASHBACK DATABASE Command from SQL*Plus.................................. 9-22

Using Oracle Flashback Features Together in Data Recovery: Scenario................................ 9-23

10 RMAN Tablespace Point-in-Time Recovery (TSPITR)

Understanding RMAN TSPITR .. 10-1
RMAN TSPITR Concepts... 10-2
Deciding When to Use TSPITR... 10-4

Planning and Preparing for TSPITR ... 10-6
Choosing the Right Target Time for TSPITR ... 10-7
Determining the Recovery Set: Analyzing Data Relationships ... 10-7
Identifying and Preserving Objects That Will Be Lost After TSPITR 10-9

Performing Basic RMAN TSPITR ... 10-10
Fully Automated RMAN TSPITR... 10-11

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance 10-13
Renaming TSPITR Recovery Set Datafiles with SET NEWNAME.................................... 10-14
Renaming TSPITR Auxiliary Set Datafiles.. 10-15
Using Image Copies for Faster TSPITR Performance.. 10-18
Customizing Initialization Parameters for the Automatic Auxiliary Instance................ 10-21

Performing RMAN TSPITR Using Your Own Auxiliary Instance 10-22

xi

Preparing Your Own Auxiliary Instance for RMAN TSPITR.. 10-22
Preparing RMAN Commands for TSPITR with Your Own Auxiliary Instance 10-25
Executing TSPITR with Your Own Auxiliary Instance... 10-26
Executing TSPITR With Your Own Auxiliary Instance: Scenario 10-27

Troubleshooting RMAN TSPITR .. 10-29
Troubleshooting TSPITR Example: Filename Conflicts.. 10-29
Troubleshooting TSPITR Example: Insufficient Sort Space during Export 10-29
Troubleshooting: Restarting Manual Auxiliary Instance After TSPITR Failure 10-30

11 Duplicating a Database with Recovery Manager

Creating a Duplicate Database: Overview... 11-2
How Recovery Manager Duplicates a Database.. 11-2
Database Duplication Options.. 11-4
Duplicating a Database: Prerequisites and Restrictions ... 11-5

Generating Files for the Duplicate Database .. 11-5
Creating the Duplicate Control Files ... 11-5
Creating the Duplicate Online Redo Logs .. 11-5
Renaming Datafiles When Duplicating a Database .. 11-6
Skipping Read-Only Tablespaces When Duplicating a Database....................................... 11-7
Skipping OFFLINE NORMAL Tablespaces When Duplicating a Database 11-8

Preparing the Auxiliary Instance for Duplication: Basic Steps ... 11-9
Task 1: Create an Oracle Password File for the Auxiliary Instance 11-9
Task 2: Ensure Oracle Net Connectivity to the Auxiliary Instance..................................... 11-9
Task 3: Create an Initialization Parameter File for the Auxiliary Instance 11-9
Task 4: Start the Auxiliary Instance ... 11-11
Task 5: Mount or Open the Target Database.. 11-11
Task 6: Make Sure You Have the Necessary Backups and Archived Redo Logs 11-12
Task 7: Allocate Auxiliary Channels if Automatic Channels Are Not Configured........ 11-12

Creating a Duplicate Database on a Local or Remote Host.. 11-13
Duplicating a Database on a Remote Host with the Same Directory Structure.............. 11-13
Duplicating a Database on a Remote Host with a Different Directory Structure 11-14
Creating a Duplicate Database on the Local Host ... 11-19
Duplicating a Database to an Automatic Storage Management Environment 11-20

Database Duplication Examples .. 11-20
Duplicating When the Datafiles Use Inconsistent Paths: Example................................... 11-20

xii

Resynchronizing the Duplicate Database with the Target Database: Example 11-21
Creating Duplicate of the Database at a Past Point in Time: Example 11-23
Duplicating with a Client-Side Parameter File: Example ... 11-23

12 Migrating Databases To and From ASM with Recovery Manager

Migrating a Database into ASM .. 12-2
Limitation on ASM Migration with Transportable Tablespaces ... 12-2
Preparing to Migrate a Database to ASM.. 12-2
Disk-Based Migration of a Database to ASM ... 12-3
Using Tape Backups to Migrate a Database to ASM... 12-6

Migrating the Flash Recovery Area to ASM .. 12-9
Migrating a Database from ASM to Non-ASM Storage.. 12-11
PL/SQL Scripts Used in Migrating to ASM Storage .. 12-14

Generating ASM-to-Non-ASM Storage Migration Script... 12-14
Migrating Online Redo Logs to ASM Storage.. 12-15
Migrating Standby Online Redo Log Files to ASM Storage... 12-16

13 Managing the Recovery Catalog

Creating a Recovery Catalog ... 13-2
Configuring the Recovery Catalog Database.. 13-2
Creating the Recovery Catalog Owner.. 13-3
Creating the Recovery Catalog ... 13-4

Managing Target Database Records in the Recovery Catalog.. 13-5
Registering a Database in the Recovery Catalog.. 13-5
Unregistering a Target Database from the Recovery Catalog.. 13-8
Resetting a Database Incarnation in the Recovery Catalog.. 13-9
Removing Recovery Catalog Records with Status DELETED ... 13-11

Resynchronizing the Recovery Catalog.. 13-11
Types of Records That Are Resynchronized... 13-12
Full and Partial Resynchronization.. 13-12
When Should You Resynchronize? .. 13-13
Forcing a Full Resynchronization of the Recovery Catalog ... 13-14
Resynchronizing the Recovery Catalog and CONTROLFILE_RECORD_KEEP_TIME 13-15

Working with RMAN Stored Scripts in the Recovery Catalog.. 13-15
Creating Stored Scripts: CREATE SCRIPT.. 13-16

xiii

Running Stored Scripts: EXECUTE SCRIPT... 13-16
Displaying a Stored Script: PRINT SCRIPT.. 13-17
Listing Stored Scripts: LIST SCRIPT NAMES .. 13-18
Updating Stored Scripts: REPLACE SCRIPT ... 13-18
Deleting Stored Scripts: DELETE SCRIPT .. 13-19
Starting the RMAN Client and Running a Stored Script.. 13-20
Restrictions on Stored Script Names ... 13-20

Managing the Control File When You Use a Recovery Catalog .. 13-21
Backing Up and Recovering the Recovery Catalog.. 13-22

Backing Up the Recovery Catalog.. 13-22
Restoring and Recovering the Recovery Catalog from Backup... 13-25
Re-Creating the Recovery Catalog ... 13-25

Exporting and Importing the Recovery Catalog ... 13-26
Considerations When Moving Catalog Data.. 13-26
Exporting the Recovery Catalog... 13-27
Importing the Recovery Catalog .. 13-28

Increasing Availability of the Recovery Catalog .. 13-28
Querying the Recovery Catalog Views... 13-29

Querying Catalog Views for the Target DB_KEY or DBID Values................................... 13-31
Determining the Schema Version of the Recovery Catalog ... 13-32
Upgrading the Recovery Catalog ... 13-33
Dropping the Recovery Catalog... 13-34

14 Tuning Backup and Recovery

Tuning Recovery Manager: Overview .. 14-2
I/O Buffer Allocation... 14-2
Synchronous and Asynchronous I/O ... 14-4
Factors Affecting Backup Speed to Tape... 14-6

Features and Options Used to Tune RMAN Performance .. 14-8
Using the RATE Parameter to Control Disk Bandwidth Usage .. 14-8

Tuning RMAN Backup Performance: Examples .. 14-8
Step 1: Remove RATE Parameters from Configured and Allocated Channels................. 14-8
Step 2: If You Use Synchronous Disk I/O, Set DBWR_IO_SLAVES 14-9
Step 3: If You Fail to Allocate Shared Memory, Set LARGE_POOL_SIZE 14-9
Step 4: Determine Whether Files Are Empty or Contain Few Changes........................... 14-10

xiv

Step 5: Query V$ Views to Identify Bottlenecks... 14-11
Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET......................... 14-12

Understanding Instance Recovery ... 14-12
Checkpointing and Cache Recovery .. 14-13
Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET............ 14-14
Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor 14-17

15 Recovery Manager Troubleshooting

Interpreting RMAN Message Output ... 15-2
Identifying Types of Message Output ... 15-2
Recognizing RMAN Error Message Stacks... 15-3
Identifying Error Codes ... 15-3
Interpreting RMAN Error Stacks.. 15-7
Identifying RMAN Return Codes .. 15-10

Testing the Media Management API... 15-10
Obtaining the sbttest Utility .. 15-10
Obtaining Online Documentation for the sbttest Utility .. 15-11
Using the sbttest Utility ... 15-11

Terminating an RMAN Command .. 15-13
Terminating the Session with ALTER SYSTEM KILL SESSION 15-13
Terminating the Session at the Operating System Level .. 15-14
Terminating an RMAN Session That Is Hung in the Media Manager 15-14

RMAN Troubleshooting Scenarios ... 15-16
After Installation of Media Manager, RMAN Channel Allocation Fails: Scenario 15-17
Backup Job Is Hanging: Scenario.. 15-19
RMAN Fails to Start RPC Call: Scenario ... 15-20
Backup Fails with Invalid RECID Error: Scenario ... 15-21
Backup Fails Because of Control File Enqueue: Scenario ... 15-25
RMAN Fails to Delete All Archived Logs: Scenario.. 15-27
Backup Fails Because RMAN Cannot Locate an Archived Log: Scenario 15-27
RMAN Does Not Recognize Character Set Name: Scenario .. 15-28
RMAN Denies Logon to Target Database: Scenario.. 15-29
Database Duplication Fails Because of Missing Log: Scenario .. 15-30
Duplication Fails with Multiple RMAN-06023 Errors: Scenario 15-31
UNKNOWN Database Name Appears in Recovery Catalog: Scenario 15-32

xv

Part III Performing User-Managed Backup and Recovery

16 Making User-Managed Backups

Querying V$ Views to Obtain Backup Information .. 16-2
Listing Database Files Before a Backup... 16-2
Determining Datafile Status for Online Tablespace Backups .. 16-3

Making User-Managed Backups of the Whole Database ... 16-4
Making Consistent Whole Database Backups.. 16-4

Making User-Managed Backups of Offline Tablespaces and Datafiles................................. 16-5
Making User-Managed Backups of Online Tablespaces and Datafiles 16-6

Making User-Managed Backups of Online Read/Write Tablespaces................................ 16-6
Making Multiple User-Managed Backups of Online Read/Write Tablespaces................ 16-8
Ending a Backup After an Instance Failure or SHUTDOWN ABORT 16-10
Making User-Managed Backups of Read-Only Tablespaces ... 16-12

Making User-Managed Backups of the Control File ... 16-14
Backing Up the Control File to a Binary File .. 16-14
Backing Up the Control File to a Trace File .. 16-14

Making User-Managed Backups of Archived Redo Logs... 16-17
Making User-Managed Backups in SUSPEND Mode .. 16-17

About the Suspend/Resume Feature .. 16-18
Making Backups in a Suspended Database .. 16-18

Making User-Managed Backups to Raw Devices .. 16-20
Backing Up to Raw Devices on UNIX ... 16-21
Backing Up to Raw Devices on Windows .. 16-23

Verifying User-Managed Backups... 16-25
Testing the Restore of Backups... 16-25
Running the DBVERIFY Utility.. 16-25

Making Logical Backups with Oracle Export Utilities.. 16-26
Making User-Managed Backups of Miscellaneous Oracle Files... 16-27
Keeping Records of Current and Backup Database Files ... 16-27

Recording the Locations of Datafiles, Control Files, and Online Redo Logs................... 16-28
Recording the Locations of Archived Redo Logs .. 16-28
Recording the Locations and Dates of Backup Files ... 16-28

xvi

17 Performing User-Managed Database Flashback and Recovery

User-Managed Backup and Flashback Features of Oracle ... 17-1
Performing Flashback Database with SQL*Plus .. 17-2

About User-Managed Restore Operations ... 17-3
Determining Which Datafiles Require Recovery ... 17-4
Restoring Datafiles and Archived Redo Logs.. 17-5

Restoring Datafiles with Operating System Utilities... 17-6
Restoring Archived Redo Logs with Operating System Utilities .. 17-6

Restoring Control Files .. 17-8
Losing a Member of a Multiplexed Control File .. 17-8
Losing All Current Control Files When a Backup Is Available ... 17-9
Losing All Current and Backup Control Files .. 17-12

About User-Managed Media Recovery .. 17-14
Preconditions of Performing User-Managed Recovery .. 17-14
Applying Logs Automatically with the RECOVER Command... 17-15
Recovering When Archived Logs Are in the Default Location ... 17-17
Recovering When Archived Logs Are in a Nondefault Location...................................... 17-18
Resetting the Archived Log Destination ... 17-18
Overriding the Archived Log Destination .. 17-19
Responding to Unsuccessful Application of Redo Logs... 17-20
Interrupting User-Managed Media Recovery .. 17-20

Performing Complete User-Managed Media Recovery .. 17-21
Performing Closed Database Recovery ... 17-21
Performing Datafile Recovery in an Open Database... 17-24

Performing Incomplete User-Managed Media Recovery ... 17-27
Preparing for Incomplete Recovery ... 17-28
Restoring Datafiles Before Performing Incomplete Recovery.. 17-28
Performing Cancel-Based Incomplete Recovery.. 17-30
Performing Time-Based or Change-Based Incomplete Recovery...................................... 17-32

Opening the Database with the RESETLOGS Option .. 17-33
About Opening with the RESETLOGS Option... 17-33
Executing the ALTER DATABASE OPEN Statements ... 17-35
Checking the Alert Log After a RESETLOGS Operation.. 17-36

Recovering a Database in NOARCHIVELOG Mode .. 17-37
Restoring a NOARCHIVELOG Database to its Default Location 17-37

xvii

Restoring a NOARCHIVELOG Database to a New Location.. 17-37
Performing Media Recovery in Parallel ... 17-39

18 Advanced User-Managed Recovery Scenarios

Recovering After the Loss of Datafiles: Scenarios.. 18-2
Losing Datafiles in NOARCHIVELOG Mode.. 18-2
Losing Datafiles in ARCHIVELOG Mode .. 18-2

Recovering Through an Added Datafile with a Backup Control File: Scenario 18-3
Re-Creating Datafiles When Backups Are Unavailable: Scenario .. 18-4
Recovering Through RESETLOGS with Created Control File: Scenario 18-5
Recovering NOLOGGING Tables and Indexes: Scenario.. 18-6
Recovering Read-Only Tablespaces with a Backup Control File: Scenario 18-6

Recovery of Read-Only or Slow Media with a Backup Control File................................... 18-7
Recovery of Read-Only Files with a Re-Created Control File.. 18-7

Recovering Transportable Tablespaces: Scenario... 18-8
Recovering After the Loss of Online Redo Log Files: Scenarios... 18-9

Recovering After Losing a Member of a Multiplexed Online Redo Log Group............. 18-10
Recovering After the Loss of All Members of an Online Redo Log Group 18-11

Recovering After the Loss of Archived Redo Log Files: Scenario... 18-15
Recovering from a Dropped Table: Scenario... 18-16
Performing Media Recovery in a Distributed Environment: Scenario 18-17

Coordinating Time-Based and Change-Based Distributed Database Recovery 18-18
Dropping a Database with SQL*Plus ... 18-19

19 Performing User-Managed TSPITR

Introduction to User-Managed Tablespace Point-in-Time Recovery 19-2
TSPITR Terminology.. 19-2
TSPITR Methods ... 19-3

Preparing for Tablespace Point-in-Time Recovery: Basic Steps ... 19-4
Step 1: Review TSPITR Requirements ... 19-5
Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces............... 19-5
Step 3: Determine Whether Objects Will Be Lost... 19-6
Step 4: Choose a Method for Connecting to the Auxiliary Instance 19-7
Step 5: Create an Oracle Password File for the Auxiliary Instance..................................... 19-7
Step 6: Create the Initialization Parameter File for the Auxiliary Instance........................ 19-7

xviii

Restoring and Recovering the Auxiliary Database: Basic Steps.. 19-10
Restoring and Recovering the Auxiliary Database on the Same Host 19-10
Restoring the Auxiliary Database on a Different Host with the Same Path Names....... 19-12
Restoring the Auxiliary Database on a Different Host with Different Path Names 19-14

Performing TSPITR with Transportable Tablespaces ... 19-14
Step 1: Unplugging the Tablespaces from the Auxiliary Database 19-14
Step 2: Transporting the Tablespaces into the Primary Database 19-15

Performing Partial TSPITR of Partitioned Tables ... 19-16
Step 1: Create a Table on the Primary Database for Each Partition Being Recovered.... 19-17
Step 2: Drop the Indexes on the Partition Being Recovered... 19-17
Step 3: Exchange Partitions with Standalone Tables ... 19-17
Step 4: Drop the Recovery Set Tablespace .. 19-18
Step 5: Create Tables at Auxiliary Database ... 19-18
Step 6: Drop Indexes on Partitions Being Recovered .. 19-18
Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database............ 19-18
Step 8: Transport the Recovery Set Tablespaces .. 19-19
Step 9: Exchange Partitions with Standalone Tables on the Primary Database 19-19
Step 10: Back Up the Recovered Tablespaces in the Primary Database 19-19

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped 19-19
Step 1: Find the Low and High Range of the Partition that Was Dropped...................... 19-20
Step 2: Create a Temporary Table .. 19-20
Step 3: Delete Records From the Partitioned Table ... 19-20
Step 4: Drop the Recovery Set Tablespace .. 19-20
Step 5: Create Tables at the Auxiliary Database... 19-20
Step 6: Drop Indexes on Partitions Being Recovered .. 19-21
Step 7: Exchange Partitions with Standalone Tables ... 19-21
Step 8: Transport the Recovery Set Tablespaces .. 19-21
Step 9: Insert Standalone Tables into Partitioned Tables .. 19-21
Step 10: Back Up the Recovered Tablespaces in the Primary Database 19-22

Performing TSPITR of Partitioned Tables When a Partition Has Split 19-22
Step 1: Drop the Lower of the Two Partitions at the Primary Database........................... 19-22
Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces 19-23

20 Troubleshooting User-Managed Media Recovery

About User-Managed Media Recovery Problems .. 20-2

xix

Investigating the Media Recovery Problem: Phase 1 .. 20-4
Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2............................ 20-5
Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3 ... 20-7
Allowing Recovery to Corrupt Blocks: Phase 4 .. 20-8
Performing Trial Recovery .. 20-9

How Trial Recovery Works... 20-9
Executing the RECOVER ... TEST Statement.. 20-10

Index

xx

xxi

Send Us Your Comments

Oracle Database Backup and Recovery Advanced User’s Guide, 10g Release 1 (10.1)

Part No. B10734-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxii

xxiii

Preface

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xxiv

Audience
Backup and Recovery Advanced User’s Guide is intended for database administrators
who perform the following tasks:

■ Back up, restore, and recover Oracle databases

■ Perform maintenance on backups of database files

To use this document, you need to know the following:

■ Relational database concepts and basic database administration as described in
Oracle Database Concepts and the Oracle Database Administrator's Guide

■ Basic backup and recovery concepts and strategies as described in Oracle
Database Backup and Recovery Basics

■ The operating system environment under which you are running the database

Organization
This document contains:

Part I, "Recovery Manager Advanced Architecture and Concepts"
This section offers detailed conceptual information for Recovery Manager (RMAN).

Chapter 1, "Recovery Manager Architecture"
This chapter describes the application architecture of the RMAN environment.

Chapter 2, "RMAN Backups Concepts"
This chapter describes how to start RMAN and connect to target, catalog, and
auxiliary databases.

Chapter 3, "RMAN Recovery Concepts"
This chapter describes basic concepts involved in RMAN restore, recovery, and
database duplication.

Chapter 4, "RMAN Maintenance Concepts"
This chapter describes basic concepts involved in maintaining the RMAN
repository.

xxv

Part II, "Performing Advanced RMAN Backup and Recovery"
This section describes advanced procedures for using RMAN.

Chapter 5, "Connecting to Databases with RMAN"
This chapter gives detailed information for how to connect to databases with
RMAN.

Chapter 6, "Configuring the RMAN Environment: Advanced Topics"
This chapter describes advanced configurations in the RMAN environment.

Chapter 7, "Making Backups with RMAN: Advanced Topics"
This chapter describes detailed procedure for using the BACKUP command.

Chapter 8, "Advanced RMAN Recovery Techniques"
This chapter includes advanced scenarios and techniques using the RESTORE and
RECOVER commands.

Chapter 9, "Flashback Technology: Recovering from Logical Corruptions"
This chapter describes the Flashback features of the Oracle database, and their use
in a data recovery context.

Chapter 10, "RMAN Tablespace Point-in-Time Recovery (TSPITR)"
This chapter describes how to recover one or more tablespaces to a past point in
time without affecting the rest of the database.

Chapter 11, "Duplicating a Database with Recovery Manager"
This chapter describes how to use DUPLICATE to create a copy of the target
database.

Chapter 12, "Migrating Databases To and From ASM with Recovery Manager"
This chapter describes how to use RMAN to move databases into and out of
Automatic Storage Management disk groups.

Chapter 13, "Managing the Recovery Catalog"
This chapter describes how to create and manage a recovery catalog.

Chapter 14, "Tuning Backup and Recovery"
This chapter gives tips for improving RMAN backup and restore performance.

xxvi

Chapter 15, "Recovery Manager Troubleshooting"
This chapter gives tips for diagnosing and responding to RMAN problems.

Part III, "Performing User-Managed Backup and Recovery"
This section describes how to use operating system utilities to back up and restore a
database and how to use the SQL*Plus RECOVER command.

Chapter 16, "Making User-Managed Backups"
This chapter describes how to use operating system command to back up database
files and archived redo logs.

Chapter 17, "Performing User-Managed Database Flashback and Recovery"
This chapter describes how to use the SQL*Plus FLASHBACK DATABASE and
RECOVER commands.

Chapter 18, "Advanced User-Managed Recovery Scenarios"
This chapter describes advanced scenarios involving user-managed restore and
recovery.

Chapter 19, "Performing User-Managed TSPITR"
This chapter describes how to perform user-managed TSPITR.

Chapter 20, "Troubleshooting User-Managed Media Recovery"
This chapter describes how to diagnose and solve problems in user-managed media
recovery.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Backup and Recovery Basics

■ Oracle Database Recovery Manager Reference

■ Oracle Database Utilities

■ http://www.oracle.com/database/recovery

You can access information about the Backup Solutions Program at

http://otn.oracle.com/deploy/availability

xxvii

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser's "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

xxviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

Thedepartment_id,department_name, and
location_id columns are in the
hr.departments table.

SettheQUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

RunUold_release.SQLwhereold_release
refers to the release you installed prior to
upgrading.

xxix

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECTcol1,col2,...,colnFROMemployees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

xxx

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECTlast_name,employee_idFROMemployees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECTlast_name,employee_idFROMemployees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxxi

evaluates nor makes any representations regarding the accessibility of these Web
sites.

xxxii

xxxiii

What’s New in Backup and Recovery?

This section describes new features of Recovery Manager in Oracle Database
Release 10g and provides pointers to additional information. For information on
new features in Oracle9i and previous releases, refer to the documentation for those
releases.

xxxiv

Oracle Database Release 10g New Features in Backup and Recovery
The new features for this release greatly increase the manageability of RMAN,
making backup and recovery simpler and more performant.

■ Flash Recovery Area

A flash recovery area is a directory, file system, or Automatic Storage
Management disk group that serves as the default storage area for files related
to recovery. Such files include

– Multiplexed copies of the control file and online redo logs

– Archived redo logs and flashback logs

– RMAN backups

– Files created by RESTORE and RECOVER commands

Recovery components of the database interact with the flash recovery area to
ensure that the database is completely recoverable using files in the flash
recovery area. The database manages the disk space in the flash recovery area,
and when there is not sufficient disk space to create new files, the database
creates more room automatically by deleting the minimum set of files from
flash recovery area that are obsolete, backed up to tertiary storage, or
redundant.

■ Oracle Flashback Database

With the FLASHBACK DATABASE command, you can quickly revert a database
to a previous time--without restoring datafiles and performing media recovery.
When you enable the Flashback Database feature, the database automatically
creates, deletes, and manages flashback logs inside the flash recovery area.
When you run the FLASHBACK DATABASE command, the database uses the
flashback logs as well as the archived redo logs to reconstruct its contents at the
specified time.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to set up
the flash recovery area

■ "Configuring the Flash Recovery Area: Advanced Topics" on
page 6-2

xxxv

■ Incrementally Updated Backups: Rolling Forward Image Copies

You can apply backup incrementals to datafile image copies—not current
datafiles—to roll them forward to a specified point in time. In this way, you can
potentially reduce recovery time by applying incrementals to copies and avoid
taking a full image copy again after incremental backups.

■ Disk Topology and Automatic Performance Tuning

The new disk topology API extends RMAN’s capability to more platforms and
file types. RMAN is also able to tune its parameters automatically according to
disk topology information, which decreases the degree of user intervention
required for performance tuning. RMAN can automatically tune the following:

– The contents of the backup sets that define which files are multiplexed

– The level of multiplexing

– The number and size of the input and output disk buffers

■ Automatic Datafile Creation

RMAN can create datafiles automatically when the user executes RESTORE or
RECOVER commands in the following situations:

– The control file has metadata for the datafile, that is, the control file was
backed up after datafile creation, but the datafile itself is not backed up.

– The control file does not have metadata for the datafile, that is, the user did
not back up the control file after datafile creation.

See Also: "Oracle Flashback Database: Alternative to
Point-In-Time Recovery" on page 9-15

See Also: Oracle Database Backup and Recovery Basics to learn how
to roll forward image copies

See Also: "Tuning Recovery Manager: Overview" on page 14-2 to
learn more about RMAN performance tuning

See Also: Oracle Database Recovery Manager Reference to learn
about the behavior of the RECOVER command

xxxvi

■ Recovery Through Resetlogs

RMAN simplifies recovery with backups taken from an earlier incarnation so
that it is as easy as recovering a backup from the same incarnation. Hence, you
no longer need to make new backups of a database after a RESETLOGS. The
procedure is as easy and transparent as recovering a backup from the same
incarnation. Also, the ALTER DATABASE OPEN RESETLOGS statement is now
modified so that the database now archives the current online redo logs (if
possible) before clearing the logs.

■ Restore Failover

If a backup piece is inaccessible or corrupted, then RMAN can automatically fail
over to another copy of this backup piece during RESTORE. If all copies of this
backup set are unusable, then RMAN can fail over to previous redundant
backup sets. RMAN continously fails over to previous backups until it exhausts
all possibilities. This feature is similar to archived log failover.

■ BACKUP Command Creates Backup Sets or Image Copies

In previous releases, RMAN had two separate commands to back up datafiles:
BACKUP and COPY. The BACKUP command backed up the datafile into a backup
set, which is a proprietary format that allows multiple datafiles to be
multiplexed together. The COPY command generated image copies, that is,
bit-by-bit copies of datafiles.

Starting in Release 10g, the COPY command is deprecated in favor of an
enhanced BACKUP command that enables you to specify whether RMAN
should create copies or backup sets. As a result, BACKUP AS COPY can copy a
database or multiple tablespaces, datafiles, archived logs and datafile copies.

See Also: "Point-in-Time Recovery to a Previous Incarnation" on
page 8-4

See Also:

■ "Restore Failover" on page 3-4 for details of restore failover
behavior.

■ Oracle Database Recovery Manager Reference to learn about the
behavior of the RESTORE command

xxxvii

■ Proxy Archived Log Backups

RMAN can create and restore proxy backups of archived redo logs.

■ Cataloging Backup Pieces

Users can now catalog user-specified backup pieces with the CATALOG
command. Cataloging a backup piece adds it to the RMAN repository so that it
is available for use in recovery operations. This enhanced functionality is useful
when you make a copy of a backup piece with an operating system utility, or
when you move a backup piece from one disk to another so that it has a
different absolute path name.

■ Fast Incremental Backups

If you enable block change tracking, then the database automatically tracks
which datafile blocks have changed in change tracking files. When you execute
BACKUP INCREMENTAL, RMAN uses the change tracking file to more quickly
identify the blocks changed since the previous incremental backup. As a result,
RMAN creates incremental backups much faster than in prior releases.

■ Channel Failover

If multiple channels are allocated for a BACKUP command, and if RMAN
encounters a retriable error (for example, an unplanned instance shutdown in
RAC, or a media management error), then RMAN attempts to move the backup
to a different channel and complete the work.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to copy
files

■ Oracle Database Recovery Manager Reference to learn about the
output of the BACKUP command

See Also: Oracle Database Backup and Recovery Basics to learn how
to catalog backup pieces, and Oracle Database Recovery Manager
Reference for CATALOG syntax

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to
enable block change tracking and manage the change tracking
file

xxxviii

■ Deferred Error Reporting

For most RMAN commands, RMAN will report errors in the output when they
occur and then continue to execute the command if possible. If RMAN can retry
a job step on another channel, then it will report a message to this effect. If some
job steps could not be completed, then the error stack at the end of command
execution will display errors for failed steps.

■ Improved RMAN Reporting Through V$ Views

The V$RMAN_OUTPUT memory-only view shows the output of a currently
executing RMAN job, whereas the V$RMAN_STATUS control file view indicates
the status of both executing and completed RMAN jobs. The V$BACKUP_FILES
provides access to the information used as the basis of the LIST BACKUP and
REPORT OBSOLETE commands.

■ Automatic Instance Creation for RMAN TSPITR

RMAN can create an auxiliary instance automatically when you perform
RMAN TSPITR. RMAN creates the auxiliary instance in the same machine as
the target database. RMAN provides intelligent defaults for the instance, but
you can provide nondefault initialization parameters if desired. RMAN
automatically dismantles the auxiliary database and instance after a successful
TSPITR.

■ Cross-Platform Tablespace Conversion

The RMAN command CONVERT TABLESPACE enables you to transport a
tablespace from a database running on one platform (for example, Solaris) to a
database running on a different platform (for example, Windows).

■ Enhanced Stored Scripts Commands

The recovery catalog now supports global stored scripts, which can be applied
to any database in the recovery catalog. A number of new commands have been

See Also: "Channel Failover" on page 2-11

See Also: "RMAN Tablespace Point-in-Time Recovery (TSPITR)"
on page 10-1

See Also: Oracle Database Recovery Manager Reference to learn
about the CONVERT command

xxxix

added to allow for easier manipulation and displaying of stored scripts from
the recovery catalog.

■ Binary Compression of Backup Sets

RMAN can now write backup sets in a format that uses binary compression to
reduce backup set size. Using compressed backup sets can save storage space,
as well as network bandwidth when backing up across a network.

■ Enhanced Reporting: RESTORE PREVIEW

The PREVIEW option to the RESTORE command can now tell you which
backups will be accessed during a RESTORE operation.

■ Managing Backup Duration and Throttling

The BACKUP command now accepts a DURATION clause, which lets you
specify limited time windows for backup activities and minimize load imposed
by backup activities during those backup windows. .

See Also: "Working with RMAN Stored Scripts in the Recovery
Catalog" on page 13-15 for the new commands and options

See Also: Oracle Database Backup and Recovery Basics for more
details on using compressed backupsets.

See Also: Oracle Database Backup and Recovery Basics for more
details on RESTORE PREVIEW

See Also: "Managing Backup Windows and Performance:
BACKUP... DURATION" on page 2-55 for more details on
managing backup duration and throttling

xl

Part I
 Recovery Manager Advanced Architecture

and Concepts

Part I describes the architecture of the RMAN environment and introduces basic
concepts. This part contains these chapters:

■ Chapter 1, "Recovery Manager Architecture"

■ Chapter 2, "RMAN Backups Concepts"

■ Chapter 3, "RMAN Recovery Concepts"

■ Chapter 4, "RMAN Maintenance Concepts"

Recovery Manager Architecture 1-1

1
Recovery Manager Architecture

This chapter describes the Recovery Manager (RMAN) interface and the basic
components of the RMAN environment.

This chapter contains these topics:

■ About the RMAN Environment

■ RMAN Command Line Client

■ RMAN Repository

■ Media Management

About the RMAN Environment

1-2 Backup and Recovery Advanced User’s Guide

About the RMAN Environment
Recovery Manager (RMAN) is a client application that performs backup and
recovery operations. The Recovery Manager environment consists of the various
applications and databases that play a role in a backup and recovery strategy.

Table 1–1 lists possible components of the RMAN environment.

Table 1–1 Components of the RMAN Environment

Component Description Required?

Target database The control files, datafiles, and optional archived
redo logs that RMAN is in charge of backing up or
restoring. RMAN uses the target database control
file to gather metadata about the target database
and to store information about its own operations.
The work of backup and recovery is performed by
server sessions running on the target database.

Yes

RMAN client The client application that manages backup and
recovery operations for a target database. The
RMAN client can use Oracle Net to connect to a
target database, so it can be located on any host that
is connected to the target host through Oracle Net.

Yes

Recovery catalog
database

A database containing the recovery catalog schema,
which contains the metadata that RMAN uses to
perform its backup and recovery operations.

No

Recovery catalog
schema

The user within the recovery catalog database that
owns the metadata tables maintained by RMAN.
RMAN periodically propagates metadata from the
target database control file into the recovery catalog.

No

Standby database A copy of the primary database that is updated
using archived logs created by the primary
database. RMAN can create or back up a standby
database. You can fail over to the standby database
if the primary database goes down.

No

Duplicate database A copy of the primary database that you can use for
testing purposes.

No

Media management
application

A vendor-specific application that allows RMAN to
back up to a storage system such as tape.

No

Media management
catalog

A vendor-specific repository of information about a
media management application.

No

RMAN Command Line Client

Recovery Manager Architecture 1-3

The only required components in an RMAN environment are the target database
and the RMAN client, but most real-world configurations are more complicated.
One might use an RMAN client connecting to multiple media managers and
multiple target, recovery catalog, and auxiliary databases, all accessed through
Enterprise Manager.

RMAN Session Architecture
The RMAN client application directs database server sessions to perform all backup
and recovery tasks. The meaning of "session" in this sense depends on the operating
system. For example, on UNIX, a server session corresponds to a server process,
while on Windows it corresponds to a thread within the database service.

The RMAN client itself does not perform backup, restore, or recovery operations.
When you connect the RMAN client to a target database, RMAN allocates server
sessions on the target instance and directs them to perform the operations. The
RMAN client uses internal, undocumented PL/SQL packages to communicate with
the target database and recovery catalog.

RMAN Command Line Client
Use the RMAN command line client to enter commands that you can use to manage
all aspects of backup and recovery operations.

Even when you use the backup and recovery features in Enterprise Manager that
are built on top of RMAN, an RMAN client executes behind the scenes.

How RMAN Compiles and Executes Commands
RMAN processes most commands in the two phases discussed in this section:

Enterprise Manager A browser-based interface to the Oracle database,
including backup and recovery through RMAN.

No

Note: All RMAN commands for Oracle release 8.1 and higher also
work in Oracle Databse Release 10g.

Table 1–1 Components of the RMAN Environment

Component Description Required?

RMAN Command Line Client

1-4 Backup and Recovery Advanced User’s Guide

Compilation Phase
During the compilation phase, RMAN determines which objects the command will
access (for example, resolving a tablespace name into its component datafiles).
Then, RMAN constructs a sequence of remote procedure calls (RPCs) that instruct
the server sessions on the target database to perform the desired operation.

Execution Phase
During the execution phase, RMAN sends the RPC calls to the target database,
monitors their progress, and collects the results. If more than one channel is
allocated, then RMAN can execute certain commands in parallel so that all of the
channels’ target database sessions are concurrently executing an RPC call.

Issuing RMAN Commands
RMAN uses a command language interpreter (CLI) that can execute commands in
interactive or batch mode.

Entering Commands at the RMAN Prompt
To run RMAN commands interactively, start RMAN and then type commands into
the command-line interface. For example, you can start RMAN from the UNIX
command shell and then execute interactive commands as follows:

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb

After the RMAN prompt is displayed, you can enter commands such as the
following:

RMAN> BACKUP DATABASE;

Using RMAN with Command Files
A command file is a text file which contains RMAN commands as you would enter
them at the command line. You can run the a command file by specifying its name
on the command line. The contents of the command file will be interpreted as if
entered at the command line. If the LOG command line argument is specified,
RMAN directs output to the named log file. Command files are one way to
automate scheduled backups through an operating system job control facility.

In this example, a sample RMAN script is placed into a command file called
commandfile.rcv. You can run this file from the operating system command line
and write the output into the log file outfile.txt as follows:

% rman TARGET / CATALOG rman/cat@catdb CMDFILE commandfile.rcv LOG outfile.txt

RMAN Command Line Client

Recovery Manager Architecture 1-5

Stored Scripts
A stored script is a block of RMAN job commands that is stored in the recovery
catalog. By storing scripts in the recovery catalog, the script is available to any
RMAN client that connects to the catalog and the target database. Stored scripts can
be associated with a single database in the catalog, or they can be global stored
scripts, which can be executed against any target database in the catalog.

Commands Valid Only in RUN Blocks
There are RMAN commands which are only valid in RUN blocks. These typically
involve setting up the environment within which the statements in the RUN block
will execute. Typical of this group are ALLOCATE CHANNEL and SET NEWNAME FOR
DATAFILE. Using these commands outside of a RUN block will generate an error.

Commands Not Valid in RUN Blocks
There are a number of RMAN commands which cannot be used in RUN blocks.
Typically these are used to control the RMAN environment (connecting to different
databases, or configuring RMAN defaults), or to manage or query the recovery
catalog (including creating and using stored scripts). Here are some examples:

■ CONNECT

■ CONFIGURE

■ CREATE CATALOG, DROP CATALOG, UPGRADE CATALOG

■ CREATE SCRIPT, DELETE SCRIPT, REPLACE SCRIPT

■ LIST

■ REPORT

See Also: Oracle Database Recovery Manager Reference for more
information about RMAN command line options

See Also: "Working with RMAN Stored Scripts in the Recovery
Catalog" on page 13-15 for more on stored scripts. Also refer to the
sample scripts in the ?/rdbms/demo directory.

See Also: The syntax diagrams for the RUN command in Oracle
Database Recovery Manager Reference regarding which commands
are valid in RUN blocks

RMAN Command Line Client

1-6 Backup and Recovery Advanced User’s Guide

You can include these commands inside command files, as long as they are not
wrapped inside a RUN block. You cannot use them inside a stored script from the
recovery catalog, because the contents of a stored script are executed within a RUN
block.

Controlling RMAN Output
When you run RMAN in command line mode, it sends the output to the terminal. If
you specify the LOG option, then RMAN writes the output to a specified log file
instead.

Output for currently executing RMAN jobs is also stored in the V$RMAN_OUTPUT
view, which reads only from memory (that is, the information is not stored in the
control file). The V$RMAN_STATUS view stores metadata about jobs in progress as
well as completed jobs. The metadata for completed jobs is stored in the control file.

RMAN Pipe Interface
The RMAN pipe interface is an alternative method for issuing commands to RMAN
and receiving the output from those commands. With this interface, RMAN obtains
commands and sends output by using the DBMS_PIPE PL/SQL package. RMAN
does not read or write any data using the operating system shell. By using this
interface, it is possible to write a portable programmatic interface to RMAN.

The pipe interface is invoked by using the PIPE command-line parameter. RMAN
uses two private pipes: one for receiving commands and the other for sending
output. The names of the pipes are derived from the value of the PIPE parameter.
For example, you can invoke RMAN with the following command:

% rman PIPE abc TARGET SYS/oracle@trgt

RMAN opens the two pipes in the target database: ORA$RMAN_ABC_IN, which
RMAN uses to receive user commands, and ORA$RMAN_ABC_OUT, which RMAN
uses to send all output back to RMAN.

All messages on both the input and output pipes are of type VARCHAR2.

Note that RMAN does not permit the pipe interface to be used with public pipes,
because they are a potential security problem. With a public pipe, any user who
knows the name of the pipe can send commands to RMAN and intercept its output.

See Also: The syntax diagrams for the RUN command in Oracle
Database Recovery Manager Reference regarding which commands
are valid in RUN blocks

RMAN Repository

Recovery Manager Architecture 1-7

RMAN Repository
The RMAN repository is the collection of metadata about the target databases that
RMAN uses for backup, recovery, and maintenance. RMAN always stores this
information in records in the control file. The version of this information in the
control file is the authoritative record of RMAN’s backups of your database. This is
one reason why protecting your control file is a important part of your backup
strategy. RMAN can conduct all necessary backup and recovery operations using
just the control file to store the RMAN repository information, and maintains all
records necessary to meet your configured retention policy.

You can also create a recovery catalog, an external Oracle database in which to store
this information. The control file has finite space for records of backup activities,
while a recovery catalog can store a much longer history. The added complexity of
operating a recovery catalog database can be offset by the convenience of having the
extended backup history available if you have to do a recovery that goes further
back in time than the history in the control file.

There are also a few features of RMAN that only function when you use a recovery
catalog. For example, RMAN stored scripts are stored in the recovery catalog, so
commands related to them require the use of a recovery catalog. Other RMAN
commands are specifically related to managing the recovery catalog and so are not
available (and not needed) if RMAN is not connected to a recovery catalog.

The recovery catalog’s version of the RMAN repository is maintained solely by
RMAN. The target instance never accesses it directly. RMAN propagates
information about the database structure, archived redo logs, backup sets, and
datafile copies into the recovery catalog from the target database's control file after
any operation that updates the repository, and also before certain operations.

Storage of the RMAN Repository in the Recovery Catalog
It is recommended that you store the recovery catalog in a dedicated database. If
you store the recovery catalog alongside other data in some other database, then if

See Also: "Executing RMAN Commands Through a Pipe" on
page 5-7 to learn how to execute RMAN commands through a pipe

See Also: Oracle Database Backup and Recovery Basics for details on
how to manage the RMAN repository, and Chapter 13, "Managing
the Recovery Catalog" to learn more about features specific to the
recovery catalog

RMAN Repository

1-8 Backup and Recovery Advanced User’s Guide

you lose that other database you will lose your recovery catalog as well. This will
make your recovery more difficult.

Registration of Databases in the Recovery Catalog
The enrolling of a database in a recovery catalog is called registration. You can
register more than one target database in the same recovery catalog. For example,
you can register databases prod1, prod2, and prod3 in a single catalog owned by
catowner in the database catdb. Because RMAN distinguishes databases by
unique database identifier (DBID), each database registered in a given catalog must
have a unique DBID.

Contents of the Recovery Catalog
The recovery catalog contains information about RMAN operations, including:

■ Datafile and archived redo log backup sets and backup pieces

■ Datafile copies

■ Archived redo logs and their copies

■ Tablespaces and datafiles on the target database

■ Stored scripts, which are named user-created sequences of RMAN commands

■ Persistent RMAN configuration settings

Resynchronization of the Recovery Catalog
The recovery catalog obtains crucial RMAN metadata from the target database
control file. Resynchronization of the recovery catalog ensures that the metadata
that RMAN obtains from the control file stays current. Resynchronizations can be
full or partial.

Snapshot Control File RMAN creates a snapshot control file, which is a temporary
backup control file, in an operating system specific location each time it performs a
full resynchronization. This snapshot control file ensures that RMAN has a

See Also: "Registering a Database in the Recovery Catalog" on
page 13-5, and Oracle Database Utilities to learn how to use the
DBNEWID utility to change the DBID of a database

See Also: "Types of Records in the Control File" on page 1-10 for
more information about control file records, and "When Should You
Resynchronize?" on page 13-13

RMAN Repository

Recovery Manager Architecture 1-9

consistent view of the control file. Because the snapshot control file is intended for
RMAN's short-term use, it is not registered in the recovery catalog. RMAN records
the snapshot control file checkpoint in the recovery catalog to indicate the currency
of the recovery catalog.

The database server ensures that only one RMAN session accesses a snapshot
control file at any point in time. This safeguard is necessary to ensure that two
RMAN sessions do not interfere with each other's use of the snapshot control file.

Backups of the Recovery Catalog
A single recovery catalog is able to store information for multiple target databases.
Consequently, loss of the recovery catalog can be disastrous. You should back up
the recovery catalog frequently.

If the recovery catalog is destroyed and no backups of it are available, then you can
partially reconstruct the catalog from the current control file or control file backups.
Nevertheless, you should always aim to have a valid, recent backup of the catalog.

Compatibility of the Recovery Catalog
When you use RMAN with a recovery catalog in an environment where you have
run past versions of the Oracle database, you can wind up with versions of the
RMAN client, recovery catalog database, recovery catalog schema, and target
database that all originated in different releases of the database. You will find a

Note: You can specify the name and location of the snapshot
control file. For instructions, refer to "Setting the Snapshot Control
File Location" on page 6-26.

See Also: "Managing the Control File When You Use a Recovery
Catalog" on page 13-21 to learn how to resynchronize the recovery
catalog, and Oracle Database Recovery Manager Reference for syntax

See Also: "Backing Up the Recovery Catalog" on page 13-22 to
learn how to back up the recovery catalog

RMAN Repository

1-10 Backup and Recovery Advanced User’s Guide

compatibility matrix in Oracle Database Recovery Manager Reference that describes
supported interoperability scenarios.

Storage of the RMAN Repository in the Control File
Because most information in the recovery catalog is also available in the target
database's control file, RMAN supports an operational mode in which it uses the
target database control file instead of a recovery catalog. This mode is especially
appropriate for small databases where installation and administration of a separate
recovery catalog database is burdensome. The only RMAN feature that is not
supported in NOCATALOG mode is stored scripts.

Types of Records in the Control File
When you do not use a recovery catalog, the control file is the exclusive source of
information about backups and copies as well as other relevant information. The
control file contains two types of records: circular reuse records and noncircular
reuse records.

Circular Reuse Records Circular reuse records contain noncritical information that is
eligible to be overwritten if the need arises. These records contain information that
is continually generated by the database. Circular reuse records are arranged in a
logical ring. When all available record slots are full, the database either expands the
control file to make room for a new record or overwrites the oldest record. The
CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the
minimum age in days of a record before it can be reused.

Noncircular Reuse Records Noncircular reuse records contain critical information that
does not change often and cannot be overwritten. Some examples of information in
noncircular reuse records include datafiles, online redo logs, and redo threads.

Recovery Without a Recovery catalog
To make it easier to restore and recover the database without using a recovery
catalog, Oracle Corporation recommends that you:

■ Enable the control file autobackup feature, which causes RMAN to
automatically back up the control file, and also enables RMAN to restore the
control file autobackup without access to a repository

See Also: Oracle Database Backup and Recovery Basics to learn how
to manage the handling of circular reuse records

Media Management

Recovery Manager Architecture 1-11

■ Keep a record of your DBID, which you may need to recover your database in
the event that you lose your control file

■ Use a minimum of two multiplexed or mirrored control files on separate disks

■ Keep all Recovery Manager backup logs.

If you lose the current control files, then you can restore a control file autobackup
even if you do not use a recovery catalog.

Media Management
Oracle Corporation’s Media Management Layer (MML) API lets third-party
vendors build a media manager, software that works with RMAN and the vendor’s
hardware to allow backups to sequential media devices such as tape drives. The
media manager handles loading, unloading and labeling of sequential media such
as tapes. You must install media manager software to use RMAN with sequential
media devices.

When backing up or restoring, the RMAN client connects to the target instance and
directs the instance to send requests to its media manager. No direct communication
occurs between the RMAN client and media manager.

Performing Backup and Restore with a Media Manager
Before performing backup or restore to a media manager, you must allocate one or
more channels to handle the commuication with the media manager. You can also
configure default channels for use with the media manager, which will be applied
for all backup and recovery tasks that use the media manager where you do not
explicitly allocate channels. For a conceptual overview of channels, see "About
RMAN Channels" on page 2-2. Configuring or allocating channels for backups is
discussed further in "Configuring and Allocating Channels for Use in Backups" on
page 7-2.

For example, this sequence of commands would configure channels for the media
manager and back up the database to the media manager:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt PARMS 'ENV=(NSR_SERVER=bksvr1)';

See Also: "Control File and Server Parameter File Autobackups"
on page 2-38 to learn about disaster recovery using control file
autobackups

Media Management

1-12 Backup and Recovery Advanced User’s Guide

RMAN> BACKUP DATABASE;

When RMAN executes the BACKUP DATABASE command, it sends the backup
request to the database server session performing the backup. The database server
session identifies the output channel as a media management device and makes a
request to the media manager to write the output.

RMAN does not issue specific commands to load, label, or unload tapes. When
backing up, RMAN gives the media manager a stream of bytes and associates a
unique name with that stream. When RMAN needs to restore the backup, it asks the
media manager to retrieve the byte stream. All details of how and where that
stream is stored are handled entirely by the media manager.

The media manager labels and keeps track of the tape and names of files on each
tape, and automatically loads and unloads tapes, or signals an operator to do so.

Some media managers support proxy copy functionality, in which they handle the
entire data movement between datafiles and the backup devices. Such products
may use technologies such as high-speed connections between storage and media
subsystems to reduce load on the primary database server. RMAN provides a list of
files requiring backup or restore to the media manager, which in turn makes all
decisions regarding how and when to move the data.

Backup Solutions Program
The Oracle Backup Solutions Program (BSP), part of the Oracle Partner Program, is
a group of leading media manager vendors whose products are compliant with
Oracle Corporation's MML specification. Several products may be available for
your platform from media management vendors. For more information, you can
contact your Oracle representative for a list of available products, contact individual
vendors to ask them if they participate, or access the Backup Solutions Program
Web site at:

http://otn.oracle.com/deploy/availability

Note that Oracle Corporation does not certify media manager vendors for
compatibility with RMAN. Questions about availability, version compatibility, and
functionality can only be answered by the media manager vendor, not Oracle
Corporation.

RMAN Backups Concepts 2-1

2
RMAN Backups Concepts

This chapter describes the basic concepts involved in backing up the database with
the Recovery Manager (RMAN) utility.

This chapter contains these topics:

■ About RMAN Channels

■ About RMAN Backups

■ Multiple Copies of RMAN Backups

■ RMAN Backup Options: Naming, Sizing, and Speed

■ RMAN Backup Types

■ Control File and Server Parameter File Autobackups

■ Backup Retention Policies

■ Backup Optimization

■ Restartable Backups

■ Managing Backup Windows and Performance: BACKUP... DURATION

■ RMAN Backup Errors

■ Tests and Integrity Checks for Backups

About RMAN Channels

2-2 Backup and Recovery Advanced User’s Guide

About RMAN Channels
An RMAN channel represents one stream of data to a device type, and corresponds
to one server session. Most backup and recovery commands in RMAN are executed
by server sessions. As illustrated in Figure 2–1, each channel establishes a
connection from the RMAN client to a target or auxiliary database instance by
starting a server session on the instance. The server session performs the backup,
restore, and recovery.

Figure 2–1 Channel Allocation

You can use the CONFIGURE CHANNEL command to configure channels for use with
disk or tape in all RMAN sessions using automatic channel allocation, or allocate
channels manually within a RUN block. RMAN comes preconfigured with one
DISK channel that you can use for backups to disk.

When you run a command that requires a channel without allocating a channel
explicitly, then RMAN automatically allocates the channels with the options
specified in the CONFIGURE command. For the BACKUP command, RMAN allocates
only a single type of channel, such as DISK. For the RESTORE command and
maintenance commands (for example, DELETE), RMAN allocates all necessary
channels for the device types required to execute the command.

Recovery Manager

channel ch1

channel ch2

Oracle
Recovery
Catalog

Target
database

Disk

Server
session

Server
session

About RMAN Channels

RMAN Backups Concepts 2-3

To specify the device type to use for an operation explicitly, use the ALLOCATE
CHANNEL command, which must be used within a RUN block, or ALLOCATE
CHANNEL FOR MANTAINANCE, which must be executed at the RMAN prompt.

In a Real Application Clusters configuration, there are special considerations
regarding channel allocation and backups. See Oracle Real Application Clusters
Administrator's Guide for more details.

How and when the ALLOCATE CHANNEL or CONFIGURE CHANNEL commands cause
the media manager to allocate resources is vendor-specific. Some media managers
allocate resources when you issue the command; others do not allocate resources
until you open a file for reading or writing.

Automatic and Manual Channel Allocation
You can use the automatic channel allocation feature to configure a set of persistent,
automatic channels for use in all RMAN sessions. You can use the manual channel
allocation feature to specify channels for commands used within a RUN block.

RMAN allocates automatic channels according to the settings in these commands:

■ CONFIGURE DEVICE TYPE ... PARALLELISM

■ CONFIGURE DEFAULT DEVICE TYPE

■ CONFIGURE CHANNEL

For example, you can issue the following commands at the RMAN prompt:

since you do not manually allocate channels, RMAN uses preconfigured channels
BACKUP DATAFILE 3;
RESTORE TABLESPACE users;

When you run a command that requires channels, and no channels have been allocated using
the ALLOCATE command, RMAN automatically allocates channels according to values
set with the CONFIGURE command in the following cases:

■ You use commands such as BACKUP, RESTORE, or DELETE outside of a RUN
block.

■ You use commands within a RUN block but do not allocate any channels within
the RUN block.

See Also: Oracle Database Recovery Manager Reference for
ALLOCATE CHANNEL syntax and Oracle Database Recovery Manager
Reference on ALLOCATE CHANNEL FOR MAINTENANCE

About RMAN Channels

2-4 Backup and Recovery Advanced User’s Guide

You can override automatic channel allocation settings by manually allocating
channels within a RUN block. Manual channels always override automatic channels.
For example, you override automatic channel allocation when you issue a
command as follows:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 BACKUP DATABASE PLUS ARCHIVELOG;
}

RMAN optimizes automatic channel allocation by leaving automatic channels
allocated so long as each new command requires exactly the same channel
configuration as the previous command. For example, RMAN can use the same
preallocated channels for the following series of commands:

BACKUP DATAFILE 1;
BACKUP CURRENT CONTROLFILE;
BACKUP ARCHIVELOG ALL;

If you issue a command such as ALLOCATE or CONFIGURE, then RMAN
automatically releases the preallocated channels.

Automatic Channel Device Configuration and Parallelism
The CONFIGURE DEVICE TYPE ... PARALLELISM command specifies the number
of automatic channels to allocate for a specified device type. For example, if you
configure parallelism to 3 for a device type, then RMAN allocates three channels for
the device type when using automatic channels.

You can change a parallelism setting by issuing another CONFIGURE DEVICE TYPE
... PARALLELISM command. This example configures PARALLELISM 2 and then
changes it to 3:

CONFIGURE DEVICE TYPE DISK PARALLELISM 2;
CONFIGURE DEVICE TYPE DISK PARALLELISM 3;

The parallelism setting defines the number of channels for a device that RMAN
allocates in parallel. It does not have to correspond to the actual number of channels
configured for the device. For example, you can manually configure four different
sbt channels and set PARALLELISM for sbt to 2, 1, or 10.

See Also: "Configuring Automatic Channels" on page 6-12 to
learn how to configure automatic channels

About RMAN Channels

RMAN Backups Concepts 2-5

You can view the default setting for parallelism by running the SHOW DEVICE TYPE
command. For example:

RMAN> SHOW DEVICE TYPE;
RMAN configuration parameters are:
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; #default

As always when the SHOW command is used to view the value of a parameter,
RMAN includes a "#default" comment at the end of the line if the RMAN default
value has not been overridden.

The following example configures the default device to sbt and then displays the
resulting configuration using the SHOW DEVICE TYPE command:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
new RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO 'sbt';
new RMAN configuration parameters are successfully stored

RMAN> SHOW DEVICE TYPE;
RMAN configuration parameters are:
CONFIGURE DEVICE TYPE SBT PARALLELISM 1; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; #
default

Automatic Channel Default Device Types
Run the CONFIGURE DEFAULT DEVICE TYPE command to specify a default device
type for automatic channels. For example, you may make backups to tape most of
the time and only occasionally make a backup to disk. In this case, configure
channels for disk and tape devices, but make sbt the default device type:

CONFIGURE DEVICE TYPE DISK PARALLELISM 1; # configure device disk
CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # configure device sbt
CONFIGURE DEFAULT DEVICE TYPE TO sbt;

Now, RMAN will, by default, use sbt channels for backups. For example, if you run the
following command:

BACKUP TABLESPACE users;

RMAN only allocates channels of type sbt during the backup because sbt is the
default device.

See Also: "Configuring a Generic Automatic Channel for a Device
Type" on page 6-13

About RMAN Channels

2-6 Backup and Recovery Advanced User’s Guide

You can override the default device for backups by specifying a different device on
the command. For example:

BACKUP DEVICE TYPE sbt DATABASE;

If the default device type is DISK, then the preceding command overrides this
default and uses the sbt channel configuration. Note that this command fails
unless you have configured the sbt device or configured sbt channels.

When restoring files, RMAN allocates all automatic channels according to the
settings configured for each device type. The default device type configuration is
irrelevant. For example, if you configure PARALLELISM to 3 for the default sbt
device and PARALLELISM to 2 for DISK, then RMAN automatically allocates three
sbt channels and two DISK channels during the restore.

Automatic Channel Naming Conventions
RMAN uses the following convention for channel naming: ORA_devicetype_n,
where devicetype refers to the user’s device type (such as DISK or sbt_tape)
and n refers to the channel number.

For example, RMAN names the first DISK channel ORA_DISK_1, the second ORA_
DISK_2, and so forth. RMAN names the first sbt channel ORA_SBT_TAPE_1, the
second ORA_SBT_TAPE_2, and so forth. When you parallelize channels, RMAN
always allocates channels in numerical order, starting with 1 and ending with the
parallelism setting (CONFIGURE DEVICE TYPE ... PARALLELISM n), as in this
example:

ORA_SBT_TAPE_1
ORA_SBT_TAPE_2
ORA_SBT_TAPE_3

Automatic channel allocation also applies to maintenance commands. If RMAN
allocates an automatic maintenance channel, then it uses the same naming
convention as any other automatically allocated channel. If you manually allocate a
maintenance channel using ALLOCATE CHANNEL FOR MAINTENANCE, then RMAN
uses the following convention for channel naming: ORA_MAINT_devicetype_n,

Note: The sbt and sbt_tape device types are synonymous, but
RMAN output always displays sbt_tape whether the input is
sbt or sbt_tape.

About RMAN Channels

RMAN Backups Concepts 2-7

where devicetype refers to the user’s device type (for example, DISK or sbt) and
n refers to the channel number. For example, RMAN uses these names for two
manually allocated disk channels:

ORA_MAINT_DISK_1
ORA_MAINT_DISK_2

Note that if you run the CONFIGURE DEVICE TYPE command to configure a device
type and do not run CONFIGURE CHANNEL for this device type, then RMAN
allocates all channels without other channel control options. For example, assume
that you configure the sbt device and run a backup as follows:

CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
BACKUP DEVICE TYPE sbt DATABASE;

In effect, RMAN does the following:

RUN
{
 ALLOCATE CHANNEL ORA_SBT_TAPE_1 DEVICE TYPE sbt;
 BACKUP DATABASE;
}

Channel names beginning with the ORA_ prefix are reserved by RMAN for its own
use. You cannot manually allocate a channel with a name that begins with ORA_.

Automatic Channel Generic Configurations
The CONFIGURE CHANNEL DEVICE TYPE command configures generic settings that
are used for all automatic channels of the specified device type. In other words, the
command creates a template of settings that RMAN uses for all channels allocated
on the device. For example, you can configure disk and tape channels as follows:

CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='ENV=(NSR_SERVER=bksvr1)';
CONFIGURE CHANNEL DEVICE TYPE DISK RATE 5M FORMAT="?/oradata/%U";

Because you do not specify channel numbers for these channels, the channel
settings are generic to all automatic channels of the specified type. The
configuration acts as a template. For example, if you set PARALLELISM for DISK to
10, and the default device type is DISK, then RMAN allocates ten disk channels
using the settings in the CONFIGURE CHANNEL DEVICE TYPE DISK command.

See Also: "Configuring a Generic Automatic Channel for a Device
Type" on page 6-13

About RMAN Channels

2-8 Backup and Recovery Advanced User’s Guide

Automatic Channel-Specific Configurations
You can also configure parameters that apply to a specific automatic channel. If you
are using a media manager that requires different settings on each channel, then
you may find it useful to configure individual channels.

You can mix a CONFIGURE CHANNEL command that creates a generic configuration
with a CONFIGURE CHANNEL command that creates a specific configuration. A
generic automatic channel creates a configuration that can be used for any channel
that is not explicitly configured.

For example, assume that you run these commands:

CONFIGURE DEVICE TYPE DISK PARALLELISM 3;
CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE = 2M;
CONFIGURE CHANNEL 3 DEVICE TYPE DISK MAXPIECESIZE = 900K;

In this scenario, RMAN allocates ORA_DISK_1 and ORA_DISK_2 with option
MAXPIECESIZE = 2M, using the settings for the DISK channel with no number.
RMAN allocates ORA_DISK_3 with MAXPIECESIZE = 900K because this channel
was manually assigned a channel number. RMAN always allocates the number of
channels specified in the parallelism parameter.

Clearing Automatic Channel Settings
You can specify the CLEAR option for any CONFIGURE command. The CLEAR
option returns the specified configuration to its default value. Assume you run
these commands:

CONFIGURE DEVICE TYPE DISK CLEAR; # returns DISK to default PARALLELISM 1
 # and backup type to BACKUPSET
CONFIGURE DEFAULT DEVICE TYPE CLEAR; # returns to default device type of DISK
CONFIGURE CHANNEL DEVICE TYPE sbt CLEAR; # removes all options for sbt channel
CONFIGURE CHANNEL 3 DEVICE TYPE DISK CLEAR; # removes configurations for 3rd ch.

Each CONFIGURE...CLEAR command removes the user-entered settings and
returns the configuration to its default value.

The only way to find out the default setting for parameters set through CONFIGURE
is to use CONFIGURE... CLEAR to un-set the parameter, so that it takes on the default
value, and then run SHOW ALL to view all parameters. For any parameter for which

See Also: "Configuring a Generic Automatic Channel for a Device
Type" on page 6-13

About RMAN Channels

RMAN Backups Concepts 2-9

the value is currently set to RMAN’S default, RMAN includes a "#default"
comment at the end of that line of the output from SHOW ALL.

Determining Channel Parallelism to Match Hardware Devices
RMAN can perform the I/O required for many commands in parallel, to make
optimal use of your hardware resources. To perform I/O in parallel, however, the
I/O must be associated with a single RMAN command, not a series of commands.
For example, if backing up three datafiles, issue the command

BACKUP DATAFILE 5,6,7;

rather than issuing the commands

BACKUP DATAFILE 5;
BACKUP DATAFILE 6;
BACKUP DATAFILE 7;

When all three datafiles are backed up in one command, RMAN recognizes the
opportunity for parallelism and can use multiple channels to do the I/O in parallel.
When three separate commands are used, RMAN can only perform the backups one
at a time, regardless of available channels and I/O devices.

The number of channels available (whether allocated in a RUN block or configured
in advance) for use with a device at the moment that you run a command
determines whether RMAN will read from or write to that device in parallel while
carrying out the command. Failing to allocate the right number of channels
adversely affects RMAN performance during I/O operations.

As a rule, the number of channels used in carrying out an individual RMAN
command should match the number of physical devices accessed in carrying out
that command. If manually allocating channels for a command, allocate one for
each device; if configuring automatic channels, configure the PARALLELISM
setting appropriately.

When backing up to tape, you should allocate one channel for each tape drive.
When backing up to disk, allocate one channel for each physical disk, unless you
can optimize the backup for your disk topography by using multiple disk channels.
Each manually allocated channel uses a separate connection to the target or
auxiliary database.

See Also: Oracle Database Recovery Manager Reference for the
default settings for each CONFIGURE command

About RMAN Channels

2-10 Backup and Recovery Advanced User’s Guide

The following script creates three backups sequentially: three separate BACKUP
commands are used to back up one file each. Only one channel is active at any one
time because only one file is being backed up in each command.

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt;
 ALLOCATE CHANNEL c3 DEVICE TYPE sbt;
 BACKUP DATAFILE 5;
 BACKUP DATAFILE 6;
 BACKUP DATAFILE 7;
}

The following statement uses parallelization on the same example: one RMAN
BACKUP command backs up three datafiles, with all three channels in use. The three
channels are concurrently active—each server session copies one of the datafiles to
a separate tape drive.

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt;
 ALLOCATE CHANNEL c3 DEVICE TYPE sbt;
 BACKUP DATAFILE 5,6,7;
}

Channel Control Options for Manual and Automatic Channels
Whether you allocate channels manually or automatically, you can use channel
control commands and options to do the following:

■ Control the operating system resources RMAN uses when performing RMAN
operations

■ Affect the degree of parallelism for a backup or restore command

See Also: Oracle Real Application Clusters Administrator's Guide for
information about parallelization in a Real Application Clusters
(RAC) configuration. In a RAC configuration you may want to
specify different CONNECT strings for each channel, to connect to
different instances of the target database and distribute work across
the cluster. You may also want to use more than one channel for
each device in a RAC configuration.

About RMAN Channels

RMAN Backups Concepts 2-11

■ Set limits on I/O bandwidth consumption in kilobytes, megabytes, or gigabytes
(ALLOCATE CHANNEL ... RATE, CONFIGURE CHANNEL ... RATE)

■ Set limits on the size of backup pieces (the MAXPIECESIZE parameter specified
on the CONFIGURE CHANNEL and ALLOCATE CHANNEL commands)

■ Set limits on the size of backup sets (the MAXSETSIZE parameter specified on
the BACKUP and CONFIGURE commands)

■ Send vendor-specific commands to the media manager (SEND)

■ Specify vendor-specific parameters for the media manager (ALLOCATE
CHANNEL ... PARMS, CONFIGURE CHANNEL ... PARMS)

■ Specify which instance performs the operation (ALLOCATE CHANNEL ...
CONNECT, CONFIGURE CHANNEL ... CONNECT)

In releases 8.1.5 and later of the Oracle database, the ALLOCATE CHANNEL command
causes RMAN to contact the media manager whenever the type specified is other
than DISK. In earlier releases, the ALLOCATE CHANNEL command does not cause
RMAN to contact the media manager; RMAN does not call the media manager until
a BACKUP, RESTORE, or RECOVER command is issued.

Because RMAN has one preconfigured automatic DISK channel, you do not have to
manually allocate a maintenance channel when running CHANGE, CROSSCHECK, or
DELETE against a disk file (that is, an ARCHIVELOG, DATAFILECOPY, or
CONTROLFILECOPY).

A maintenance channel is useful only for a maintenance task; you cannot use it as
an input or output channel for a backup or restore.

Channel Failover
A BACKUP command is decomposed into multiple independent backup steps by
RMAN. Each independent step can be executed on any channel allocatedfor the

Note: When you specify DEVICE TYPE DISK with any version of
RMAN, RMAN does not allocate operating system resources other
than for the creation of the server session and does not call the
media manager.

See Also: Oracle Database Recovery Manager Reference for
ALLOCATE CHANNEL syntax, and Oracle Database Recovery Manager
Reference for CONFIGURE syntax

About RMAN Backups

2-12 Backup and Recovery Advanced User’s Guide

type of device used in the command. If you have multiple channels allocated, and
one channel fails or encounters a problem during a backup step, then RMAN
attempts to complete the work on another channel. Typically, such retriable errors
can occur when a media manager encounters problems with one of several tape
drives, or when an instance fails in a RAC environment.

RMAN reports a message in V$RMAN_OUTPUT and in the output to the interactive
session or log file when it encounters such problems, as in the following example
(refer to bold text):

channel ORA_SBT_TAPE_1: backup set failed, re-triable on other channel
ORA-19506: failed to create sequential file, name="/bkup/63d3c3og_1_1", parms=""
ORA-27028: skgfqcre: sbtbackup returned error
ORA-19511: Error received from media manager layer, error text: failed to open
 file /bkup/63d3c3og_1_1 for backup, errno = 2
channel ORA_SBT_TAPE_2: finished piece 1 at 06-SEP-01 piece handle=5ld3blun_1_1
 comment=API Version 2.0,MMS Version 3.2.0.0
channel ORA_SBT_TAPE_2: backup set complete, elapsed time: 00:00:04
retrying ORA_SBT_TAPE_1 failed backup step on ORA_SBT_TAPE_2
channel ORA_SBT_TAPE_2: starting full datafile backupset
channel ORA_SBT_TAPE_2: specifying datafile(s) in backupset input datafile
 fno=00004 name=/oracle/dbs/tbs_12.f input datafile
 fno=00017 name=/oracle/dbs/tbs_14.f
channel ORA_SBT_TAPE_2: starting piece 1 at 06-SEP-01 piece handle=5ld3buds_1_1
 comment=API Version 2.0,MMS Version 3.2.0.0
channel ORA_SBT_TAPE_2: backup set complete, elapsed time: 00:00:06

Note that if RMAN is executing a script, then the next command in the script will
not be executed if there were any errors in the previous command.

About RMAN Backups
When you execute the BACKUP command in RMAN, you create one or more backup
sets or image copies. By default, RMAN creates backup sets regardless of whether
the destination is disk or a media manager.

About Image Copies
An image copy is an exact copy of a single datafile, archived redo log file, or control
file. Image copies are not stored in an RMAN-specific format. They are identical to
the results of copying a file with operating system commands. RMAN can use

See Also: "Interpreting RMAN Message Output" on page 15-2 to
learn more about RMAN message and error reporting

About RMAN Backups

RMAN Backups Concepts 2-13

image copies during RMAN restore and recover operations, and you can also use
image copies with non-RMAN restore and recovery techniques.

To create image copies and have them recorded in the RMAN repository, run the
RMAN BACKUP AS COPY command (or, alternatively, configure the default backup
type for disk as image copies using CONFIGURE DEVICE TYPE DISK BACKUP
TYPE TO COPY before performing a backup). A database server session is used to
create the copy, and the server session also performs actions such as validating the
blocks in the file and recording the image copy in the RMAN repository.

You can also use an operating system command such as the UNIX dd command to
create image copies, though these will not be validated, nor are they recorded in the
RMAN repository. You can use the CATALOG command to add image copies created
with native operating system tools in the RMAN repository.

Using RMAN-Created Image Copies
If you run a RESTORE command, then by default RMAN restores a datafile or
control file to its original location by copying an image copy backup to that location.
Image copies are chosen over backup sets because of the extra overhead of reading
through an entire backup set in search of files to be restored.

However, if you need to restore and recover a current datafile, and if you have an
image copy of the datafile available on disk, then you do not actually need to have
RMAN copy the image copy back to its old location. You can instead have the
database use the image copy in place, as a replacement for the datafile to be
restored. The SWITCH command updates the RMAN repository indicate that the
image copy should now be treated as the current datafile. Issuing the SWITCH
command in this case is equivalent to issuing the SQL statement ALTER DATABASE
RENAME FILE. You can then perform recovery on the copy.

User-Managed Image Copies
RMAN can use image copies created by mechanisms outside of RMAN, such as
native operating system file copy commands or third-party utilities that leave image
copies of files on disk. These copies are known as user-managed copies or
operating system copies.

The RMAN CATALOG command causes RMAN to inspect an existing image copy
and enter its metadata into the RMAN repository. Once cataloged, these files can be
used like any other backup with the RESTORE or SWITCH commands.

Some sites store their datafiles on mirrored disk volumes, which permit the creation
of image copies by breaking a mirror. After you have broken the mirror, you can

About RMAN Backups

2-14 Backup and Recovery Advanced User’s Guide

notify RMAN of the existence of a new user-managed copy, thus making it a
candidate for a backup operation. You must notify RMAN when the copy is no
longer available, by using the CHANGE ... UNCATALOG command. In this example,
before resilvering the mirror (not including other copies of the broken mirror), you
must use a CHANGE ... UNCATALOG command to update the recovery catalog and
indicate that this copy is no longer available.

About Proxy Copies
During a proxy copy, RMAN turns over control of the data transfer to a media
manager that supports this feature. Proxy copy can only be used with media
managers that support it, not with disk. The PROXY option of the BACKUP command
specifies that a backup should be a proxy copy.

For each file that you attempt to back up with the BACKUP PROXY command,
RMAN queries the media manager to determine whether it can perform a proxy
copy. If the media manager cannot proxy copy the file, then RMAN backs the file up
as if the PROXY option had not been used. (Use the PROXY ONLY option to force
RMAN to fail if a proxy copy cannot be performed.)

Proxy copy can be used with datafiles or archived redo logs, as shown in these
examples:

BACKUP DEVICE TYPE sbt PROXY DATAFILE 3;
BACKUP DEVICE TYPE sbt PROXY ONLY DATABASE;
BACKUP DEVICE TYPE sbt PROXY ONLY ARCHIVELOG ALL;

The examples assume that sbt channels have been configured with the appropriate
parameters.

Note that control files are never backed up with proxy copy. If the PROXY option is
specified on an operation backing up a control file, it is silently ignored for the
purposes of backing up the control file.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to
catalog datafile and archived log image copies

■ "Making Split Mirror Backups with RMAN" on page 7-5

■ Oracle Database Recovery Manager Reference for CHANGE syntax

About RMAN Backups

RMAN Backups Concepts 2-15

Storage of Backups on Disk and Tape
RMAN can create backups on disk or a third-party media device such as a tape
drive. If you specify DEVICE TYPE DISK, then your backups are created on disk, in
the file name space of the target instance that is creating the backup. You can make a
backup on any device that can store a datafile.

To create backups on non-disk media, such as tape, you must use third-party media
management software, and allocate channels with device types, such as SBT, that
are supported by that software.

Backups of Archived Logs
There are several features of RMAN backups specific to backups of archived redo
logs.

Deletion of Archived Logs After Backups
RMAN can delete one or all copies of archived logs from disk after backing them up
to backup sets. If you specify the DELETE INPUT option, then RMAN backs up
exactly one copy of each specified log sequence number and thread from an archive
destination to tape, and then deletes the specific file it backed up while leaving the
other copies on disk. If you specify the DELETE ALL INPUT option, then RMAN
backs up exactly one copy of each specified log sequence number and thread, and
then deletes that log from all archive destinations. Note that there are special
considerations related to deletion of archived redo logs in standby database
configurations. See Oracle Data Guard Concepts and Administration for details.

Backup Failover for Archived Redo Logs
RMAN’s archived redo log failover allows RMAN to complete a backup even
when some archived log destinations are missing logs or have logs with corrupt
blocks. If at least one log corresponding to a given log sequence and thread is
available in any of the archiving destinations, then RMAN tries to back it up. If
RMAN finds a corrupt block in a log file during backup, it searches other
destinations for a copy of that log without corrupt blocks.

See Also:

■ Oracle Database Reference for more information about V$PROXY_
DATAFILE and V$PROXY_ARCHIVEDLOG

■ Oracle Database Recovery Manager Reference for the BACKUP
command and the PROXY option

About RMAN Backups

2-16 Backup and Recovery Advanced User’s Guide

By default, RMAN only backs up one copy of each distinct log sequence number.
For example, assume that you archive logs 121 through 124 to two archiving
destinations: /arch1 and /arch2. The control file contains archived log records as
follows:

However, unknown to RMAN, a user deletes logs 122 and 124 from the /arch1
directory. Then, you run the following backup:

BACKUP ARCHIVELOG FROM SEQUENCE 121 UNTIL SEQUENCE 125;

With failover, RMAN completes the backup, using logs 122 and 124 in /arch2.

Multiplexed Backup Sets
When creating backup sets, you can multiplex files. In this case, RMAN
simultaneously reads multiple files from disk and and then writes their blocks into
the same backup set. (Image copies, by contrast, are never multiplexed.) For
example, RMAN can read from two datafiles simultaneously, and then combine the
blocks from these datafiles into a single backup piece.

As Figure 2–2 illustrates, RMAN can back up three datafiles into a backup set that
contains only one backup piece. This backup piece contains the intermingled data
blocks of the three input files.

Sequence Filename in /arch1 Filename in /arch2

121 /arch1/archive1_121.arc /arch2/archive1_121.arc

122 /arch1/archive1_122.arc /arch2/archive1_122.arc

123 /arch1/archive1_123.arc /arch2/archive1_123.arc

124 /arch1/archive1_124.arc /arch2/archive1_124.arc

About RMAN Backups

RMAN Backups Concepts 2-17

Figure 2–2 Datafile Multiplexing

Algorithm for Multiplexed Backups
RMAN multiplexing is determined by the following algorithm:

1. The number of files in each backup set is determined by computing the lesser
of the following values:

– The default number of files in a backup set (16 for archived logs, and 4 for
datafiles)

– The number of files read by each channel.

2. The level of multiplexing is determined by the lesser of the following values:

– The number of files in the backup set (as calculated by the preceding step)

– The default number of files that RMAN reads simultaneously on a single
channel (8 files for each channel)

Assume that you are backing up twelve datafiles with one RMAN channel. The
number of files in each backup set is 4. To determine the level of multiplexing,
compare this value to 8 and take the lesser, which is 4. Because the level of

Server session

File 2

Backup set

File 3File 1

1 2
3 1

2
3 1

2 3
1

About RMAN Backups

2-18 Backup and Recovery Advanced User’s Guide

multiplexing is 4, the channel includes blocks from four separate datafiles into each
backup set.

Multiplexing by the Media Manager
Media manager multiplexing occurs when the media manager writes the
concurrent output from multiple RMAN channels to a single sequential device,
such as a tape drive.

Manual Parallelization of Backups
When you configure PARALLELISM to greater than 1 or manually allocate multiple
channels, RMAN writes multiple backups sets or image copies in parallel. The
channels divide the work of backing up the specified files.

By default, RMAN determines which channels should back up which database files.
You can use the CHANNEL option of the BACKUP command to manually assign a
channel to back up specified files. This example shows a parallelized backup to the
default disk location that uses the default automatic DISK channels:

BACKUP
 (DATAFILE 1,2,3
 CHANNEL ORA_DISK_1)
 (DATAFILECOPY '/tmp/system01.dbf', '/tmp/tools01.dbf'
 CHANNEL ORA_DISK_2)
 (ARCHIVELOG FROM SEQUENCE 100 UNTIL SEQUENCE 102 THREAD 1

See Also:

■ "I/O Buffer Allocation" on page 14-2 to learn how multiplexing
affects allocation of disk buffers during backups

■ Oracle Database Recovery Manager Reference for BACKUP syntax

Caution: Although media manager multiplexing can sometimes
provide a performance benefit during backup, it can have a
negative impact on restore performance. Oracle Corporation
recommends using RMAN multiplexing instead of using
multiplexing by the media manager.

Note: You cannot stripe a single backup set across multiple
channels.

About RMAN Backups

RMAN Backups Concepts 2-19

 CHANNEL ORA_DISK_3);

You can also manually allocate channels as in the following example:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS="ENV=(BACKUP_SERVER=tape_server1)";
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt PARMS="ENV=(BACKUP_SERVER=tape_server2)";
 ALLOCATE CHANNEL c3 DEVICE TYPE sbt PARMS="ENV=(BACKUP_SERVER=tape_server3)";
 BACKUP
 (DATAFILE 1,2,3
 CHANNEL c1)
 (DATAFILECOPY '/tmp/system01.dbf', '/tmp/tools01.dbf'
 CHANNEL c2)
 (ARCHIVELOG FROM SEQUENCE 100 UNTIL SEQUENCE 102 THREAD 1
 CHANNEL c3);
}

Figure 2–3 shows an example of parallelization in which channel ch1 backs up
datafiles, channel ch2 backs up datafile copies, and channel ch3 backs up logs.

Figure 2–3 Parallelization of Backups

Channel ch1

Datafile
2

Datafile
3

Datafile
1

Datafile
copy 2

Datafile
copy 1

Backup
set 2

Backup
set 3

Backup
set 1

Channel ch2

Backup
set 4

Channel ch3

Backup
set 5

Archived
redo logs

Multiple Copies of RMAN Backups

2-20 Backup and Recovery Advanced User’s Guide

Multiple Copies of RMAN Backups
In RMAN, there are two ways to make multiple, identical copies of backups:

■ Duplex your backups within the BACKUP AS BACKUPSET command, in which
case RMAN creates more than one copy of each backup set

■ Back up your files as backup sets or image copies, and then back up the backup
sets or image copies using the RMAN BACKUP BACKUPSET or BACKUP COPY
commands.

Duplexed Backup Sets
When backing up datafiles, archived redo log files, server parameter files and
control files into backup pieces, RMAN can duplex the backup set, producing up to
four identical copies of each backup piece in the backup set on different backup
destinations with one BACKUP command. (Note that duplexing is not supported for
backup operations that produce image copies.)

There are three ways to specify duplexing of backup sets when using the BACKUP
command:

■ Specify a default level of duplexing with CONFIGURE... BACKUP COPIES

All backup commands that back up data into backup sets will be affected if you
use this option, unless you specify different duplexing options for a command
using SET BACKUP COPIES or provide a COPIES option for the BACKUP
command.

■ Use SET BACKUP COPIES in a RUN block

All commands in the RUN block will be affected, overriding any CONFIGURE...
BACKUP COPIES setting, except those where you provide a COPIES option as
part of the BACKUP command.

See Also:

■ "Determining Channel Parallelism to Match Hardware Devices"
on page 2-9 for an overview of how allocated channels affect
parallelization

■ "Determining How Channels Distribute a Backup Workload:
Example" on page 7-20 to learn how to parallelize backups

■ Oracle Database Recovery Manager Reference for reference
material on the CHANNEL parameter of the BACKUP command

Multiple Copies of RMAN Backups

RMAN Backups Concepts 2-21

■ Provide a COPIES option to the BACKUP command

For this specific BACKUP command, files will be duplexed to produce the
number of copies you specify.

The FORMAT option of the BACKUP command specifies the destinations to be used
when performing duplexed backups. You can specify up to 4 values for the FORMAT
option. RMAN uses the second, third, and fourth values only when BACKUP
COPIES, SET BACKUP COPIES, or CONFIGURE ... BACKUP COPIES is specified.
The following example creates 3 copies of the backup of datafile 7:

BACKUP DEVICE TYPE DISK COPIES 3 DATAFILE 7 FORMAT
'/tmp/%U','?/oradata/%U','?/%U';

RMAN places the first copy of each backup piece in /tmp, the second in
?/oradata, and the third in the Oracle home. Note that RMAN does not produce 3
backup sets, each with a different unique backup set key. Rather, RMAN produces
one backup set with a unique key, and generates 3 identical copies of each backup
piece in the set, as shown in this sample LIST output:

List of Backup Sets
===================

BS Key Type LV Size
------- ---- -- ----------
1 Full 64K
 List of Datafiles in backup set 1
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 7 Full 98410 08-FEB-03 /oracle/oradata/trgt/tools01.dbf

 Backup Set Copy #1 of backup set 1
 Device Type Elapsed Time Completion Time Tag
 ----------- ------------ --------------- ---
 DISK 00:00:01 08-FEB-03 TAG20030208T152314

 List of Backup Pieces for backup set 1 Copy #1
 BP Key Pc# Status Piece Name
 ------- --- ----------- ----------
 1 1 AVAILABLE /tmp/01dg9tb2_1_1

 Backup Set Copy #2 of backup set 1
 Device Type Elapsed Time Completion Time Tag
 ----------- ------------ --------------- ---
 DISK 00:00:01 08-FEB-03 TAG20030208T152314

Multiple Copies of RMAN Backups

2-22 Backup and Recovery Advanced User’s Guide

 List of Backup Pieces for backup set 1 Copy #2
 BP Key Pc# Status Piece Name
 ------- --- ----------- ----------
 2 1 AVAILABLE /oracle/oradata/01dg9tb2_1_2

 Backup Set Copy #3 of backup set 1
 Device Type Elapsed Time Completion Time Tag
 ----------- ------------ --------------- ---
 DISK 00:00:01 08-FEB-03 TAG20030208T152314

 List of Backup Pieces for backup set 1 Copy #3
 BP Key Pc# Status Piece Name
 ------- --- ----------- ----------
 3 1 AVAILABLE /oracle/01dg9tb2_1_3

When choosing which FORMAT value to use for each backup piece, RMAN uses the
first format value for copy number 1, the second format value for copy number 2,
and so forth. If the number of format values exceeds the number of copies, then the
extra formats are not used. If the number of format values is less than the number of
copies, then RMAN reuses the format values, starting with the first one.

Backups of Backup Sets
The RMAN BACKUP BACKUPSET command backs up previously created backup
sets. Only backup sets that were created on device type DISK can be backed up, and
they can be backed up to any available device type.

The BACKUP BACKUPSET command uses the default disk channel to copy backup
sets from disk to disk. To back up from disk to tape, you must either configure or
manually allocate a non-disk channel.

See Also:

■ "Duplexing Backup Sets" on page 7-3 to learn how to duplex
backups

■ Oracle Database Recovery Manager Reference for CONFIGURE
syntax

■ Oracle Database Recovery Manager Reference for SET syntax

Note: RMAN issues an error if you attempt to run BACKUP AS
COPY BACKUPSET.

Multiple Copies of RMAN Backups

RMAN Backups Concepts 2-23

Uses for Backups of Backup Sets
The BACKUP BACKUPSET command is a useful way to spread backups among
multiple media. For example, you can execute the following BACKUP command
weekly as part of the production backup schedule:

makes backup sets on disk
BACKUP DEVICE TYPE DISK AS BACKUPSET DATABASE PLUS ARCHIVELOG;
BACKUP DEVICE TYPE sbt BACKUPSET ALL; # copies backup sets on disk to tape

In this way, you ensure that all your backups exist on both disk and tape. You can
also duplex backups of backup sets, as in this example:

BACKUP COPIES 2 DEVICE TYPE sbt BACKUPSET ALL;

(Again, control file autobackups are never duplexed.)

You can also use BACKUP BACKUPSET to manage backup space allocation. For
example, to keep more recent backups on disk and older backups only on tape, you
can regularly run the following command:

BACKUP DEVICE TYPE sbt BACKUPSET COMPLETED BEFORE 'SYSDATE-7' DELETE INPUT;

This command backs up backup sets that were created more than a week ago from
disk to tape, and then deletes them from disk. Note that DELETE INPUT here is
equivalent to DELETE ALL INPUT;RMAN deletes all existing copies of the backup
set. If you duplexed a backup to four locations, then RMAN deletes all four copies
of the pieces in the backup set.

Backup Optimization When Backing Up Backup Sets
If backup optimization is enabled when you issue the command to back up a
backup set, and if the identical backup set has already been backed up to the same
device type, then RMAN skips the backup of this backup set. For example, when
backup optimization is turned on, the following command backs up to tape only
those backup sets not already backed up on device type sbt:

BACKUP DEVICE TYPE sbt BACKUPSET ALL;

Note: Backups to sbt that use automatic channels require that
you first run the CONFIGURE DEVICE TYPE sbt command.

Multiple Copies of RMAN Backups

2-24 Backup and Recovery Advanced User’s Guide

Backup Failover When Backing Up Backup Sets
When backing up backup sets, if RMAN discovers that one copy of a backup set is
corrupted or missing, then it searches for other copies of the same backup set, based
on the RMAN repository records about the backup set. This behavior is similar to
the behavior of RMAN when backing up archived redo logs that exist in multiple
archiving destinations.

For example, assume that backup set with key 872 contains three backup pieces,
and that BACKUP COPIES 3 was issued so that three copies of each backup piece
were created, each on a different file system. Also assume that some copies have
been deleted or corrupted, so that the following table describes the current status of
the backup copies:

The following command will cause RMAN to perform automatic failover:

BACKUP BACKUPSET 872;

RMAN copies only the backup pieces listed as "Intact" in the preceding table in its
backup set.

Backups of Image Copies
You can use the following commands to back up image copies of database files
either as backup sets or as image copies:

■ BACKUP AS COPY
 COPY OF DATABASE;

Backup Piece Number Copy Number of the Piece Status of Copy

1 1 Corrupted

1 2 Intact

1 3 Corrupted

2 1 Missing

2 2 Corrupted

2 3 Intact

3 1 Intact

3 2 Corrupted

3 3 Missing

RMAN Backup Options: Naming, Sizing, and Speed

RMAN Backups Concepts 2-25

■ BACKUP AS BACKUPSET
 COPY OF TABLESPACE;

■ BACKUP AS BACKUPSET
COPY OF DATAFILE;

When using these commands, there must already exist an image copy of every
datafile specified in the command. If there are multiple copies of a datafile, the
latest one is used. RMAN issues an error if image copies of every datafile in the
database or tablespace do not exist.

RMAN Backup Options: Naming, Sizing, and Speed
Recovery Manager provides a number of options to control filenames, sizes of
backups and speed during backup.

Filenames for Backup Pieces
You can either let RMAN determine a unique name for backup pieces or use the
FORMAT parameter to specify a name. For example, enter:

BACKUP TABLESPACE users;

RMAN automatically generates unique names for the backup pieces in the default
backup location.

The FORMAT parameter provides substitution variables that you can use to generate
unique filenames. For example, you can run a command as follows:

BACKUP TABLESPACE users FORMAT = '/tmp/users_%u%p%c';

As described in "Manual Parallelization of Backups" on page 2-18, you can specify
up to four FORMAT values. RMAN uses the second, third, and fourth values only
when you run BACKUP COPIES, SET BACKUP COPIES, or CONFIGURE ... BACKUP
COPIES.

Note: If you use a media manager, then check your vendor
documentation for restrictions on FORMAT such as the size of the
name, the naming conventions, and so forth.

RMAN Backup Options: Naming, Sizing, and Speed

2-26 Backup and Recovery Advanced User’s Guide

Filenames for Image Copies
FORMAT variables are also used to specify the names of image copies. The default
format %U is defined differently for image copies than for backup pieces. RMAN
produces image copies of three types of files: datafiles, control files, and archived
logs. The following table describes the meaning of %U for each type of file.

When creating image copies (and only image copies), you can also name the output
copies with the DB_FILE_NAME_CONVERT option of the BACKUP command. This
parameter works identically to the initialization parameter DB_FILE_NAME_
CONVERT. Pairs of filename prefixes are provided to change the names of the output
files. If a file is not converted by any of the pairs, then RMAN uses the FORMAT
specification; if no FORMAT is specified, then RMAN uses the default format %U.

For example, you can run the following command to copy the datafiles whose
filename is prefixed with /maindisk/oradata/users so that they are prefixed
with /backups/users_ts:

BACKUP AS COPY TABLESPACE users
 DB_FILE_NAME_CONVERT=('/maindisk/oradata/users','/backups/users_ts');

Tags for RMAN Backups
You can assign a user-specified character string called a tag to backup sets and
image copies (either copies created by RMAN or copies created by an operating
system utility). A tag is a symbolic name for a backup set or file copy, such as
weekly_backup. You can specify the tag rather than the filename when executing
the RESTORE or CHANGE command. The maximum length of a tag is 30 bytes.

See Also: Oracle Database Recovery Manager Reference for
descriptions of the FORMAT parameter and the substitution
variables

Type of File Meaning of %U

Datafile data-D-%d_id-%I_TS-%N_FNO-%f_%u

Archived log arch-D_%d-id-%I_S-%e_T-%h_A-%a_%u

Control file cf-D_%d-id-%I_%u

RMAN Backup Options: Naming, Sizing, and Speed

RMAN Backups Concepts 2-27

Default RMAN Backup Tag Format
If you do not specify a tag, then RMAN creates a default tag for backups (except for
control file autobackups) in the format TAGYYYYMMDDTHHMMSS, where YYYY is the
year, MM is the month, DD is the day, HH is the hour (in 24-hour format), MM is the
minutes, and SS is the seconds. For example, a backup of datafile 1 may receive the
tag TAG20030208T133437. The date and time refer to when RMAN started the
backup, in the time zone of the instance performing the backup. If multiple backup
sets are created by one BACKUP command, then each backup piece is assigned the
same default tag.

How Tags Are Applied
When applied to a backup set, a tag applies to a specific copy of the backup set. If
you do not duplex a backup set, that is, make multiple identical copies of it, then
the backup set has just one tag. For example,

BACKUP COPIES 1 DATAFILE 7 TAG foo

creates one backup set with tag FOO. Tags are stored in uppercase, regardless of the
case used when entering them. However, you can back up this backup set and give
this new copy of the backup set the tag BAR. So, the backup set has two identical
copies: one tagged FOO and the other tagged BAR.

When applied to image copies, a tag applies to each individual image copy. For
example, you run the following command:

Back up as image copies the datafiles of tablespaces users and tools
all copies get the TAG 'users-tools'
BACKUP AS COPY TAG users-tools TABLESPACE users, tools;

You can also copy an image copy with a specific tag, and give the output copy a
different tag, as in the following example:

Create new copies of all image copies of the database that have the tag
'full_cold_copy', and give the new copies the tag 'new_full_cold_copy'
BACKUP AS COPY
 COPY OF DATABASE
 FROM TAG=full_cold_copy
 TAG=new_full_cold_copy;

Create backup sets of the image copy of tablespace users that has the tag
'monday_users', and of tablespace SYSTEM which has the tag 'monday_system'.
All these new backup # sets receive the tag 'for_audit'.
BACKUP AS BACKUPSET TAG for_audit
 COPY OF TABLESPACE users FROM TAG monday_users

RMAN Backup Options: Naming, Sizing, and Speed

2-28 Backup and Recovery Advanced User’s Guide

 TABLESPACE SYSTEM FROM TAG monday_system;

Uniqueness of Backup Tags
Tags do not need to be unique, so multiple backup sets or image copies can have the
same tag, for example, weekly_backup. When you specify that a datafile should
be restored from backups that have a specific tag, and more than one backup of the
requested file has the desired tag, RMAN restores the most recent backup that has
the desired tag (within any other constraints of the restore command, of course,
such as a point in time).

Tags can indicate the intended purpose or usage of different classes of backups or
copies. For example, datafile copies that are suitable for use in a SWITCH can be
tagged differently (for_switch_only) from file copies that should be used only
for RESTORE (for_restore_only).

Size of Backup Pieces
RMAN will, by default, put the entire contents of a backup set into one backup
piece, regardless of the size of the backup set. If you are backing up to a file system
or media manager that has a limit on the maximum file size that can be created,
then you may need to restrict the size of backup pieces that RMAN will create.To
restrict the size of each backup piece, specify the MAXPIECESIZE option of the
CONFIGURE CHANNEL or ALLOCATE CHANNEL commands. This option limits
backup piece size to the specified umber of bytes. If the total size of the backup set
is greater than the specified backup piece size, then multiple physical pieces will be
created to hold the backup set contents.

For example, if datafile 1 is 6GB, you can still restrict the backup piece size for disk
backups to 2 GB by configuring an automatic disk channel, and then run a backup
as follows:

CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE = 2G;

Note: If you specify the FROM tag option to the RESTORE or
SWITCH command, then RMAN considers only backup sets and
image copies with a matching tag when choosing which backup to
use

See Also: Oracle Database Recovery Manager Reference for SWITCH
syntax, and Oracle Database Recovery Manager Reference for RESTORE
syntax

RMAN Backup Options: Naming, Sizing, and Speed

RMAN Backups Concepts 2-29

BACKUP AS BACKUPSET DATAFILE 1;

A LIST BACKUP command reveals that RMAN created five backup pieces rather
than one backup piece to conform to the MAXPIECESIZE size restriction:

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ --------------------
29 Full 9728M DISK 00:00:35 NOV 02 2002 18:29:26
 List of Datafiles in backup set 29
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- -------------------- ----
 1 Full 177590 NOV 02 2002 18:28:51 /oracle/oradata/trgt/system01.dbf

 Backup Set Copy #1 of backup set 29
 Device Type Elapsed Time Completion Time Tag
 ----------- ------------ -------------------- ---
 DISK 00:00:35 NOV 02 2002 18:29:26 TAG20021102T152701

 List of Backup Pieces for backup set 29 Copy #1
 BP Key Pc# Status Piece Name
 ------- --- ----------- ----------
 53 1 AVAILABLE /oracle/dbs/10d85733_1_1
 54 2 AVAILABLE /oracle/dbs/10d85733_2_1
 55 3 AVAILABLE /oracle/dbs/10d85733_3_1
 56 4 AVAILABLE /oracle/dbs/10d85733_4_1
 57 5 AVAILABLE /oracle/dbs/10d85733_5_1

This option can be used for media managers that cannot manage a backup piece
that spans more than one tape. For example, if a tape can hold 10GB, but the backup
set being created must hold 80GB of data, then RMAN must be instructed to create
backup pieces of 10GB, small enough to fit on the tapes used with the media
manager. The backup set media will in this case consist of eight tapes. Media
managers supporting SBT2.0 can return a value to RMAN indicating the largest
supported backup piece size, which RMAN will use in planning backup activities.

See Also:

■ Oracle Database Recovery Manager Reference for ALLOCATE
CHANNEL syntax

■ Oracle Database Recovery Manager Reference for CONFIGURE
syntax

RMAN Backup Options: Naming, Sizing, and Speed

2-30 Backup and Recovery Advanced User’s Guide

Number and Size of Backup Sets
Use the backupSpec clause of the BACKUP command to specify the objects that you
want to back up as well as specify other options. Each backupSpec clause
produces at least one backup set. The total number and size of backup sets depends
for the most part on an internal RMAN algorithm, although you can tune RMAN
behavior to a certain extent with the MAXSETSIZE parameter.

Factors Affecting the Number and Size of Backup Sets
In determining the characteristics of the RMAN backup sets, the internal algorithm
is influenced by the following factors:

■ The number of input files specified in each backupSpec clause

■ The number of channels that you allocate

■ The default number of files in each backup set (4 for datafiles and 16 for
archived logs)

■ The default number of files read simultaneously by a single channel (8)

■ The MAXSETSIZE parameter (specified on the CONFIGURE and BACKUP
commands), which specifies a maximum backup set size

The most important rules in the algorithm for backup set creation are:

■ Each allocated channel that performs work in the backup job—that is, each
channel that is not idle—generates at least one backup set.

■ RMAN always tries to divide the backup load so that all allocated channels
have roughly the same amount of work to do.

■ The default number of datafiles in each backup set is determined by an internal
RMAN limit (16 for archived logs, 4 for datafiles).

Note: RMAN writes backup pieces sequentially; striping a backup
piece across multiple output devices is not supported. For example,
RMAN does not simultaneously write half of a backup piece to one
device and the other half to another device, nor can it write the first
piece of a backup set to one device andthe second piece to another
device.

RMAN Backup Options: Naming, Sizing, and Speed

RMAN Backups Concepts 2-31

■ The number of datafiles multiplexed in a backup set is limited by the lesser of
the number of files in each backup set and the default number of files read by a
single channel simultaneously (8).

■ The maximum size of a backup set is determined by the MAXSETSIZE
parameter of the CONFIGURE or BACKUP command.

Overview of the MAXSETSIZE Parameter
To specify the maximum size of each backup set, use the MAXSETSIZE parameter in
the CONFIGURE or BACKUP command. By limiting the overall size of the backup set,
the parameter indirectly limits the number of files in the set and can possibly force
RMAN to create additional backup sets.

Specifying MAXSETSIZE: Example Assume that you want to back up 50 datafiles, each
containing 1000 blocks. To set the maximum size of each backup set to 10 MB, use
the following command:

BACKUP DATABASE MAXSETSIZE = 10M;

I/O Read Rate of Backups
By default, RMAN uses all available I/O bandwidth to read/write to disk. You can
limit the I/O resources consumed by a backup job with the RATE option of the
ALLOCATE CHANNEL or CONFIGURE CHANNEL commands. The RATE option
specifies the maximum number of bytes for each second that RMAN reads on the
channel.

For example, you can configure automatic channels to limit each channel to read 1
MB a second:

CONFIGURE DEVICE TYPE sbt PARALLELISM 2;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;

See Also: Oracle Database Recovery Manager Reference to learn the
syntax for the backupSpec clause, and Chapter 14, "Tuning
Backup and Recovery" to learn about RMAN buffer management

Caution: If a datafile being backed up is bigger than MAXSETSIZE
then your backup will fail. Always ensure that MAXSETSIZE is as
large as your largest datafile.

See Also: Oracle Database Recovery Manager Reference for
information on the MAXSETSIZE parameter

RMAN Backup Types

2-32 Backup and Recovery Advanced User’s Guide

CONFIGURE CHANNEL DEVICE TYPE sbt RATE 1M;

In effect, the RATE option throttles RMAN so that a backup job does not consume
excessive I/O bandwidth on the computer.

RMAN Backup Types
As explained in Table 2–1, RMAN backups can be classified in these ways:

■ Full or incremental

■ Open or closed

■ Consistent or inconsistent

Note that these backup classifications apply only to datafile backups. Backups of
other files, such as archivelogs and control files, always include the complete file
and are never inconsistent.

See Also: "Tuning RMAN Backup Performance: Examples" on
page 14-8 for tips about how to optimize RMAN performance

Table 2–1 Backup Types

Backup Type Definition

Full A backup that includes every block in the file being backed up, except
never-used blocks omitted due to unused block compression. A full
backup cannot be part of an incremental backup strategy; it cannot be the
parent for a subsequent incremental backup

Note: A full backup is different from a whole database backup, which is a
backup of all datafiles and the current control file.

Incremental An incremental backup is either a level 0 backup, which includes every
block in the file except blocks compressed out because they have never
been used, or a level 1 backup, which includes only those blocks that have
been changed since the parent backup was taken. A level 0 incremental
backup is physically identical to a full backup. The only difference is that
the level 0 backup can be used as the parent for a level 1 backup, but a full
backup will never be used as the parent for a level 1 backup.

Open A backup of online, read/write datafiles when the database is open.

Closed A backup of any part of the target database when it is mounted but not
open. Closed backups can be consistent or inconsistent.

RMAN Backup Types

RMAN Backups Concepts 2-33

Incremental Backups
The goal of an incremental backup is to back up only those data blocks that have
changed since a previous backup. You can use RMAN to create incremental
backups of datafiles, tablespaces, or the whole database.

During media recovery, RMAN examines the restored files to determine whether it
can recover them with an incremental backup. If it has a choice, then RMAN always
chooses incremental backups over archived logs, as applying changes at a block
level is faster than reapplying individual changes.

RMAN does not need to restore a base incremental backup of a datafile in order to
apply incremental backups to the datafile during recovery. For example, you can
restore non-incremental image copies of the datafiles in the database, and RMAN
can recover them with incremental backups.

Incremental backups allow faster daily backups, use less network bandwidth when
backing up over a network, and provide better performance when tape I/O
bandwidth limits backup performance. They also allow recovery of database
changes not reflected in the redo logs, such as direct load inserts. Finally,
incremental backups can be used to back up NOARCHIVELOG databases, and are
smaller than complete copies of the database (though they still require a clean
database shutdown).

One effective strategy is to make incremental backups to disk (as image copies), and
then back up these image copies to a media manager with BACKUP AS BACKUPSET.
Then, you do not have the problem of keeping the tape streaming that sometimes
occurs when making incremental backups directly to tape. Because incremental
backups are not as big as full backups, you can create them on disk more easily.

Consistent A backup taken when the database is mounted (but not open) after a
normal shutdown. The checkpoint SCNs in the datafile headers match the
header information in the control file. None of the datafiles has changes
beyond its checkpoint. Consistent backups can be restored without
recovery.

Note: If you restore a consistent backup and open the database in
read/write mode without recovery, transactions after the backup are lost.
You still need to perform an OPEN RESETLOGS.

Inconsistent A backup of any part of the target database when it is open or when a
crash occurred or SHUTDOWN ABORT was run prior to mounting.

An inconsistent backup requires recovery to become consistent.

Table 2–1 Backup Types

Backup Type Definition

RMAN Backup Types

2-34 Backup and Recovery Advanced User’s Guide

Incremental Backup Algorithm
Each data block in a datafile contains a system change number (SCN), which is the
SCN at which the most recent change was made to the block. During an incremental
backup, RMAN reads the SCN of each data block in the input file and compares it
to the checkpoint SCN of the parent incremental backup. (If block change tracking is
enabled, RMAN does not read the portions of the file known to have not changed
since the parent incremental backup.) If the SCN in the input data block is greater
than or equal to the checkpoint SCN of the parent, then RMAN copies the block.

One consequence of this mechanism is that RMAN applies all blocks containing
changed data during recovery—even if the change is to an object created with the
NOLOGGING option. Hence, making incremental backups is a safeguard against the
loss of changes made by NOLOGGING operations.

Multilevel Incremental Backups
RMAN can create multilevel incremental backups. Each incremental level is
denoted by a value of 0 or 1. A level 0 incremental backup, which is the base for
subsequent incremental backups, copies all blocks containing data. The only
difference between a level 0 incremental backup and a full backup is that a full
backup is never included in an incremental strategy.

A level 1 incremental backup can be either of the following types:

■ A differential backup, which backs up all blocks changed after the most recent
incremental backup at level 1 or 0

■ A cumulative backup, which backs up all blocks changed after the most recent
incremental backup at level 0

Incremental backups are differential by default.

The size of the backup file depends solely upon the number of blocks modified and
the incremental backup level.

See Also: Oracle Database Concepts for more information about
NOLOGGING mode

Note: Cumulative backups are preferable to differential backups
when recovery time is more important than disk space, because
fewer incremental backups need to be applied during recovery.

RMAN Backup Types

RMAN Backups Concepts 2-35

Differential Incremental Backups
In a differential level 1 backup, RMAN backs up all blocks that have changed since
the most recent incremental backup at level 1 (cumulative or differential) or level 0.
For example, in a differential level 1 backup, RMAN determines which level 1
backup occurred most recently and backs up all blocks modified after that backup.
If no level 1 is available, RMAN copies all blocks changed since the base level 0
backup.

 If no level 0 backup is available, then the behavior varies with the compatibility
mode setting. If compatibility is >=10.0.0, RMAN copies all blocks that have been
changed since the file was created. Otherwise, RMAN behaves as it did in previous
releases, by generating a level 0 backup.

Figure 2–4 Differential Incremental Backups

In the example shown in Figure 2–4, the following occurs each week:

■ Sunday

SunDay

Backup
level

Mon Tues Wed Thur Fri Sat Sun

0 1 1 1 1 1 1 0

Mon Tues Wed Thur Fri Sat Sun

1 1 1 1 1 1 0

RMAN Backup Types

2-36 Backup and Recovery Advanced User’s Guide

An incremental level 0 backup backs up all blocks that have ever been in use in
this database.

■ Monday - Saturday

On each day from Monday through Saturday, a differential incremental level 1
backup backs up all blocks that have changed since the most recent incremental
backup at level 1 or 0. The Monday backup copies blocks changed since Sunday
level 0 backup, the Tuesday backup copies blocks changed since the Monday
level 1 backup, and so forth.

Cumulative Incremental Backups
In a cumulative level 1 backup, RMAN backs up all the blocks used since the most
recent level 0 incremental backup. Cumulative incremental backups reduce the
work needed for a restore by ensuring that you only need one incremental backup
from any particular level. Cumulative backups require more space and time than
differential backups, however, because they duplicate the work done by previous
backups at the same level.

RMAN Backup Types

RMAN Backups Concepts 2-37

Figure 2–5 Cumulative Incremental Backups

In the example shown in Figure 2–5, the following occurs each week:

■ Sunday

An incremental level 0 backup backs up all blocks that have ever been in use in
this database.

■ Monday - Saturday

A cumulative incremental level 1 backup copies all blocks changed since the
most recent level 0 backup. Because the most recent level 0 backup was created
on Sunday, the level 1 backup on each day Monday through Saturday backs up
all blocks changed since the Sunday backup.

Planning an Incremental Backup Strategy
Choose a backup scheme according to an acceptable MTTR (mean time to recover).
For example, you can implement a three-level backup scheme so that a full or level
0 backup is taken monthly, a cumulative level 1 is taken weekly, and a differential

SunDay

Backup
level

Mon Tues Wed Thur Fri Sat Sun

0 1 1 1 1 1 1 0

Mon Tues Wed Thur Fri Sat Sun

1 1 1 1 1 1 0

Control File and Server Parameter File Autobackups

2-38 Backup and Recovery Advanced User’s Guide

level 1 is taken daily. In this scheme, you never have to apply more than a day's
worth of redo for complete recovery.

When deciding how often to take full or level 0 backups, a good rule of thumb is to
take a new level 0 whenever 20% or more of the data has changed. If the rate of
change to your database is predictable, then you can observe the size of your
incremental backups to determine when a new level 0 is appropriate. The following
query displays the number of blocks written to a backup set for each datafile with at
least 50% of its blocks backed up:

SELECT FILE#, INCREMENTAL_LEVEL, COMPLETION_TIME, BLOCKS, DATAFILE_BLOCKS
 FROM V$BACKUP_DATAFILE
 WHERE INCREMENTAL_LEVEL > 0
 AND BLOCKS / DATAFILE_BLOCKS > .5
 ORDER BY COMPLETION_TIME;

Compare the number of blocks in differential or cumulative backups to a base level
0 backup. For example, if you only create level 1 cumulative backups, then take a
new level 0 backup when the most recent level 1 backup is about half of the size of
the base level 0 backup.

 Control File and Server Parameter File Autobackups
Having recent backups of your control file and server parameter file is extremely
valuable in many recovery situations. To increase the likelihood that you will have
such backups, the Oracle database supports control file and server paramter file
autobackups. RMAN can automatically back up the control file and server
parameter file (SPFILE) in situations in which the RMAN repository data for your
database has been updated in a way that affects RMAN’s ability to restore your
database.

With a control file autobackup, RMAN can recover the database even if the current
control file, recovery catalog, and server parameter file are inaccessible. Because the
path used to store the autobackup follows a well-known format, RMAN can search
for and restore the server parameter file from that autobackup.

After you have started the instance with the restored server parameter file, RMAN
can restore the control file from the autobackup. After you mount the control file,
use the RMAN repository in the mounted control file to restore the datafiles.

See Also: Oracle Database Backup and Recovery Basics to learn how
make incremental backups

Control File and Server Parameter File Autobackups

RMAN Backups Concepts 2-39

A control file autobackup lets you restore the RMAN repository contained in the
control file when the control file is lost and you have no recovery catalog. You do
not need a recovery catalog or target database control file to restore the control file
autobackup. For example, you can issue:

RESTORE CONTROLFILE FROM AUTOBACKUP;

After you restore and mount the control file, you have the backup information
necessary to restore and recover the database. You can connect to the target instance
in NOCATALOG mode and recover the database. You can also create a new
recovery catalog and register the target database. The RMAN repository records in
the control file will be copied to the new recovery catalog.

The automatic backup of the control file occurs independently of any backup of the
current control file explicitly requested as part of your backup command. You can
turn the autobackup feature on or off by running the following commands:

CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE CONTROLFILE AUTOBACKUP OFF;

Oracle Corporation recommends that CONFIGURE CONTROLFILE AUTOBACKUP be
set to ON.

How RMAN Performs Control File Autobackups
The first channel allocated during the backup job creates the autobackup and places
it into its own backup set; for autobackups after database structural changes, the
default disk channel makes the backup. If a server parameter file is used, it is
backed up in the same backup set as the control file during a control file
autobackup.

After the control file autobackup completes, the database writes a message
containing the complete path of the backup piece and the device type to the alert
log.

The RMAN behavior when the BACKUP command includes datafile 1 depends on
the CONFIGURE CONTROLFILE AUTOBACKUP setting. If control file autobackups are
ON and the backup includes datafile 1, RMAN writes the control file and SPFILE to
a separate autobackup backup set. If control file autobackups are OFF and the
backup includes datafile 1, then RMAN includes the current control file and SPFILE
in the same backup set as the datafiles.

The control file autobackup filename has a default format of %F for all device types,
so that RMAN can guess the file location and restore it without a repository. The

Control File and Server Parameter File Autobackups

2-40 Backup and Recovery Advanced User’s Guide

substitution variable %F is defined in the description of the CONFIGURE command
in Oracle Database Backup and Recovery Basics. You can specify a different format with
the CONFIGURE CONTROLFILE AUTOBACKUP FORMAT command. All autobackup
formats must include the %F variable.

The SET CONTROLFILE AUTOBACKUP FORMAT command, which you can specify
either within a RUN block or at the RMAN prompt, overrides the configured
autobackup format in the session only. The order of precedence is:

1. SET within a RUN block

2. SET at RMAN prompt

3. CONFIGURE CONTROLFILE AUTOBACKUP FORMAT

You can configure the autobackup format even when CONFIGURE CONTROLFILE
AUTOBACKUP is set to OFF, but RMAN does not generate autobackups in this case.
For RMAN to make autobackups, you must set CONFIGURE CONTROLFILE
AUTOBACKUP to ON.

When RMAN Performs Control File Autobackups
By default, control file autobackups are turned off, and no control file autobackups
are performed. If CONFIGURE CONTROLFILE AUTOBACKUP is ON, then RMAN
automatically backs up the control file and the current server parameter file (if used
to start up the database) in one of two circumstances: when a successful backup
must be recorded in the RMAN repository, and when a structural change to the
database affects the contents of the control file which therefore must be backed up.

Control File Autobackups After Backup Acivities
This means that the control file is backed up in the following situations:

■ After every BACKUP command issued at the RMAN prompt.

■ At the end of a RUN block, if the last command in the block was BACKUP.

■ Whenever a BACKUP command within a RUN block is followed by a command
that is not BACKUP.

See Also:

■ Oracle Database Recovery Manager Reference for BACKUP syntax

■ Oracle Database Recovery Manager Referencefor RESTORE syntax

Backup Retention Policies

RMAN Backups Concepts 2-41

The first channel allocated during the backup job creates the autobackup and places
it into its own backup set. The control file autobackup may be written to disk or
tape.

Control File Autobackups After Database Structural Changes
The control file is also automatically backed up after database structural changes
such as adding a new tablespace, altering the state of a tablespace or datafile (for
example, bringing it online), adding a new online redo log, renaming a file, adding
a new redo thread, and so on. Losing this information would compromise your
ability to recover the database.

This backup is performed by the server process itself, rather than one of the RMAN
channels. This type of autobackup, unlike autobackups that occur after a successful
backup, is always created on disk. You can use CONFIGURE CONTROLFILE
AUTOBACKUP FOR DEVICE TYPE DISK to set the location for this disk based control
file autobackup. Note that a failure of the automatic control file autobackup after a
structural change never causes the associated structural change to fail. For example,
if you add a datafile, and if the resulting control file autobackup fails, then the
datafile addition is still successful.

Backup Retention Policies
You can use the CONFIGURE RETENTION POLICY command to create a persistent
and automatic backup retention policy. When a backup retention policy is in effect,
RMAN considers backups of datafiles and control files as obsolete, that is, no
longer needed for recovery, according to criteria that you specify in the CONFIGURE
command. You can then use the REPORT OBSOLETE command to view obsolete files
and DELETE OBSOLETE to delete them.

As you produce backups over time, older backups become obsolete as they are no
longer needed to satisfy the retention policy. RMAN can identify the obsolete files
for you, but it does not automatically delete them. You must use the DELETE
OBSOLETE command to delete files that are no longer needed to satisfy the
retention policy.

If you have a flash recovery area configured, however, then the database
automatically deletes unnecessary files from the flash recovery area based on its
internal disk quota rules. The disk quota rules are distinct from the backup
retention policy rules, but the database will never delete files in violation of the
retention policy to satisfy the disk quota.

Backup Retention Policies

2-42 Backup and Recovery Advanced User’s Guide

The term obsolete does not mean the same as expired. A backup is obsolete when
REPORT OBSOLETE or DELETE OBSOLETE determines, based on the user-defined
retention policy, that it is not needed for recovery. A backup is considered expired
only when RMAN performs a crosscheck and cannot find the file. In short, obsolete
means "not needed," whereas expired means "not found."

From the perspective of a retention policy, a datafile backup is a full or level 0
backup of an individual datafile or control file. It does not matter whether the
backup is a datafile image copy, a proxy copy, or part of a backup set. For datafile
copies and proxy copies, if RMAN determines that the copy or proxy copy is not
needed, then the copy or proxy copy can be deleted. For datafile backups in backup
sets, RMAN cannot delete the backup set until all of the individual datafile backups
within the backup set are obsolete.

Besides affecting full or level 0 datafile and control file backups, the retention policy
affects archived redo logs and level 1 incremental backups. First, RMAN decides
which datafile and control file backups are obsolete. Then, RMAN considers as
obsolete all archived logs and incremental level 1 backups that are not needed to
recover the oldest datafile or control file backup that must be retained.

There are two mutually exclusive options for implementing a retention policy:
redundancy and recovery window. If no retention policy is configured by the user, then the
REPORT OBSOLETE and DELETE OBSOLETE commands use a default retention policy of
REDUNDANCY 1.

To configure a retention policy based on a recovery window, use the following
command:

■ CONFIGURE RETENTION POLICY TO RECOVERY WINDOW

To configure a retention policy based on redundancy, use the following command:

■ CONFIGURE RETENTION POLICY TO REDUNDANCY

You can also disable the retention policy completely, meaning that RMAN does not
consider any backup to be obsolete. To do so, use the following command:

CONFIGURE RETENTION POLICY TO NONE;

Note: RMAN cannot implement an automatic retention policy if
backups are deleted by non-RMAN methods, for example, through
the media manager’s tape retention policy. The media manager
should never expire a tape until all RMAN backups on that tape
have been removed from the media manager’s catalog.

Backup Retention Policies

RMAN Backups Concepts 2-43

Recovery Window
A recovery window is a period of time that begins with the current time and
extends backward in time to the point of recoverability. The point of recoverability
is the earliest time for a hypothetical point-in-time recovery, that is, the earliest
point to which you can recover following a media failure. For example, if you
implement a recovery window of one week, then this window of time must extend
back exactly seven days from the present so that you can restore a backup and
recover it to this point. You implement this retention policy as follows:

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

This command ensures that for each datafile one backup that is older than the point
of recoverability must be retained. For example, if the recovery window is 7, then
there must always exist one backup of each datafile that satisfies the following
condition:

SYSDATE - BACKUP CHECKPOINT TIME >= 7

All backups older than the most recent backup that satisfied this condition are
obsolete.

Assume the following retention policy illustrated in Figure 2–6. The retention policy
has the following aspects:

■ The recovery window is 7 days.

■ Database backups are scheduled every two weeks on these days:

– January 1

– January 15

– January 29

– February 12

■ The database runs in ARCHIVELOG mode, and archived logs are saved on disk
only as long as needed for the retention policy.

Backup Retention Policies

2-44 Backup and Recovery Advanced User’s Guide

Figure 2–6 Recovery Window, Part 1

As illustrated in Figure 2–6, the current time is January 23 and the point of
recoverability is January 16. Hence, the January 14 backup is needed for recovery,
and so are the archived logs from log sequence 500 through 850. The logs before 500
and the January 1 backup are obsolete because they are not needed for recovery to a
point within the window.

Assume the same scenario a week later, as depicted in Figure 2–7.

Jan 1 Jan 7 Jan 14 Jan 21 Jan 28

Recovery Window = 7

Backup Backup

Log 100

Jan 16
Point of

Recoverability

Jan 23
Current
Time

Log 250 Log 750 Log 850Log 500

Backup

Backup Retention Policies

RMAN Backups Concepts 2-45

Figure 2–7 Recovery Window, Part 2

In this scenario, the current time is January 30 and the point of recoverability is
January 23. Note how the January 14 backup is not obsolete even though a more
recent backup (January 28) exists in the recovery window. This situation occurs
because restoring the January 28 backup does not enable you to recover to the
earliest time in the window, January 23. To ensure recoverability to any point within
the window, you must save the January 14 backup as well as all archived redo logs
from log sequence 500 to 1150.

Backup Redundancy
A redundancy-based retention policy specifies how many backups of each datafile
must be retained. For example, you can specify:

CONFIGURE RETENTION POLICY TO REDUNDANCY 2;

Although the recovery window is the best practice for specifying a retention policy,
it can complicate disk space usage planning because the number of backups that
must be kept by the recovery window is not constant and depends on the backup
schedule. Use the CONFIGURE RETENTION POLICY TO REDUNDANCY n command
to implement a retention policy that maintains a constant number of backups of

Jan 1 Jan 7 Jan 14 Jan 21 Jan 28

Recovery Window = 7

Feb 4

Backup Backup

Log 100

Jan 23
Point of

Recoverability

Jan 30
Current
Time

Log 250 Log 750 Log 1150Log 500

Backup

Log 1000

Backup Retention Policies

2-46 Backup and Recovery Advanced User’s Guide

each datafile. RECOVERY WINDOW and REDUNDANCY-based retention policies are
mutually exclusive.

The default retention policy is REDUNDANCY = 1, to maintain compatibility with the
behavior of REPORT OBSOLETE in earlier RMAN releases. You can also run the
following command to disable the retention policy altogether:

CONFIGURE RETENTION POLICY TO NONE;

If the retention policy is configured to NONE, then REPORT OBSOLETE and DELETE
OBSOLETE do not consider any backups to be obsolete.

Batch Deletes of Obsolete Backups
Run the REPORT OBSOLETE command to determine which backups are currently
obsolete according to the retention policy.

If you configure the retention policy to NONE, then RMAN does not consider any
backups as obsolete. Consequently, RMAN issues an error when you run REPORT
OBSOLETE without any other options and the retention policy is set to NONE.

A companion command, DELETE OBSOLETE, deletes all files which are obsolete
according to the retention policy. You should run DELETE OBSOLETE periodically
to minimize space wasted by storing obsolete backups. For example, you can run
DELETE OBSOLETE in a weekly script.

You can also specify the REDUNDANCY or RECOVERY WINDOW options on the
REPORT or DELETE commands, to overrride the configured retention policy.

The REPORT OBSOLETE and DELETE OBSOLETE commands work in two steps:

1. For each datafile for which there are full backup, datafile copy, or level 0
incremental backups, RMAN identifies the oldest full or level 0 backup or
copy that is not obsolete under the retention policy being tested. Any full
backup, level 0 incremental backup, or datafile copy of a datafile older than
the one identified in this step is considered obsolete.

2. Any archived logs and level 1 incremental backups that are older than the
oldest non-obsolete full backup are then obsolete because there is no full or
level 0 backup to which they can be applied.

Backup Retention Policies

RMAN Backups Concepts 2-47

Exempting Backups from the Retention Policy
You may want to store a long-term backup, potentially offsite, for much longer than
the time dictated by the retention policy. For example, you may make a database
backup on the first day of every year to satisfy some regulatory requirement,
independent of backups taken for your ongoing backup and recovery strategy.

Such long-term backups should be recorded in the RMAN repository, but they must
be exempted from the retention policy because RMAN would quickly consider
them obsolete, and they would be removed the next time the DELETE OBSOLETE
command is used.

You can exempt a backup from the retention policy by using the KEEP option with
the BACKUP command when you create the backup, or the KEEP option of the
CHANGE command to exempt an existing backup. Note that backups exempted from
the retention policy are still fully valid backups, which can be used in restore and
recovery operations like any other if RMAN judges them to be the best choice
available.

You can change the exempt status of a backup using the CHANGE... KEEP and
CHANGE... NOKEEP commands. The NOKEEP option (default) indicates that the
backup is not immune from the configured retention policy.

You can specify the LOGS option to save archived logs for a possible incomplete
recovery of the long-term backup. When LOGS is specified, all logs more recent than
the backup are kept as long as the backup is kept. In other words, KEEP UNTIL
TIME... LOGS means that RMAN will keep all logs required to recover the backup
as long as the backup is kept. If you specify NOLOGS, then RMAN does not keep the
logs required to recover the backup. Note that if you use KEEP UNTIL TIME...
with an inconsistent backup, you must use the LOGS option, or that backup will
become unusable when the logs required to recover it are deleted as obsolete.

You can specify an end date using the UNTIL clause, or either specify that the
backup should be kept FOREVER. If you specify UNTIL, then RMAN will not mark
the backup as obsolete until after the UNTIL date has passed. Note that it is an error

See Also:

■ Oracle Database Backup and Recovery Basics to generate reports
and delete backups

■ Oracle Database Recovery Manager Reference for DELETE syntax

■ Oracle Database Recovery Manager Reference for REPORT syntax

Backup Retention Policies

2-48 Backup and Recovery Advanced User’s Guide

to specify KEEP FOREVER with the LOGS option, as this would require keeping all
redo logs forever.

The following commands are examples of long-term backups:

Creates a backup and exempts it from retention policy until last day of 2003
BACKUP DATABASE KEEP UNTIL TIME "TO_DATE('31-DEC-2003', 'dd-mon-yyyy')" NOLOGS;

Specifies that backupset 231 is no longer exempt from the retention policy
CHANGE BACKUPSET 231 NOKEEP;

Creates a backup that is indefinitely exempt from the retention policy
BACKUP TABLESPACE users KEEP FOREVER NOLOGS;

Relationship Between Retention Policy and Flash Recovery Area Rules
The RMAN status OBSOLETE is always determined in reference to a retention
policy. For example, if a database backup is OBSOLETE in the RMAN repository, it is
because it is either not needed for recovery to a point within the recovery window,
or it is redundant.

If you configure a flash recovery area, then the database uses an internal algorithm
to delete files from the flash recovery area that are no longer needed because they
are redundant, orphaned, and so forth. The backups with status OBSOLETE form a
subset of the files deemed eligible for deletion by the disk quota rules.

There is one important difference between the flash recovery area criteria for
OBSOLETE status and the disk quota rules for deletion eligibility. Assume that
archived logs 1000 through 2000, which are on disk, are needed for the currently
enabled recovery window and so are not obsolete. If you back up these logs to tape,
then the retention policy still considers the disk logs as required, that is, not
obsolete. Nevertheless, the flash recovery area disk quota algorithm considers the
logs on disk as eligible for deletion because they have already been backed up to
tape. The logs on disk do not have OBSOLETE status in the repository, yet are
eligible for deletion by the flash recovery area. Note, though, that the retention
policy is never violated when determining which files to delete from the flash
recovery area.

See Also: Oracle Database Recovery Manager Reference for CHANGE
syntax

Backup Optimization

RMAN Backups Concepts 2-49

Backup Optimization
Backup optimization is a feature that avoids creating identical backup copies of files
that have not changed since the last time they were backed up. If you enable backup
optimization, then the BACKUP command skips the backup of a file when the
identical file has already been backed up to the allocated device type.

Backup Optimization Algorithm
Table 2–3 describes criteria that RMAN uses to determine whether a file is identical
to a file that it already backed up.

If RMAN determines that a file is identical and it has already been backed up, then
it is a candidate to be skipped. However, RMAN must do further checking to
determine whether to skip the file, because both the retention policy and the backup
duplexing feature are factors in the algorithm that determines whether RMAN has
sufficient backups on the specified device type.

Table 2–3 describes the algorithm that backup optimization uses when determining
whether to skip the backup of an identical file.

Table 2–2 Criteria to Determine an Identical File

Type of File Criteria to Determine an Identical File

Datafile Same DBID, checkpoint SCN, creation SCN, and RESETLOGS SCN
and time. The datafile must be offline-normal, read-only, or closed
normally.

Archived redo log Same thread, sequence number, and RESETLOGS SCN and time.

Backup set Same backup set recid and stamp.

Backup Optimization

2-50 Backup and Recovery Advanced User’s Guide

For example, assume that at 9 a.m. you back up three copies of all existing archived
logs to tape:

BACKUP DEVICE TYPE sbt COPIES 3 ARCHIVELOG ALL;

Table 2–3 Backup Optimization Algorithm

For an
Identical ... Backup Optimization Algorithm

Datafile If you configured a recovery window, then RMAN skips a datafile backup only if the latest
backup of a file is earlier than the earliest point in the window. In other words, RMAN takes
another backup of a file, ignoring any possible optimization, if the latest file was backed up
longer ago than the recovery window. This is done to allow media to be recycled after the media
expires. This is not done for device type DISK.

If you did not configure a recovery window, then RMAN sets r=1 by default and searches for
values of n in this order of precedence (that is, values higher on the list override values lower
on the list):

1. If CONFIGURE RETENTION POLICY TO REDUNDANCY r is enabled, then RMAN only skips
datafiles when n=r+1 backups exist.

2. BACKUP ... COPIES n

3. SET BACKUP COPIES n

4. CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE ... TO n

RMAN skips backup only if at least n backups of an identical file exist on the specified device. If
RMAN does not skip the backup, then it makes the backup exactly as specified.

Archived log By default, n=1. RMAN searches for values of n in this order of precedence (that is, values
higher on the list override values lower on the list):

1. BACKUP ... COPIES n

2. SET BACKUP COPIES n

3. CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE ... TO n

RMAN skips backup only if at least n backups of an identical file exist on the specified device. If
RMAN does not skip the backup, then it makes the backup exactly as specified.

Backup set By default, n=1. RMAN searches for other values of n in this order of precedence (that is, values
higher on the list override values lower on the list):

1. BACKUP ... COPIES n

2. SET BACKUP COPIES n

RMAN skips backup only if at least n backups of an identical file exist on the specified device. If
RMAN does not skip the backup, then it makes the backup exactly as specified.

Backup Optimization

RMAN Backups Concepts 2-51

Later, you enable the following configuration setting in preparation for another
backup:

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE sbt TO 4;
CONFIGURE BACKUP OPTIMIZATION ON;

Then, you run the following archived log backup at noon:

BACKUP DEVICE TYPE sbt COPIES 2 ARCHIVELOG ALL;

In this case, the BACKUP ... COPIES setting overrides the CONFIGURE ...
COPIES setting, so RMAN sets n=2. RMAN skips the backup of a log only if at least
two copies of the log exist on the sbt device. Because three copies of each log exist
on sbt of all the logs generated before 9 a.m., RMAN skips the backups of these
logs. However, RMAN backs up two copies of all logs generated after 9 a.m.
because these logs have not yet been backed up to tape.

At this point, three copies of the logs created before 9 a.m. exist on tape, and two
copies of the logs created after 9 a.m. exist on tape. Assume that you run the
following backup at 3 p.m.:

RUN
{
 SET BACKUP COPIES 3;
 BACKUP DEVICE TYPE sbt ARCHIVELOG ALL;
}

In this case, RMAN sets n=3 and so will not back up the logs created before 9 a.m.
because three copies already exist on tape. However, only two copies of the logs
created after 9 a.m. exist on tape, so RMAN does not optimize backups of these
logs. Hence, RMAN backs up three copies of the logs created after 9 a.m.

Requirements for Enabling and Disabling Backup Optimization
Backup optimization is used when the following conditions are true:

■ The CONFIGURE BACKUP OPTIMIZATION ON command has been run.

■ You run BACKUP DATABASE, BACKUP ARCHIVELOG with ALL or LIKE options,
or BACKUP BACKUPSET ALL.

■ Only one type of channel is allocated, that is, you do not mix channels of type
DISK and sbt.

For example, assume that you run these commands:

BACKUP DEVICE TYPE sbt DATABASE PLUS ARCHIVELOG;

Backup Optimization

2-52 Backup and Recovery Advanced User’s Guide

BACKUP DEVICE TYPE sbt BACKUPSET ALL;

If none of these files has changed since the last backup, then RMAN does not back
up the files again, nor signal an error if it skips all files specified in the command.

To override backup optimization and back up all files whether or not they have
changed, specify the FORCE option on the BACKUP command. To disable backup
optimization on a persistent basis, use the following command:

RMAN> CONFIGURE BACKUP OPTIMIZATION OFF;

Effect of Retention Policies on Backup Optimization
The retention policy influences backup optimization. Because the retention policy
defaults to REDUNDANCY=1, a retention policy is always in place unless it is
explicitly disabled with CONFIGURE RETENTION POLICY TO NONE.

Backup Optimization and a Recovery Window
If optimization is enabled, and if a recovery window retention policy is in effect,
then RMAN always backs up datafiles whose most recent backup is older than the
recovery window. For example, assume that:

■ Today is February 21.

■ The recovery window is 7 days.

■ The most recent backup of tablespace tools to tape is January 3.

■ Tablespace tools is read-only.

On February 21, when you issue a command to back up tablespace tools to tape,
RMAN backs it up even though it did not change after the January 3 backup
(because it is read-only). RMAN makes the backup because no backup of the
tablespace exists within the 7-day recovery window.

This behavior allows the media manager to expire old tapes. Otherwise, the media
manager would be forced to keep the January 3 backup of tablespace tools

Note: Use caution when enabling backup optimization if you use
a media manager with its own internal expiration policy. Run
CROSSCHECK periodically to synchronize the RMAN repository
with the media manager. Otherwise, RMAN may skip backups due
to optimization without recognizing that the media manager has
discarded backups stored on tape.

Backup Optimization

RMAN Backups Concepts 2-53

indefinitely. By making a more recent backup of tablespace tools on February 21,
RMAN allows the media manager to expire the tape containing the obsolete
January 3 backup.

Backup Optimization and Redundancy
Assume that you configure a retention policy for redundancy. In this case, RMAN
only skips backups of offline or read-only datafiles when there are r + 1 backups of
the files, where r is set in CONFIGURE RETENTION POLICY TO REDUNDANCY r.

Assume that you enable backup optimization and set the following retention policy:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE RETENTION POLICY TO REDUNDANCY 2;

So, RMAN only skips backups when three identical files are already backed up.
Also assume that you have never backed up the users tablespace, which is
read/write, and that you perform the actions described in Table 2–4 over the course
of the week.

Table 2–4 Effect of Redundancy Setting on Backup Optimization

Day Action Result Redundant Backup

Monday Take tablespace
users offline normal.

Tuesday BACKUP DATABASE The users tablespace is
backed up.

Wednesday BACKUP DATABASE The users tablespace is
backed up.

Thursday BACKUP DATABASE The users tablespace is
backed up.

Tuesday backup

Friday BACKUP DATABASE The users tablespace is not
backed up.

Tuesday backup

Saturday BACKUP DATABASE The users tablespace is not
backed up.

Tuesday backup

Sunday DELETE OBSOLETE The Tuesday backup is
deleted.

Monday BACKUP DATABASE The users tablespace is
backed up.

Wednesday backup

Restartable Backups

2-54 Backup and Recovery Advanced User’s Guide

The backups on Tuesday, Wednesday, and Thursday back up the offline users
tablespace to satisfy the condition that three backups must exist (one more than
redundancy setting). The Friday and Saturday backups do not back up the users
tablespace because of backup optimization. Note that the Tuesday backup of users
is obsolete beginning on Thursday.

On Sunday, you delete all obsolete backups, which removes the Tuesday backup of
users. The Tuesday backup is obsolete because of the retention policy setting. The
whole database backup on Monday then backs up the users tablespace to satisfy
the condition that three backups must exist (one more than redundancy setting). In
this way, you can recycle your tapes over time.

Restartable Backups
Using the restartable backups feature, RMAN can back up only those files that
have not been backed up since a specified date. Use this feature after a backup fails
to back up the parts of the database missed by the failed backup.

The unit of restartability is a backup set. If the backup generates multiple backup
sets, then the backups that completed successfully do not have to be rerun. If the
entire database is written into one backup set, and if the backup fails halfway
through, then the entire backup has to be restarted.

To take better advantage of restartable backups, you can use set the MAXSETSIZE
parameter of the BACKUP command. If, for instance, you set MAXSETSIZE to 10MB
for a given backup command, a new backup set is produced for each 10MB of
backup output. If the backup fails after some backup sets have been produced and
must be restarted, the data backed up in those backup sets will not have to be
backed up again. (Note that MAXSETSIZE must be large enough that any file can be
accomodated in a single backup piece, because large files cannot span backup
pieces.)

For example, if the largest datafile is less than 10 MB, then you can back up the
database daily as follows:

BACKUP DATABASE MAXSETSIZE = 10M;

Then, after a failure you can back up all files in the database that were not backed
up in the last 24 hours by issuing:

BACKUP DATABASE NOT BACKED UP SINCE TIME 'SYSDATE-1';

See Also: "Backing Up Files Using Backup Optimization" on
page 7-9, and "Configuring Backup Optimization" on page 6-21

Managing Backup Windows and Performance: BACKUP... DURATION

RMAN Backups Concepts 2-55

If the SINCE TIME is later than the completion time, then RMAN backs up the file.
If you use "BACKUP DATABASE NOT BACKED UP" without the SINCE TIME
parameter, then RMAN only backs up files that have never been backed up.

When determining whether a file has been backed up, RMAN compares the SINCE
TIME date with the completion time of the most recent backup of the file. The
completion time for a backup piece is the completion time of the entire backup set,
not an individual backup piece; in other words, all files in the same backup set have
the same completion time.

Managing Backup Windows and Performance: BACKUP... DURATION
A backup window is a period of time during which a backup activity must
complete. For example, you may want to restrict your database backup activities to
a window of time when user activity on your system is low, such as between 2:00
AM and 6:00 AM.

The BACKUP command supports a DURATION argument which lets you specify how
long a given backup job is allowed to run. You could, for example, run the following
command at 2:00AM:

BACKUP DURATION 4:00 TABLESPACE users;

RMAN backs up the specified data at the maximum possible speed. If the backup is
not complete in four hours, the backup is interrupted. Any completed backupsets
are retained and can be used in restore operations, even if the entire backup is not
complete. Any incomplete backupsets are discarded.

Controlling RMAN Behavior when Backup Window Ends with PARTIAL
By default, when a BACKUP... DURATION command runs out of time before the
backup completes, RMAN reports an error. (The effect of this is that if the command
is running in a RUN block, the RUN block terminates.) You can control this
behavior by adding the PARTIAL option to the BACKUP... DURATION command, as
in this example:

BACKUP DURATION 4:00 PARTIAL TABLESPACE users FILESPERSET 1;

See Also: "Restarting a Backup After It Partially Completes" on
page 7-9 and Oracle Database Recovery Manager Reference for BACKUP
syntax

Managing Backup Windows and Performance: BACKUP... DURATION

2-56 Backup and Recovery Advanced User’s Guide

When PARTIAL is used, no error is reported when a backup command is
interrupted due to the end of the backup window. Instead, a message showing
which files could not be backed will be displayed. If the BACKUP command is part
of a RUN block, then the remaining commands in the RUN block will continue to
execute.

When using DURATION the least recently backed up files are backed up first. Thus,
if you retry a job that was interrupted when the available duration expired, each
successive attempt covers more of the files needing backup.

Note also the use of FILESPERSET 1 in this example. With this option, RMAN
puts each file into its own backupset. This way, when a backup is interrupted at the
end of the backup window, only the backup of the file currently being backed up is
lost. All backup sets completed during the window are saved, minimizing the lost
work due to the end of the backup window.

Managing Backup Performance with MINIMIZE TIME and MINIMIZE LOAD
When using DURATION you can run the backup with the maximum possible
performance, or run as slowly as possible while still finishing within the allotted
time, to minimize the performance impact of backup tasks. To maximize
performance, use the MINIMIZE TIME option with DURATION, as shown in this
example:

BACKUP DURATION 4:00 PARTIAL MINIMIZE TIME DATABASE FILESPERSET 1;

To extend the backup to use the full time available, use the MINIMIZE LOAD
option, as in this example:

BACKUP DURATION 4:00 PARTIAL MINIMIZE LOAD DATABASE FILESPERSET 1;

RMAN monitors the progress of the running backup, and periodically estimates
how long the backup will take to complete at its present rate. If RMAN estimates
that the backup will finish before the end of the backup window, it slows down the

RMAN Backup Errors

RMAN Backups Concepts 2-57

rate of backup so that the full available duration will be used. This reduces the
overhead on the database associated with the backup.

RMAN Backup Errors
RMAN detects and responds to two primary types of backup errors: I/O errors and
corrupt blocks. Any I/O errors that RMAN encounters when reading files or
writing to the backup pieces or image copies cause RMAN to terminate the backup
jobs. For example, if RMAN tries to back up a datafile but the datafile is not on disk,
then RMAN terminates the backup. If multiple channels are being used, or
redundant copies of backups are being created, RMAN may be able to continue the
backup without user intervention.

If BACKUP AS BACKUPSET creates more than one complete backup set and an error
occurs, then RMAN needs to rewrite the backup sets that it was writing at the time
of the error. However, it retains any backup sets that it successfully wrote before
terminating. The NOT BACKED UP SINCE option of the BACKUP command restarts a
backup that partially completed, backing up only files that did not get backed up.

RMAN copies datafile blocks that are already identified as corrupt into the backup.
If RMAN encounters datafile blocks that have not already been identified as
corrupt, then RMAN stops the backup unless SET MAXCORRUPT has been used.
Setting MAXCORRUPT allows a specified number of previously undetected block
corruptions in datafiles during the execution of an RMAN BACKUP command. If
RMAN detects more than this number of corruptions while taking the backup, then
the command terminates. The default limit is zero, meaning that RMAN does not
tolerate corrupt blocks by default.

Note: Note these issues when using DURATION and MINIMIZE
LOAD with a tape backup:

■ Efficient backup to tape requires tape streaming. If you use
MINIMIZE LOAD, RMAN may reduce the rate of backup to the
point where tape streaming is not optimal.

■ RMAN will hold the tape resource for the entire duration of the
backup window. This prevents the use of the tape resource for
any other purpose during the backup window.

Because of these concerns, it is not recommended that MINIMIZE
LOAD be used with tape. See "Factors Affecting Backup Speed to
Tape" on page 14-6 for more details on efficient tape handling.

Tests and Integrity Checks for Backups

2-58 Backup and Recovery Advanced User’s Guide

When RMAN finds corrupt blocks, until it finds enough to exceed the MAXCORRUPT
limit, it writes the corrupt blocks to the backup with a reformatted header
indicating that the block has media corruption. If the backup completes without
exceeding MAXCORRUPT,then the database records the address of the corrupt
blocks and the type of corruption in the control file. Access these records through
the V$DATABASE_BLOCK_CORRUPTION view. Note that if more than MAXCORRUPT
corrupt blocks are found, the V$DATABASE_BLOCK_CORRUPTION view is not
populated. In such a case, you should set MAXCORRUPT higher and re-run the
command to identify the corrupt blocks.

Tests and Integrity Checks for Backups
The database prevents operations that result in unusable backup files or corrupt
restored datafiles. The database server automatically does the following:

■ Blocks access to datafiles while they are being restored or recovered

■ Allows only one restore operation for each datafile at a time

■ Ensures that incremental backups are applied in the correct order

■ Stores information in backup files to allow detection of corruption

You can use the BACKUP VALIDATE and RESTORE VALIDATE commands to test
backup and restore operations without creating output files. In this way, you can
check your datafiles for possible problems. If you run RMAN with the following
configuration, then it detects all types of corruption that are possible to detect:

■ In the initialization parameter file, set DB_BLOCK_CHECKSUM=TRUE

■ In the RMAN BACKUP and RESTORE commands, do not specify the
MAXCORRUPT option, do not specify the NOCHECKSUM option, but do specify the
CHECK LOGICAL option

See Also:

■ "Tests and Integrity Checks for Backups" on page 2-58 for more
information about fractured and corrupt blocks

■ "Restartable Backups" on page 2-54 for more information about
the NOT BACKED UP SINCE clause

■ Oracle Database Reference for a description of V$DATABASE_
BLOCK_CORRUPTION

■ Oracle Database Recovery Manager Reference for SET
MAXCORRUPT syntax

Tests and Integrity Checks for Backups

RMAN Backups Concepts 2-59

See Oracle Database Backup and Recovery Basics for more details on BACKUP
VALIDATE and RESTORE VALIDATE.

Detecting Physical and Logical Block Corruption
Because an database server session is performing the backups and has a great
understanding of files being backed up or copied, the server session is able to detect
many types of physically corrupt blocks during the backup process. Each new
corrupt block not previously encountered in a backup is recorded in the control file
and in the alert.log. By default, error checking for physical corruption is
enabled.

At the end of a backup, RMAN stores the corruption information in the recovery
catalog and control file. Access this data using the V$DATABASE_BLOCK_
CORRUPTION view.

If the server session encounters a datafile block during a backup that has already
been identified as corrupt by the database, then the server session copies the
corrupt block into the backup and the corrupt block is recorded the control file as
either a logical or media corruption. RMAN copies the block in case the user wants
to try to salvage the contents of the block.

If RMAN encounters a datafile block that has media corruption but that has not
already been identified as corrupt by the database, then it writes the block to the
backup with a reformatted header indicating that the block has media corruption.

Detection of Logical Block Corruption
Besides testing for media corruption, the database can also test data and index
blocks for logical corruption, such as corruption of a row piece or index entry. If
RMAN finds logical corruption, then it logs the block in the alert.log. If CHECK
LOGICAL was used, the block is also logged in the server session trace file. By
default, error checking for logical corruption is disabled.

For BACKUP commands the MAXCORRUPT parameter sets the total number of
physical and logical corruptions permitted in a file. If the sum of physical and
logical corruptions for a file is less than its MAXCORRUPT setting, the RMAN
command completes successfully. If MAXCORRUPT is exceeded, the command
terminates and RMAN does not read the rest of the file. V$DATABASE_BLOCK_
CORRUPTION is populated with corrupt block ranges if the command succeeds.
Otherwise, you must set MAXCORRUPT higher and re-run the backup to find out the
corrupt block ranges.

Tests and Integrity Checks for Backups

2-60 Backup and Recovery Advanced User’s Guide

Detection of Fractured Blocks During Open Backups
One danger in making online backups is the possibility of inconsistent data within a
block. For example, assume that you are backing up block 100 in datafile
users.dbf. Also, assume that the copy utility reads the entire block while
database writer is in the middle of updating the block. In this case, the copy utility
may read the old data in the top half of the block and the new data in the bottom
top half of the block. In this case, the block is a fractured block, meaning that the
data contained in this block is not consistent.

When performing open backups without using RMAN, you must put tablespaces in
backup mode in case the copy utility reads a block for a backup that is currently
being written by the database writer. When not in backup mode, the database
records only changed bytes in the redo stream. When a tablespace is in backup
mode, each time a block is changed the datbase writes the before-image ofthe entire
block to the redo log before modifying it. Then, the database also records the
changes to the block in the redo log. When you recover using SQL*Plus, the
database applies both the block images and the changes from the redo logs during
recovery. Applying the block images repairs any possible fractured blocks in the
backup being restored and recovered.

RMAN does not require that you use backup mode (and it is an error to use backup
mode with RMAN). During an RMAN backup, a database server session reads each
block of the datafile and checks whether each block is fractured by comparing the
block header and footer. If a block is fractured, the session re-reads the block. If the
same fracture is found, then the block is considered permanently corrupt. If
MAXCORRUPT is exceeded, the backup stops.

Backup Validation with RMAN
You can run the BACKUP ... VALIDATE command to check datafiles for physical
and logical corruption, or to confirm that all database files exist in the correct
locations. No backup is taken, but all specified files are scanned to verify that they
can be backed up. Here is an example:

BACKUP VALIDATE DATABASE ARCHIVELOG ALL;

You cannot use the MAXCORRUPT or PROXY parameters with the VALIDATE option.

See Also: Oracle Database Recovery Manager Reference for BACKUP
... MAXCORRUPT syntax

Tests and Integrity Checks for Backups

RMAN Backups Concepts 2-61

See Also: Oracle Database Recovery Manager Reference for BACKUP
syntax and "Validating Backups with RMAN" on page 10 for more
details on using BACKUP VALIDATE.

Tests and Integrity Checks for Backups

2-62 Backup and Recovery Advanced User’s Guide

RMAN Recovery Concepts 3-1

3
RMAN Recovery Concepts

This chapter describes the basic concepts involved in using RMAN to restore,
recover, and duplicate databases.

This chapter contains these topics:

■ Restoring Files with RMAN

■ Datafile Media Recovery with RMAN

■ Block Media Recovery with RMAN

■ Database Duplication with RMAN

■ Physical Standby Database Creation with RMAN

Restoring Files with RMAN

3-2 Backup and Recovery Advanced User’s Guide

Restoring Files with RMAN
Use the RMAN RESTORE command to restore the following types of files from disk
or other media:

■ Database (all datafiles)

■ Tablespaces

■ Control files

■ Archived redo logs

■ Server parameter files

Because a backup set is in a proprietary format, you cannot simply copy it as you
would a backup database file created with an operating system utility; you must
use the RMAN RESTORE command to extract its contents. In contrast, the database
can use image copies created by the RMAN BACKUP AS COPY command without
additional processing.

Mechanics of Restore Operations
RMAN automates the procedure for restoring files. You do not need to go into the
operating system, locate the backup that you want to use, and manually copy files
into the appropriate directories. When you issue a RESTORE command, RMAN
directs a server session to restore the correct backups to either:

■ The default location, overwriting the files with the same name currently there

■ A new location, which you can specify with the SET NEWNAME command

To restore a datafile, either mount the database or keep it open and take the datafile
to be restored offline. When RMAN performs a restore, it creates the restored files as
datafile image copies and records them in the repository. The following table
describes the behavior of the RESTORE, SET NEWNAME, and SWITCH commands.

Note: You do not normally restore archived logs because RMAN
performs this operation automatically as needed during recovery.
You can improve recovery performance, however, by manually
restoring backups of archived redo logs that you need for recovery.

See Also: Oracle Database Recovery Manager Reference for
RESTORE syntax and prerequisites

Restoring Files with RMAN

RMAN Recovery Concepts 3-3

For example, if you restore datafile ?/oradata/trgt/tools01.dbf to its default
location, then RMAN restores the file ?/oradata/trgt/tools01.dbf and
overwrites any file that it finds with the same filename. If you run a SET NEWNAME
command before you restore a file, then RMAN creates a datafile copy with the
name that you specify. For example, assume that you run the following commands:

SET NEWNAME FOR DATAFILE '?/oradata/trgt/tools01.dbf' TO '/tmp/tools01.dbf';
RESTORE DATAFILE '?/oradata/trgt/tools01.dbf';

In this case, RMAN creates a datafile copy of ?/oradata/trgt/tools01.dbf
named /tmp/tools01.dbf and records it in the repository. To change the name
for datafile ?/oradata/trgt/tools01.dbf to /tmp/tools01.dbf in the
control file, run a SWITCH command so that RMAN considers the restored file as the
current database file. For example:

SWITCH DATAFILE '/tmp/tools01.dbf' TO DATAFILECOPY '?/oradata/trgt/tools01.dbf';

The SWITCH command is the RMAN equivalent of the SQL statement ALTER
DATABASE RENAME FILE.

File Selection in Restore Operations
RMAN uses the repository to select the best available backups for use in the restore
operation. The most recent backup available, or the most recent backup satisfying
any UNTIL clause specified in the RESTORE command, is always the preferred

Run SET
NEWNAME? RESTORE Behavior Run SWITCH?

No RMAN restores the files to their
current path names and
immediately removes the
repository records for the datafile
copies created during the restore.

N/A

Yes RMAN restores the files to the path
names specified by SET NEWNAME
and does not remove the repository
records for the datafile copies
created during the restore.

If yes, then RMAN updates the
datafile names in the control file to
the names of the restored files; if no,
then RMAN does not update the
filenames in the control file and the
restored files become datafile copies.

See Also: Oracle Database Recovery Manager Reference for SET
NEWNAME syntax, and Oracle Database Recovery Manager Reference for
SWITCH syntax

Restoring Files with RMAN

3-4 Backup and Recovery Advanced User’s Guide

choice. If two backups are from the same point in time, RMAN prefers to use image
copies over backup sets because RMAN can restore more quickly from image copies
than from backup sets (especially those stored on tape).

All specifications of the RESTORE command must be satisfied before RMAN
restores a backup. Unless limited by the DEVICE TYPE clause, the RESTORE
command searches for backups on all device types of configured channels.

If no available backup in the repository satisfies all the specified criteria, then
RMAN returns an error during the compilation phase of the restore job. If you
manually allocate channels, and if the file cannot be restored because no backups
exist on the device types allocated in the job, then create a new job specifying
channels for devices containing the existing backups. This problem does not occur
when you configure automatic channels.

Restore Failover
During a RESTORE operation, if a backup piece, image copy or proxy copy is
inaccessible (for instance, deleted from the device) or a block in the backup is
corrupted, then RMAN automatically looks for a another usable copy of this backup
piece or image copy, on the same device or another device, based on the
information in the RMAN repository. If no usable copies are available, then RMAN
searches for prior backups. RMAN searches all prior backups for the most recent
available backup usable in the current operation until it has exhaused all
possibilities.

Restore failover is also used when there are errors restoring archivelogs during
RECOVER, BLOCKRECOVER, and FLASHBACK DATABASE commands.

When RMAN performs restore failover to another backup of the same file, you will
see a message similar to this one in the output of RMAN:

failover to piece handle=/u01/backup/db_1 tag=BACKUP_031009

Also, details about block corruptions will be printed in the alert log and trace files.

When restore failover cannot locate another copy of the same backup and searches
for a prior backup, the message generated is similar to this example:

ORA-19624: operation failed, retry possible
ORA-19505: failed to identify file "/u01/backup/db_1"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

See Also: "Configuring Automatic Channels" on page 6-12

Datafile Media Recovery with RMAN

RMAN Recovery Concepts 3-5

failover to previous backup

Restore Optimization
By default, RMAN does not perform a restore if the file to be restored is in the
correct place and its header contains the expected information. RMAN only restores
a file if the header check does not succeed, although you can use the FORCE option
of the RESTORE command to override this behavior and restore the requested files
unconditionally.

Restore optimization is particularly useful in cases where a restore only partially
completes. For example, assume that a full database restore encounters a power
failure after all except one of the datafiles has been restored. If you start the same
restore again, then RMAN only restores the single datafile that was not restored
during the previous attempt.

Datafile Media Recovery with RMAN
The concept of datafile media recovery is the application of online or archived redo
logs or incremental backups to a restored datafile in order to update it to the current
time or some other specified time. Use the RMAN RECOVER command to perform
media recovery and apply logs or incremental backups automatically.

RMAN Media Recovery: Basic Steps
If possible, make the recovery catalog available to perform the media recovery. If it
is not available, or if you do not maintain a recovery catalog, then RMAN uses
metadata from the target database control file. If both the control file and recovery
catalog are lost, then you can still recover the database—assuming that you have
backups of the datafiles and at least one autobackup of the control file.

Note: Restore optimization only checks the datafile header and
does not the scan the datafile body for corrupted blocks.

See Also: Oracle Real Application Clusters Administrator's Guide for
description of RESTORE behavior in a RAC configuration

Datafile Media Recovery with RMAN

3-6 Backup and Recovery Advanced User’s Guide

The generic steps for media recovery using RMAN are as follows:

1. Place the database in the appropriate state: mounted or open. For example,
mount the database when performing whole database recovery, or open the
database when performing online tablespace recovery.

2. To perform incomplete recovery, use the SET UNTIL command to specify the
time, SCN, or log sequence number at which recovery terminates. Alternatively,
specify the UNTIL clause on the RESTORE and RECOVER commands.

3. Restore the necessary files with the RESTORE command.

4. Recover the datafiles with the RECOVER command.

5. Place the database in its normal state. For example, open it or bring recovered
tablespaces online.

Figure 3–1 illustrates an example of RMAN media recovery. The DBA runs the
following commands:

RESTORE DATABASE;
RECOVER DATABASE;

RMAN then queries the repository, which in this example is a recovery catalog. The
recovery catalog obtains its metadata from the target database control file. RMAN
then decides which backup sets to restore, and which incremental backups and
archived logs to use for recovery. A server session on the target database instance
performs the actual work of restore and recovery.

Datafile Media Recovery with RMAN

RMAN Recovery Concepts 3-7

Figure 3–1 Performing RMAN Media Recovery

Mechanics of Recovery: Incremental Backups and Redo Logs
If RMAN has a choice between applying an incremental backup or applying redo to
the restored datafiles to meet a recovery objective, then it always chooses an
incremental backup. If overlapping levels of incremental backup are available, then
RMAN automatically chooses the one covering the longest period of time.

RMAN does not need to apply incremental backups to a restored level 0
incremental backup: it can also apply archived logs. RMAN restores the datafiles
that it needs from available backups, applies incremental backups to the datafiles if
they are available, and then applies archived logs.

See Also:

■ Chapter 8, "Advanced RMAN Recovery Techniques" for
detailed restore and recovery procedures

■ "Control File and Server Parameter File Autobackups" on
page 2-38

■ Oracle Database Recovery Manager Reference for RESTORE syntax

■ Oracle Database Recovery Manager Reference for RECOVER syntax

Recovery
catalog

Recovery
Manager

RESTORE DATABASE;
RECOVER DATABASE;

Server
session

Restore backup set 1, 2
Recover w/ incremental
 backup set 5
apply archived logs
 3012-3045

Oracle
Recovery
Catalog

Target
database

Control
file

DBA

Datafile Media Recovery with RMAN

3-8 Backup and Recovery Advanced User’s Guide

How RMAN Searches for Archived Redo Logs During Recovery
If RMAN cannot find an incremental backup, then it looks in the repository for the
names of archived redo logs to use for recovery. The database records an archived
log in the control file whenever one of the following occurs:

■ The archiver process archives a redo log

■ RMAN restores an archived log

■ The RMAN BACKUP AS COPY command copies a log

■ The RMAN CATALOG command catalogs a user-managed backup of an
archived log

If you use a recovery catalog, then RMAN propagates archived log data into the
recovery catalog during resynchronization, classifying archived logs as image
copies. You can view the log information through:

■ The LIST ARCHIVELOG command

■ The V$BACKUP_FILES control file view

■ The V$ARCHIVED_LOG control file view

During recovery, RMAN looks for the needed logs using the filenames specified in
the V$ARCHIVED_LOG view. If the logs were created in multiple destinations or
were generated by the BACKUP AS COPY, CATALOG, or RESTORE commands, then
multiple, identical copies of each log sequence number exist on disk. RMAN does
not have a preference for one copy over another during recovery: all copies of a log
sequence number listed as AVAILABLE are candidates. In a sense, RMAN is blind to
the fact that the logs were generated in different destinations or in different ways.

If the RMAN repository indicates that a log has been deleted or uncataloged, then
RMAN ceases to consider it as available for recovery. For example, assume that the
database archives log 100 to directories /dest1 and /dest2. The RMAN
repository indicates that /dest1/log100.arc and /dest2/log100.arc exist. If
you delete /dest1/log100.arc with the DELETE command, then the repository
indicates that only /dest2/log100.arc is available for recovery.

If the RMAN repository indicates that no copies of a needed log sequence number
exist on disk, then RMAN looks in backups and restores archived redo logs as
needed to perform the media recovery. By default, RMAN restores the archived
redo logs to the first local archiving destination specified in the initialization
parameter file. You can run the SET ARCHIVELOG DESTINATION command to
specify a different restore location. If you specify the DELETE ARCHIVELOG option
on RECOVER, then RMAN deletes the archived logs after restoring and applying

Datafile Media Recovery with RMAN

RMAN Recovery Concepts 3-9

them. If you also specify MAXSIZE integer on the RECOVER command, then
RMAN restores archived logs until the disk space allowed by MAXSIZE is
consumed, then applies redo from the logs and deletes the restored logs to free
space, until there is room enough to restore another archived log. RMAN continues
restoring, applying and deleting logs, within the MAXSIZE limit, until recovery is
complete.

RMAN Behavior When the Repository Is Not Synchronized
If an archived log is deleted from disk and the repository does not reflect this fact,
then RMAN does not perform automatic failover during recovery. For example, if
the repository indicates that /dest1/log100.arc is on disk when in fact this log
was deleted using an operating system command, and if RMAN attempts to apply
this log file during recovery, then recovery terminates with an error. RMAN does
not automatically attempt to apply other copies of log 100 that are listed as available
in the repository.

This situation can sometimes occur when you delete an archived log with an
operating system utility and then fail to run CROSSCHECK to synchronize the
repository. If you run a CROSSCHECK so that the repository is synchronized, then
recovery can proceed by applying available copies of the log or restoring a backup
of the log if no disk copies are available.

Incomplete Recovery
RMAN can perform either complete or incomplete recovery. You can specify a time,
SCN, or log sequence number as a limit for incomplete recovery with the SET
UNTIL command or with an UNTIL clause specified directory on the RESTORE and
RECOVER commands. The easiest method is run the SET UNTIL command before
issuing the RESTORE and RECOVER commands. After performing incomplete
recovery, you must open the database with the RESETLOGS option.

See Also: Oracle Database Recovery Manager Reference for
CROSSCHECK syntax

See Also: Oracle Database Recovery Manager Reference for the
UNTIL clause syntax

Block Media Recovery with RMAN

3-10 Backup and Recovery Advanced User’s Guide

Tablespace Point-in-Time Recovery
Recovery Manager automated Tablespace Point-in-Time Recovery (TSPITR) enables
you to recover one or more tablespaces to a point in time that is different from that
of the rest of the database. RMAN TSPITR is most useful in these cases:

■ To recover from an erroneous drop or truncate table operation

■ To recover a table that has become logically corrupted

■ To recover from an incorrect batch job or other DML statement that has affected
only a subset of the database

■ In cases where there are multiple logical schemas in separate tablespaces of one
physical database, and where one schema must be recovered to a point different
from that of the rest of the physical database

■ For VLDBs (very large databases), even if a full database point-in-time recovery
would suffice, you might choose to do tablespace point-in-time recovery rather
than restore the whole database from a backup and perform a complete
database roll forward

Similar to a table export, RMAN TSPITR enables you to recover a consistent data
set; however, the data set is the entire tablespace rather than a single object.

Block Media Recovery with RMAN
Although datafile media recovery is the principal form of recovery, you can also use
the RMAN BLOCKRECOVER command to perform block media recovery. Block
media recovery recovers an individual corrupt datablock or set of datablocks within
a datafile. In cases when a small number of blocks require media recovery, you can
selectively restore and recover damaged blocks rather than whole datafiles.

Block media recovery provides several advantages over datafile media recovery. For
example, block media recovery

■ Lowers the Mean Time to Recovery (MTTR) because only blocks needing
recovery are restored and only necessary corrupt blocks undergo recovery.
Block media recovery minimizes redo application time and avoids I/O
overhead during recovery.

■ Allows affected datafiles to remain online during recovery of the blocks.
Without block-level recovery, if even a single block is corrupt, then you must

See Also: Chapter 10, "RMAN Tablespace Point-in-Time Recovery
(TSPITR)" to learn how to perform TSPITR using RMAN

Block Media Recovery with RMAN

RMAN Recovery Concepts 3-11

restore a backup of the entire datafile and apply all redo generated for that file
after the backup was created.

Note these restrictions of block media recovery:

■ You can only perform block media recovery with RMAN. No SQL*Plus
recovery interface is available.

■ You can only perform complete recovery of individual blocks. In other words,
you cannot stop recovery before all redo has been applied to the block.

■ You can only recover blocks marked media corrupt. The V$DATABASE_BLOCK_
CORRUPTION view indicates which blocks in a file were marked corrupt since
the most recent BACKUP or BACKUP ... VALIDATE command was run against
the file.

■ You must have a full RMAN backup. Incremental backups are not allowed.
Note that Block media recovery is able to restore blocks from parent incarnation
backups and recover the corrupted blocks through a RESETLOGS.

■ Blocks that are marked media corrupt are not accessible to users until recovery
is complete. Any attempt to use a block undergoing media recovery results in
an error message indicating that the block is media corrupt.

When Block Media Recovery Should Be Used
Block media recovery is not intended for cases where the extent of data loss or
corruption is unknown and the entire datafile requires recovery. In such cases,
datafile media recovery is the best solution. Block media recovery is not a
replacement for traditional datafile media recovery, but a supplement to it.

In most cases, the database marks a block as media corrupt, invalidates the block in
the instances (or all enabled instances in a Real Application Clusters configuration),
and then writes it to disk when the corruption is first encountered. No subsequent
read of the block will be successful until the block is recovered. You can only
perform block recovery on blocks that are marked corrupt. This corrupt status
effectively takes the block offline in all database instances and prevents user access
during recovery.

Block media recovery is most useful for data losses that affect specific blocks.
Block-level data loss usually results from intermittent, random I/O errors that do

See Also: "Performing Block Media Recovery with RMAN" on
page 8-21 and Oracle Database Recovery Manager Reference for
BLOCKRECOVER syntax

Block Media Recovery with RMAN

3-12 Backup and Recovery Advanced User’s Guide

not cause widespread data loss, as well as memory corruptions that get written to
disk. Typically, these types of block corruption are reported in the following
locations:

■ Error messages in standard output

■ The alert log

■ User trace files

■ Results of the SQL commands ANALYZE TABLE and ANALYZE INDEX

■ Results of the DBVERIFY utility

■ Third-party media management output

For example, you may discover the following messages in a user trace file:

ORA-01578: ORACLE data block corrupted (file # 7, block # 3)
ORA-01110: data file 7: '/oracle/oradata/trgt/tools01.dbf'
ORA-01578: ORACLE data block corrupted (file # 2, block # 235)
ORA-01110: data file 2: '/oracle/oradata/trgt/undotbs01.dbf'

You can then specify the corrupt blocks in the BLOCKRECOVER command as follows:

BLOCKRECOVER
 DATAFILE 7 BLOCK 3
 DATAFILE 2 BLOCK 235;

Block Media Recovery When Redo Is Missing
Like datafile media recovery, block media recovery cannot generally survive a
missing or inaccessible archived log (although it will attempt restore failover when
looking for usable copies of archived redo log files, as described in "Restore
Failover" on page 3-4). Nevertheless, block media recovery can survive gaps in the
redo stream if the missing or corrupt redo records do not affect the blocks being
recovered. Whereas datafile recovery requires an unbroken series of redo changes
from the beginning of recovery to the end, block media recovery only requires an
unbroken set of redo changes for the blocks being recovered.

When RMAN first detects missing or corrupt redo records during block media
recovery, it does not immediately signal an error because the block undergoing

Note: Each block is recovered independently during block media
recovery, so recovery may be successful for a subset of blocks.

Database Duplication with RMAN

RMAN Recovery Concepts 3-13

recovery may become a newed block later in the redo stream. When a block is
newed all previous redo for that block becomes irrelevant because the redo applies
to an old incarnation of the block. For example, the database can new a block when
users delete all the rows recorded in the block or drop a table.

Assume that media recovery is performed on block 13 as depicted in Figure 3–2.

Figure 3–2 Performing RMAN Media Recovery

After block recovery begins, RMAN discovers that change 120 is missing. RMAN
does not terminate recovery in the hope that block 13 will be newed later in the redo
stream. Assume that in change 140 a user drops the table EMPLOYEE stored in block
13. At this point, the database formats block 13 as a new block. Because the redo for
block 13 in change 120 related to the EMPLOYEE table, and the EMPLOYEE table was
dropped in change 140, RMAN can skip this missing change and apply the redo
between changes 140 and 160.

Database Duplication with RMAN
Use the RMAN DUPLICATE command to create a copy of the target database in
another location. The command restores backups of the primary database files and
creates a new database.

As part of the duplication, RMAN manages the following:

■ Restores the target datafiles into the duplicate database and performs
incomplete recovery using all available archived log and incremental backups

■ Opens the duplicate database with the RESETLOGS option after incomplete
recovery to create the online redo logs

■ Generates a new, unique database identifier for the duplicate database

Note the following features of RMAN duplication. You can:

Block 13 is
restored in
datafile 4

Missing redo
for block 13

Block 13 is
newed

Last change
for block 13

Redo
application

Change 100 Change 120 Change 160Change 140

Database Duplication with RMAN

3-14 Backup and Recovery Advanced User’s Guide

■ Skip read-only tablespaces with the SKIP READONLY clause (read-only
tablespaces are included by default). You can also exclude any tablespace with
the SKIP TABLESPACE clause so long as it is not the SYSTEM or SYSAUX
tablespace and does not contain rollback or undo data. If you omit tablespaces,
then you can add them later.

■ Create the duplicate database in a new host. If the same directory structure is
available, then you can use the NOFILENAMECHECK option and reuse the target
datafile filenames for the duplicate datafiles.

■ Create the duplicate database by using the SET UNTIL command or UNTIL
clause of the DUPLICATE command to recover it to a past time. By default, the
DUPLICATE command creates the database using the most recent backups of
the target database and then performs recovery to the most recent consistent
point contained in the incremental and archived redo log backups.

■ Use the duplicate database without a recovery catalog.

■ Register the duplicate database in the same recovery catalog as the target
database. This option is possible because the duplicate database receives a new
database identifier during duplication. If you copy the target database with
operating system utilities, then the database identifier of the copied database
remains the same so you cannot register it in the same recovery catalog (unless
you change its DBID with the DBNEWID utility, described in Oracle Database
Utilities).

Figure 3–3 illustrates a case of database duplication. In this example, RMAN creates
two duplicate database by using one set of datafile backups: one database on the
local host and one database on a remote host.

Physical Standby Database Creation with RMAN

RMAN Recovery Concepts 3-15

Figure 3–3 Creating a Duplicate Database from Backups

The method you use to duplicate your database depends on whether you are
creating your duplicate database on the same or a different host and whether the
duplicate directory structure is the same as your target database directory structure.
For example, in some cases you can keep the same directory structure and filenames
in your duplicate database, while other times you must rename the files.

Physical Standby Database Creation with RMAN
You can use the RMAN DUPLICATE command to create a physical standby
database. (Note that RMAN cannot be used to create a logical standby database,
because it is not a block-for-block duplicate of the primary database.) RMAN
automates the following steps of the creation procedure:

1. Restores the standby control file.

2. Restores the primary datafile backups.

See Also:

Chapter 11, "Duplicating a Database with Recovery Manager" to
learn how to make a duplicate database

Oracle Database Recovery Manager Reference for DUPLICATE
command syntax

Oracle Database Utilities to learn how to use the DBNEWID utility

Oracle
Net

Host 1

Target
database

Duplicate
database

RMAN

Host 2

Duplicate
database

Datafile
backups

Physical Standby Database Creation with RMAN

3-16 Backup and Recovery Advanced User’s Guide

3. Optionally, RMAN recovers the standby database (after the control file has been
mounted) up to the specified time or to the latest archived redo log generated.

4. RMAN leaves the database mounted so that the user can activate it, place it in
manual or managed recovery mode, or open it in read-only mode.

RMAN cannot fully automate creation of the standby database because you must
manually create an initialization parameter file for the standby database, start the
standby instance without mounting the control file, and perform any Oracle Net
setup required before performing the creation of the standby. Also, you must have
RMAN backups of all datafiles available as well as a control file backup that is
usable as a standby control file.

RMAN can back up the standby datafiles, control file and archived redo logs of a
physical standby database. Backups of datafiles and archived redo logs taken from a
physical standby database are fully interchangeable with primary backups. In other
words, you can restore a backup of a physical standby datafile to the primary
database, and you can restore a backup of a primary datafile to the physical standby
database. The standby control file backups can be used to restore the standby
control file without needing to re-instantiate the standby in cases where the standby
control file is lost.

See Also: Oracle Data Guard Concepts and Administration to learn
how to create and back up a physical standby database with
RMAN

RMAN Maintenance Concepts 4-1

4
RMAN Maintenance Concepts

This chapter describes the basic concepts involved in using the Recovery Manager
(RMAN) utility.

This chapter contains these topics:

■ RMAN Reporting

■ Crosschecks of RMAN Backups

■ Deletion of RMAN Backups

■ CHANGE AVAILABLE and CHANGE UNAVAILABLE with RMAN Backups

■ Changing Retention Policy Status of RMAN Backups

RMAN Reporting

4-2 Backup and Recovery Advanced User’s Guide

RMAN Reporting
The RMAN repository contains extensive records of about backups as well as other
useful information such as database schema and configuration settings. You can use
RMAN commands LIST, REPORT, and SHOW to access this repository information.

In addition to these general reporting commands, you can also make use of the
RESTORE... PREVIEW command to see which backup files are required to restore
specific database objects from backup. See Oracle Database Backup and Recovery Basics
for more details on RESTORE... PREVIEW.

Using the RMAN LIST Command
The LIST command is used to query the RMAN repository and obtain data about:

■ Backup sets and image copies generated by the RMAN BACKUP command;

■ Specified objects contained in the BACKUP-generated files, that is, archived logs,
datafiles, control files, and server parameter files;

■ Incarnations of a specified database, or of all databases known to a recovery
catalog.

RMAN LIST output is sent either to standard output or to the message log (though
not to both at the same time). You can also control how the output is organized as
well as the level of detail in the output.

You can also list backups by querying V$BACKUP_FILES and the RC_BACKUP_
FILES recovery catalog view. These views provide access to the same information
as the LIST BACKUPSET command.

The LIST command displays the same files that the CROSSCHECK and DELETE
commands operate on. Consequently, you can issue LIST to see what is in the
repository, and then run CROSSCHECK to ensure that these files exist on disk or tape.

RMAN Reporting

RMAN Maintenance Concepts 4-3

RMAN Reports
RMAN reports are intended to provide analysis of your backup and recovery
situation. An RMAN report can answer questions such as:

■ Which datafiles need a backup?

■ Which backups are obsolete because they are redundant or because they are not
needed for recovery within a recovery window?

■ Are any datafiles now unrecoverable because they have been the target of
unrecoverable operations?

■ What is the current physical schema of the database, or what was it at some
previous time?

■ Which backups are orphaned, that is, unusable in a restore operation, because
they belong to incarnations of the database that are not direct predecessors of
the current incarnation?

RMAN’s reporting can be used to monitor and validate your ongoing backup
strategy. The REPORT NEED BACKUP and REPORT UNRECOVERABLE commands let
you ensure that the necessary backups are available for media recovery, and that
you can perform media recovery within a reasonable amount of time.

Also, if you are managing backup storage yourself instead of using a flash recovery
area, then you should run REPORT OBSOLETE regularly to identify backups no
longer needed to meet your retention policy. You can then delete these backups
with DELETE OBSOLETE.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to
generate lists

■ "Querying the Recovery Catalog Views" on page 13-29 to learn
how to use views as an alternative to LIST

■ Oracle Database Recovery Manager Reference for LIST command
syntax

■ Oracle Database Recovery Manager Reference for LOG
command-line syntax

RMAN Reporting

4-4 Backup and Recovery Advanced User’s Guide

Reports of Obsolete Backups
The REPORT OBSOLETE command displays backups of datafiles, control files, and
archived redo logs that can be deleted because they are no longer needed. You can
define what makes a file obsolete in the following mutually exclusive ways:

In addition to obsolete datafile backups, RMAN reports obsolete archived logs and
archived log backups. Regardless of which parameter is specified, RMAN uses this
setting to determine which backups of datafiles are no longer needed, which in turn
determines when archived logs (and backups of archived logs) are no longer
needed. Note that if a datafile has never been backed up, then all archived redo logs
back to the creation time of the file will be retained. With a full set of logs, the file
can be completely re-created during media recovery. An empty datafile is
automatically created during recovery, and all changes ever applied to the original
datafile that was not backed up are re-applied to the newly created file.

The REPORT OBSOLETE command lets you identify files which are no longer
needed to satisfy backup retention policies. By default, the REPORT OBSOLETE
commannd reports which files are obsolete under the currently configured retention
policy. To generate reports of which files are obsolete according to different
retention policies by using REDUNDANCY or RECOVERY WINDOW retention policy
options with the REPORT OBSOLETE command. For example, if you run any of
these commands:

Note: A datafile that does not have a backup is still considered
recoverable by RMAN, as long as a complete set of archived redo
logs is available, from the time the datafile was created to the
present. During recovery, an empty datafile is created, and then all
of the changes to the datafile from the archived redo logs are
applied to reconstruct the full contents of the file.

Parameter Meaning

REDUNDANCY
integer

At least integer more recent backups of this file already exist.

RECOVERY WINDOW
integer

The backup is not needed for recovery to any point within the
recovery window of integer days. For each datafile, one backup
that is older than the recovery window must exist. In other words,
one backup of each datafile must satisfy the condition SYSDATE -
CHECKPOINT_TIME >= RECOVERY WINDOW. All backups older than
the most recent backup that satisfies this condition are obsolete.

RMAN Reporting

RMAN Maintenance Concepts 4-5

RMAN> REPORT OBSOLETE REDUNDANCY 2;
RMAN> REPORT OBSOLETE RECOVERY WINDOW OF 5 DAYS;

RMAN displays backups that are obsolete according to those retention policies,
regardless of the actual configured retention policy.

If you disable the retention policy completely (that is, if you run CONFIGURE
RETENTION POLICY TO NONE), then RMAN does not consider any backups to be
obsolete. If you run REPORT OBSOLETE with no options and no retention policy is
configured, then RMAN issues an error message.

You can also query V$BACKUP_FILES and RC_BACKUP_FILES, using the
OBSOLETE column to identify backup sets, datafile copies, and archived logs that
are obsolete according to the configured retention policy.

Reports of Orphaned Backups
The REPORT OBSOLETE ORPHAN command displays orphaned backups. To
understand orphaned backups, you must understand the ide aof a database
incarnation.

Understanding Database Incarnations A new incarnation of a database is created
whenever each time the database is opened with the RESETLOGS option.
Performing an OPEN RESETLOGS archives the current online redo logs, resets the
log sequence number to 1, and then gives the online redo logs a new time stamp
and SCN.

RMAN is able to restore backups from direct ancestor incarnations and recover to
the current time, even across OPEN RESETLOGS operations, as long as a continuous
path of archived logs exists from the earliest backups to the point to which you
want to recover.

When a database goes through multiple incarnations, some backups can become
orphaned. Orphaned backups are backups that are unusable because they belong to

Note: An obsolete backup differs from an expired backup. An
obsolete backup is no longer needed according to the user’s
retention policy. An expired backup is a backup that the
CROSSCHECK command fails to find on the specified media device.

See Also: Oracle Database Recovery Manager Reference for
CONFIGURE command syntax

RMAN Reporting

4-6 Backup and Recovery Advanced User’s Guide

incarnations of the database that are not direct ancestors of the current incarnation.
That is, they are not in an unbroken incarnation path from the current incarnation.

Figure shows a database that goes through three incarnations.

Figure 4–1 Database Incarnations and Orphaned Backups

Incarnation A of the database started at SCN 1. At SCN 10, assume that you
performed a RESETLOGS operation and created incarnation B. At SCN 20, you
performed another RESETLOGS operation on incarnation B and created a new
incarnation C.

The following table explains which backups in this example are orphans, depending
on which incarnation is current.

Current
Incarnation Usable Backups (Nonorphaned) Orphaned Backups

Incarnation A All backups from incarnation A All backups from incarnations B
and C

Incarnation C

Incarnation A

In
ca

rn
at

io
n

B

SCN 1 SCN 10

SCN 2
0

Crosschecks of RMAN Backups

RMAN Maintenance Concepts 4-7

SHOW Command Output
The SHOW command can display any configuration set by the CONFIGURE
command. For example, to display the CONFIGURE CHANNEL settings, run SHOW
CHANNEL. You can run SHOW ALL to display all current configurations. This
configuration data is also stored in the V$RMAN_CONFIGURATION view.

Crosschecks of RMAN Backups
RMAN’s record of backups can become out of step with the actual backups that
exist on tape or disk. For example, a user may inadvertently delete backup pieces
from disk using operating system commands, or one of the tapes used by the media
manager may become corrupted.

To ensure that data about backups in the recovery catalog or control file is
synchronized with actual files on disk or in the media management catalog,
perform a crosscheck. The CROSSCHECK command operates only on files that are
recorded in the RMAN repository.

Incarnation B ■ All backups from incarnation A
prior to SCN 10

■ All backups from incarnation B

■ Backups from incarnation A
after SCN 10.

■ All backups from incarnation
C

Incarnation C ■ All backups from incarnation A
prior to SCN 10

■ All backups from incarnation B
prior to SCN 20

■ All backups from incarnation C

■ All backups from incarnation
A after SCN 10

■ All backups from incarnation
B after SCN 20

See Also: Oracle Database Backup and Recovery Basics to learn how
to generate reports, and Oracle Database Recovery Manager Reference
for REPORT syntax

See Also: Oracle Database Recovery Manager Reference for SHOW
syntax

Current
Incarnation Usable Backups (Nonorphaned) Orphaned Backups

Crosschecks of RMAN Backups

4-8 Backup and Recovery Advanced User’s Guide

Figure 4–2 illustrates a crosscheck of the media manager. RMAN queries the RMAN
repository for the names and locations of the four backup pieces to be checked.
RMAN sends this information to the target database server, which queries the
media management software about the backups. The media management software
then checks its media catalog and reports back to the server that backup set 3 is
missing. RMAN updates the status of backup set 3 to EXPIRED in the repository.
The record for backup set 3 will now be deleted if you run DELETE EXPIRED.

Figure 4–2 Crosschecking the Media Manager

Crosschecks are useful because they can

■ Update outdated information about backups that disappeared from disk or tape
or became corrupted

■ Update the repository if you delete archived redo logs or other files with
operating system commands

Use the crosscheck feature to check the status of a backup on disk or tape. If the
backup is on disk, then CROSSCHECK checks whether the header of the file is valid.
If a backup is on tape, then the command checks that the backups exist in the media
management software’s catalog.

Backup pieces and image copies can have the status AVAILABLE, EXPIRED, or
UNAVAILABLE. You can view the status information in the output of the LIST
command and the recovery catalog views.

You can issue the DELETE EXPIRED command to delete all expired backups.
RMAN removes the record for the expired file from the repository. If for some

Recovery Manager

Media manager

Oracle Server

Backup
set 3

Backup
set 2

Backup
set 1

Backup
set 4

Media Management
Library

Recovery
Catalog

Control
file

Monitoring RMAN Through V$ Views

RMAN Maintenance Concepts 4-9

reason the file still exists on the media, then RMAN issues warnings and lists the
mismatched objects that cannot be deleted.

Monitoring RMAN Through V$ Views
When LIST, REPORT and SHOW do not provide all the information you need on
RMAN activities, there are a number of useful V$ views that can provide more
details.

Sometimes it is useful to identify exactly what a server session performing a backup
or recovery task is doing. You have access to several views that can assist in
monitoring the progress of or obtaining information about RMAN jobs, as described
in the following table.

Note: The CROSSCHECK command does not delete operating
system files or remove repository records. You must use the
DELETE command for these operations.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to
perform crosschecks

■ Oracle Database Recovery Manager Reference for CROSSCHECK
syntax and a description of the possible status values

■ Oracle Database Recovery Manager Reference for DELETE syntax

View Description

V$RMAN_OUTPUT Displays messages reported by an RMAN job in progress.

V$RMAN_STATUS Shows the success/failure status of all recently completed
RMAN jobs.

V$PROCESS Identifies currently active processes.

V$RECOVER_FILE Identifies which datafiles require recovery.

V$SESSION Identifies currently active sessions. Use this view to determine
which database server sessions correspond to which RMAN
allocated channels.

V$SESSION_LONGOPS Provides progress reports on RMAN backup and restore jobs.

Monitoring RMAN Through V$ Views

4-10 Backup and Recovery Advanced User’s Guide

Asynchronous I/O is obtained either through the use of slave I/O processes or
because it is supported by the underlying operating system.

You can use RMAN to perform the checks discussed in the following sections:

■ Correlating Server Sessions with RMAN Channels

■ Monitoring RMAN Job Progress

■ Monitoring RMAN Interaction with the Media Manager

■ Monitoring RMAN Job Performance

■ Determining Which Datafiles Require Recovery

Correlating Server Sessions with RMAN Channels
To identify which server sessions correspond to which RMAN channels, you can
query V$SESSION and V$PROCESS. The SPID column of V$PROCESS identifies the
operating system ID number for the process or thread. For example, on UNIX the
SPID column shows the process ID, whereas on Windows the SPID column shows
the thread ID. You have two basic methods for obtaining this information,
depending on whether you have multiple RMAN sessions active concurrently.

Matching Server Sessions with Channels When One RMAN Session Is Active
When only one RMAN session is active, the easiest method for determining the
server session ID for an RMAN channel is to execute the following query on the
target database while the RMAN job is executing:

COLUMN CLIENT_INFO FORMAT a30
COLUMN SID FORMAT 999
COLUMN SPID FORMAT 9999

SELECT s.SID, p.SPID, s.CLIENT_INFO
FROM V$PROCESS p, V$SESSION s
WHERE p.ADDR = s.PADDR

V$SESSION_WAIT Lists the events or resources for which sessions are waiting.

V$BACKUP_SYNC_IO Displays rows when the I/O is synchronous to the process (or
thread on some platforms) performing the backup.

V$BACKUP_ASYNC_IO Displays rows when the I/O is asynchronous to the process (or
thread on some platforms) performing the backup.

View Description

Monitoring RMAN Through V$ Views

RMAN Maintenance Concepts 4-11

AND CLIENT_INFO LIKE 'rman%'
;

If you do not run the SET COMMAND ID command in the RMAN job, then the
CLIENT_INFO column displays in the following format:

rman channel=channel_id

For example, the following shows sample output:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 14 8374 rman channel=ORA_SBT_TAPE_1

Matching Server Sessions with Channels in Multiple RMAN Sessions
If more than one RMAN session is active, it is possible for the
V$SESSION.CLIENT_INFO column to yield the same information for a channel in
each session. For example:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 14 8374 rman channel=ORA_SBT_TAPE_1
 9 8642 rman channel=ORA_SBT_TAPE_1

In this case, you have the following methods for determining which channel
corresponds to which SID value.

Obtaining the Channel ID from the RMAN Output In this method, you must first obtain
the sid values from the RMAN output and then use these values in your SQL
query.

To correlate a process with a channel during a backup:

1. In one of the active sessions, run the RMAN job as normal and examine the
output to get the sid for the channel. For example, the output may show:

Starting backup at 21-AUG-01
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: sid=14 devtype=SBT_TAPE

2. Start a SQL*Plus session and then query the joined V$SESSION and
V$PROCESS views while the RMAN job is executing. For example, enter:

COLUMN CLIENT_INFO FORMAT a30
COLUMN SID FORMAT 999
COLUMN SPID FORMAT 9999

Monitoring RMAN Through V$ Views

4-12 Backup and Recovery Advanced User’s Guide

SELECT s.SID, p.SPID, s.CLIENT_INFO
FROM V$PROCESS p, V$SESSION s
WHERE p.ADDR = s.PADDR
AND CLIENT_INFO LIKE 'rman%'
/

Use the sid value obtained from the first step to determine which channel
corresponds to which server session:

 SID SPID CLIENT_INFO
---------- ------------ ------------------------------
 14 2036 rman channel=ORA_SBT_TAPE_1
 12 2066 rman channel=ORA_SBT_TAPE_1

Correlating Server Sessions with Channels by Using SET COMMAND ID In this method, you
specify a command ID string in the RMAN backup script. You can then query
V$SESSION.CLIENT_INFO for this string.

To correlate a process with a channel during a backup:

1. In each session, set the COMMAND ID to a different value after allocating the
channels and then back up the desired object. For example, enter the following
in session 1:

RMAN> RUN
{
 ALLOCATE CHANNEL c1 TYPE sbt;
 SET COMMAND ID TO 'sess1';
 BACKUP DATABASE;
}

Set the command ID to a string such as sess2 in the job running in session 2:

RUN
{
 ALLOCATE CHANNEL c1 TYPE sbt;
 SET COMMAND ID TO 'sess2';
 BACKUP DATABASE;
}

2. Start a SQL*Plus session and then query the joined V$SESSION and
V$PROCESS views while the RMAN job is executing. For example, enter:

SQL> SELECT SID, SPID, CLIENT_INFO
 FROM V$PROCESS p, V$SESSION s
 WHERE p.ADDR = s.PADDR

Monitoring RMAN Through V$ Views

RMAN Maintenance Concepts 4-13

 AND CLIENT_INFO LIKE '%id=sess%';

If you run the SET COMMAND ID command in the RMAN job, then the CLIENT_
INFO column displays in the following format:

id=command_id,rman channel=channel_id

For example, the following shows sample output:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 11 8358 id=sess1
 15 8638 id=sess2
 14 8374 id=sess1,rman channel=c1
 9 8642 id=sess2,rman channel=c1

The rows that contain the string rman channel show the channel performing
the backup. The remaining rows are for the connections to the target database.

Monitoring RMAN Job Progress
Monitor the progress of backups and restores by querying the view V$SESSION_
LONGOPS. RMAN uses two types of rows in V$SESSION_LONGOPS: detail and
aggregate rows. Detail rows describe the files being processed by one job step, while
aggregate rows describe the files processed by all job steps in an RMAN command.
A job step is the creation or restore of one backup set or datafile copy. Detail rows
are updated with every buffer that is read or written during the backup step, so
their granularity of update is small. Aggregate rows are updated when each job step
completes, so their granularity of update is large.

Table 4–1 describes column in V$SESSION_LONGOPS that are most relevant for
RMAN. Typically, you will view the detail rows rather than the aggregate rows to
determine the progress of each backup set.

See Also: Oracle Database Recovery Manager Reference for SET
COMMAND ID syntax, and Oracle Database Reference for more
information on V$SESSION and V$PROCESS

Table 4–1 Columns of V$SESSION_LONGOPS Relevant for RMAN

Column Description for Detail Rows

SID The server session ID corresponding to an RMAN channel.

SERIAL# The server session serial number. This value changes each time a server
session is reused.

Monitoring RMAN Through V$ Views

4-14 Backup and Recovery Advanced User’s Guide

Each server session performing a backup or restore reports its progress compared to
the total amount of work required for a job step. For example, if you perform a
database restore that uses two channels, and each channel has two backup sets to
restore (a total of four sets), then each server session reports its progress through a
single backup set. When that set is completely restored, RMAN begins reporting
progress on the next set to restore.

OPNAME A text description of the row. Examples of details rows include RMAN:
datafile copy, RMAN: full datafile backup, and RMAN: full
datafile restore.

Note: RMAN: aggregate input and RMAN: aggregate output are the
only aggregate rows.

CONTEXT For backup output rows, this value is 2. For all other rows except proxy
copy (which does not update this column), the value is 1.

SOFAR The meaning of this column depends on the type of operation described by
this row:

■ For image copies, the number of blocks that have been read.

■ For backup input rows, the number of blocks that have been read from
the files being backed up.

■ For backup output rows, the number of blocks that have been written
to the backup piece.

■ For restores, the number of blocks that have been processed to the files
that are being restored in this one job step.

■ For proxy copies, the number of files that have been copied.

TOTALWORK The meaning of this column depends on the type of operation described by
this row:

■ For image copies, the total number of blocks in the file.

■ For backup input rows, the total number of blocks to be read from all
files processed in this job step.

■ For backup output rows, the value is 0 because RMAN does not know
how many blocks that it will write into any backup piece.

■ For restores, the total number of blocks in all files restored in this job
step.

■ For proxy copies, the total number of files to be copied in this job step.

Table 4–1 Columns of V$SESSION_LONGOPS Relevant for RMAN

Column Description for Detail Rows

Monitoring RMAN Through V$ Views

RMAN Maintenance Concepts 4-15

To monitor job progress:

1. Before starting the job, create a script file (called, for this example, longops)
containing the following SQL statement:

SELECT SID, SERIAL#, CONTEXT, SOFAR, TOTALWORK,
 ROUND(SOFAR/TOTALWORK*100,2) "%_COMPLETE"
FROM V$SESSION_LONGOPS
WHERE OPNAME LIKE 'RMAN%'
 AND OPNAME NOT LIKE '%aggregate%'
 AND TOTALWORK != 0
 AND SOFAR <> TOTALWORK
;

2. After connecting to the target database and, if desired, the recovery catalog
database, start an RMAN job. For example, enter:

RESTORE DATABASE;

3. While the job is running, start SQL*Plus connected to the target database, and
execute the longops script to check the progress of the RMAN job. If you
repeat the query while the restore progresses, then you see output such as the
following:

SQL> @longops
 SID SERIAL# CONTEXT SOFAR TOTALWORK %_COMPLETE
---------- ---------- ---------- ---------- ---------- ----------
 8 19 1 10377 36617 28.34

SQL> @longops
 SID SERIAL# CONTEXT SOFAR TOTALWORK % COMPLETE
---------- ---------- ---------- ---------- ---------- ----------
 8 19 1 21513 36617 58.75

SQL> @longops
 SID SERIAL# CONTEXT SOFAR TOTALWORK % COMPLETE
---------- ---------- ---------- ---------- ---------- ----------
 8 19 1 29641 36617 80.95

SQL> @longops
 SID SERIAL# CONTEXT SOFAR TOTALWORK % COMPLETE
---------- ---------- ---------- ---------- ---------- ----------
 8 19 1 35849 36617 97.9

SQL> @longops
no rows selected

Monitoring RMAN Through V$ Views

4-16 Backup and Recovery Advanced User’s Guide

4. If you run the script at intervals of two minutes or more and the %_COMPLETE
column does not increase, then RMAN is encountering a problem. Refer to
"Monitoring RMAN Interaction with the Media Manager" on page 4-16 to
obtain more information.

If you frequently monitor the execution of long-running tasks, you could create a
shell script or batch file under your host operating system that runs SQL*Plus to
execute this query repeatedly.

Monitoring RMAN Interaction with the Media Manager
You can use the event names in the dynamic performance event views to monitor
RMAN calls to the media management API. The event names have one-to-one
correspondence with sbt functions, as shown in the following examples:

sbtinit
sbtopen
sbtread
sbtwrite
sbtbackup

Before making a call to any of functions in the media management API, the server
adds a row in V$SESSION_WAIT, with the STATUS column including the string
WAIT. The V$SESSION_WAIT.SECONDS_IN_WAIT column shows the number of
seconds that the server has been waiting for this call to return. After an sbt
function is returned from the media manager, this row disappears.

A row in V$SESSION_WAIT corresponding to an sbt event name does not indicate
a problem, because the server updates these rows at runtime. The rows appear and
disappear as calls are made and returned. However, if the SECONDS_IN_WAIT
column is high, then the media manager may be hung.

To monitor the sbt events, you can run the following SQL query:

COLUMN EVENT FORMAT a10
COLUMN SECONDS_IN_WAIT FORMAT 999
COLUMN STATE FORMAT a20
COLUMN CLIENT_INFO FORMAT a30

SELECT p.SPID, EVENT, SECONDS_IN_WAIT AS SEC_WAIT,
 STATE, CLIENT_INFO
FROM V$SESSION_WAIT sw, V$SESSION s, V$PROCESS p
WHERE sw.EVENT LIKE 'sbt%'
 AND s.SID=sw.SID

Monitoring RMAN Through V$ Views

RMAN Maintenance Concepts 4-17

 AND s.PADDR=p.ADDR
/

Examine the SQL output to determine which sbt functions are waiting. For
example, the following output indicates that RMAN has been waiting for the
sbtbackup function to return for ten minutes:

SPID EVENT SEC_WAIT STATE CLIENT_INFO
---- ---------- ---------- -------------------- ------------------------------
8642 sbtbackup 600 WAITING rman channel=ORA_SBT_TAPE_1

Monitoring RMAN Job Performance
Monitor backup and restore performance by querying V$BACKUP_SYNC_IO and
V$BACKUP_ASYNC_IO.

Determining Which Datafiles Require Recovery
You can often use the dynamic performance view V$RECOVER_FILE to determine
which files need to be recovered and why they need to be recovered. The following
query shows the file numbers of datafiles that require recovery, as well as the reason
for recovery (if known) and the SCN and time when recovery needs to begin:

COL FILE# FORMAT 999
COL ERROR FORMAT a10
SELECT * FROM V$RECOVER_FILE;

FILE# ONLINE ONLINE_ ERROR CHANGE# TIME
----- ------- ------- ---------- ---------- --------------------
 4 ONLINE ONLINE FILE NOT 0
 FOUND
 5 ONLINE ONLINE FILE NOT 0

Note: The V$SESSION_WAIT view shows only database events,
not media manager events.

See Also: Oracle Database Reference for descriptions of
V$SESSION_WAIT

See Also: Oracle Database Reference for more information on these
V$ views, and "Step 5: Query V$ Views to Identify Bottlenecks" on
page 14-11 to learn how to use these views to tune backup
performance

Deletion of RMAN Backups

4-18 Backup and Recovery Advanced User’s Guide

 FOUND
 8 OFFLINE OFFLINE OFFLINE 0
 NORMAL

You canperform a useful join between V$RECOVER_FILE, V$DATAFILE and
V$TABLESPACE to see which datafiles and tablespaces are in need of recovery, as
shown in the following example:

COL df# FORMAT 999
COL df_name FORMAT a35
COL tbsp_name FORMAT a10
COL status FORMAT a7
COL error FORMAT a10

SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#
;
Sample output follows:

 DF# DF_NAME TBSP_NAME STATUS ERROR CHANGE# TIME
---- ------------------------- ---------- ------- ---------- ---------- -----
 4 /oracle/oradata/trgt/drsys01.dbf DRSYS ONLINE FILE NOT 0
 FOUND
 5 /oracle/oradata/trgt/example01.dbf EXAMPLE ONLINE FILE NOT 0
 FOUND
 8 /oracle/oradata/trgt/users01.dbf USERS OFFLINE OFFLINE 0
 NORMAL

Deletion of RMAN Backups
Every RMAN backup produces a corresponding record in the RMAN repository.
This record is stored in the control file. If a recovery catalog is used, the record can

Note: The view is not useful if the control file currently in use is a
restored backup or a new control file created after the media failure
occurred. A restored or re-created control file does not contain the
information needed to update V$RECOVER_FILE accurately.

Deletion of RMAN Backups

RMAN Maintenance Concepts 4-19

also be found in the recovery catalog after the recovery catalog is resynced from the
control file.

For example, if you generate a full database backup set, then you can view the
record for this backup set in the V$BACKUP_SET control file view. If you use a
recovery catalog, then you can also access the record in the RC_BACKUP_SET
catalog view.

The V$ control file views and recovery catalog tables differ in the way that they
store information, and this affects how RMAN handles repository records. The
recovery catalog RMAN repository is stored in actual database tables, while the
control file version of the repository is stored in an internal structure in the control
file.

When you use an RMAN command to delete a backup, RMAN performs the
following steps:

■ Removes the physical file from the operating system

■ Updates the backup records in the control file to status DELETED

■ Removes the backup records from the recovery catalog tables (if a recovery
catalog is used)

Because of the way that control file data is stored, RMAN cannot remove the record
from the control file, only update it to DELETED status. However, because the
catalog tables are ordinary database tables, RMAN removes rows from them.

Summary of RMAN Deletion Methods
Table 4–2 describes the functionality of the various RMAN deletion commands. All
of these work whether you store the RMAN repository only in the control file or use
a recovery catalog.

Table 4–2 Maintenance Commands and Scripts (Page 1 of 2)

Command or Script Purpose

DELETE To delete physical backups, update the control file records
to status DELETED, and remove their records from the
recovery catalog (if a recovery catalog is used).

You can specify that DELETE should remove backups that
are EXPIRED or OBSOLETE. If you run DELETE EXPIRED
on a backup that exists, RMAN issues a warning and does
not delete the backup. You can override this behavior and
delete the backup by running DELETE FORCE.

Deletion of RMAN Backups

4-20 Backup and Recovery Advanced User’s Guide

Removal of Backups with the DELETE Command
The DELETE command can remove any file that the LIST and CROSSCHECK
commands can operate on. For example, you can delete backup sets, archived redo
logs, and datafile copies. The DELETE command removes both the physical file and
the catalog record for the file.

Advantage of Using DELETE Instead of Operating System Commands
Always use DELETE command within RMAN to remove RMAN backups, rather
than an operating system or media manager utility or command. Otherwise, the
RMAN repository can contain records of backups that are no longer available for
use in restore operations.

If you delete backups without using RMAN, you can use one of the following
methods within RMAN to update the RMAN repository directly without
performing a crosscheck:

■ Run CROSSCHECK to change the status of these files to EXPIRED and then run
DELETE EXPIRED to delete the records from the RMAN repository

■ Run CHANGE ... UNCATALOG to remove the catalog records

BACKUP ... DELETE [ALL]
INPUT

To back up archived logs, datafile copies, or backup sets,
then delete the input files from the operating system after
the successful completion of the backup. RMAN also
deletes and updates repository records for the deleted
input files.

If you specify DELETE INPUT (without ALL), then RMAN
deletes only the specific files that it backs up. If you specify
ALL INPUT, then RMAN deletes all copies of the files
recorded in the RMAN repository.

CHANGE ... UNCATALOG To delete recovery catalog records for specified backups
and change their control file records to status DELETED.
Note that the CHANGE ... UNCATALOG command does not
delete files from the operating system.

See Also: "Crosschecks of RMAN Backups" on page 4-7

Table 4–2 Maintenance Commands and Scripts (Page 2 of 2)

Command or Script Purpose

Deletion of RMAN Backups

RMAN Maintenance Concepts 4-21

Deletion of Obsolete Backups
The DELETE OBSOLETE command provides a convenient way to delete backups
that are no longer needed. It uses the same REDUNDANCY, RECOVERY WINDOW, and
ORPHAN options as the REPORT OBSOLETE command.

If you have configured a retention policy, then you can run DELETE OBSOLETE
periodically to delete all backups considered obsolete by this policy. For example,
you can run DELETE OBSOLETE in a script every night with a scheduling utility,
freeing disk and tape space used by backups that are no longer needed.

Note that using a flash recovery area as the destination for all backups eliminates
the need to manage obsolete backups. Obsolete backups will be deleted from the
flash recovery area automatically as disk space is needed to store backup-related
files.

Deletion of Expired Backups
The CROSSCHECK command updates the repository status for a backup to EXPIRED
when it cannot locate it at the location to which it was backed up. This condition
could occur if, for example, a backup was deleted from disk at the operating system
level. You can identify expired backups by running the CROSSCHECK command as
in the following example:

RMAN> CROSSCHECK BACKUP;

crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=0ad8d32i_1_1 recid=10 stamp=445025363
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=c-1334876723-20011105-00 recid=11 stamp=445025367
crosschecked backup piece: found to be 'EXPIRED'
backup piece handle=0cd8d361_1_1 recid=12 stamp=445025473
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=c-1334876723-20011105-01 recid=13 stamp=445025475
Crosschecked 4 objects

If you run CROSSCHECK while some backup device is temporarily not accessible.
This can happen if a disk is unmounted or if RMAN does not correctly connect to a
media manager. In such a case, fix the problem that prevented RMAN from finding
the backups and rerun CROSSCHECK.

The DELETE EXPIRED command removes the recovery catalog records for expired
backups, and updates their control file records to status DELETED.

See Also: "Reports of Obsolete Backups" on page 4-4

Deletion of RMAN Backups

4-22 Backup and Recovery Advanced User’s Guide

This command is especially useful if a user inadvertently deletes RMAN backups or
archived logs from disk with an operating system utility. In such a case, the RMAN
repository is not synchronized with the actual contents of disk. By running the
CROSSCHECK command, RMAN marks the backups that it cannot find as expired.
Then, you can run DELETE EXPIRED to remove the records for these files.

Deletion of Archived Redo Logs That Are Already Backed Up
You may want to delete files such as archived logs only if they have been backed up
a specified number of times to tape. The DELETE command supports this behavior.
The following example deletes all archived redo logs that have already been backed
up at least two times to tape:

RMAN> DELETE ARCHIVELOG ALL BACKED UP 2 TIMES TO DEVICE TYPE sbt;

Behavior of DELETE Command When the Repository and Media Do Not Correspond
The repository record for an object can sometimes fail to reflect the physical status
of the object. For example, you backup an archived redo log to disk and then use an
operating system utility to delete the object. If you do not run the CROSSCHECK
command to update the repository, and if you then run DELETE against the object,
then the repository shows that the object is AVAILABLE while the object is in fact
missing. The following table indicates the behavior of DELETE in such situations.

If you use the FORCE option of DELETE, RMAN will remove the repository record
and delete the file if it exists. All I/O errors are ignored, and RMAN displays the
number of objects deleted at the end of the job.

Repository Status Physical Status Behavior of DELETE Command

AVAILABLE Not found on
media

Does not delete the object and reports the list of
mismatched objects at the end of the job. RMAN
does not update the repository status.

EXPIRED Found on media Does not delete the object and reports the list of
mismatched objects at the end of the job. RMAN
does not update the repository status.

UNAVAILABLE Any Removes repository record and deletes object if it
exists. All I/O errors are ignored.

Deletion of RMAN Backups

RMAN Maintenance Concepts 4-23

Removal of Backups with the BACKUP ... DELETE INPUT Command
The BACKUP ... DELETE INPUT command can delete archived redo logs, datafile
copies, and backup sets after backing them up. This functionality is especially
useful when backing up archived logs on disk to tape. RMAN backs up one copy of
each log sequence number, and then deletes the file that it backs up. For example,
assume that you issue:

RMAN> BACKUP ARCHIVELOG ALL DELETE INPUT;

In this command, RMAN backs up one copy of each log for each available sequence
number, and then deletes only the archived redo log file that it actually backs up. If
you have multiple redo log archiving destinations, the other copies of the same log
sequence number are not deleted.

If you specify the DELETE ALL INPUT option, then RMAN deletes whichever files
match the criteria that you specify, even if there are several files of the same log
sequence number. For example, assume that you archive to three different
directories. Then, you issue this command:

RMAN> BACKUP ARCHIVELOG ALL FROM SEQUENCE 1200 DELETE ALL INPUT;

In this case, RMAN backs up only one copy of each log sequence between 1200 and
the most recent sequence, but deletes all logs with these sequence numbers
contained in the three archive destinations.

During backup of archived redo logs, RMAN checks the file being backed up for
corruption. If corruption is found, RMAN automatically switches to reading
another copy of the same archived redo log, if one exists. For example, assume that
/log1 and /log2 are the only enabled archiving destinations, and that they
contain logs with sequence number up through 150. You run this command:

RMAN> BACKUP ARCHIVELOG FROM SEQUENCE 123 DELETE ALL INPUT;

RMAN can start reading from any cpoy of a given log. For example, if RMAN starts
reading the copy of log sequence 123 from /log1 and discovers corruption in the
file, it continues reading from the copy in /log2. Because DELETE ALL INPUT is
specified, RMAN deletes all copies of logs on disk of sequence 123 and higher.

CHANGE AVAILABLE and CHANGE UNAVAILABLE with RMAN Backups

4-24 Backup and Recovery Advanced User’s Guide

CHANGE AVAILABLE and CHANGE UNAVAILABLE with RMAN Backups
RMAN can update the repository to show backups as AVAILABLE or
UNAVAILABLE. An unavailable backup is one that cannot be accessed at a particular
moment but that has not been deleted. For example, you may have backups on
tape that are temporariliy stored offsite and are inaccesible. You can use the CHANGE
... UNAVAILABLE command to update the repository status for these backups to
UNAVAILABLE so that RMAN will not try to use them for its backup and recovery
operations.

When the tapes become available again, you can issue the CHANGE ... AVAILABLE
command to update the RMAN repository to show that these backups now can be
used. After setting the files back to status AVAILABLE, you can also run a
CROSSCHECK to verify that RMAN can access the files.

Changing Retention Policy Status of RMAN Backups
Use CHANGE... KEEP or CHANGE... NOKEEP to specify whether a backup
should be subject to the configured retention policy or kept until a different date or
even indefinitely.

The KEEP option exempts a backup from the current retention policy either
indefinitely or until the specified UNTIL time. RMAN does not mark the files as
obsolete even if they would be considered obsolete under the retention policy. Such
backups are called long-term backups. CHANGE ... NOKEEP is used to undo the
effects of CHANGE ... KEEP, so that the configured retention policy applies to the
backup.

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to delete
backups and exempt them from a retention policy

■ Oracle Database Recovery Manager Reference for CHANGE syntax

■ Oracle Database Recovery Manager Reference for DELETE syntax

See Also:

■ Oracle Database Backup and Recovery Basics to learn how to make
backups available or unavailable

■ Oracle Database Recovery Manager Reference for CHANGE syntax

Changing Retention Policy Status of RMAN Backups

RMAN Maintenance Concepts 4-25

For example, the following command blocks RMAN from considering backupsets
with the tag ’year_end_2002’ as obsolete under the retention policy:

RMAN> CHANGE BACKUPSET TAG year_end_2002 KEEP;

To allow backupsets with the tag year_end_2002 to be marked as obsolete based
on the retention policy, use this command:

RMAN> CHANGE BACKUPSET TAG year_end_2002 NOKEEP;

If you want to prevent the use of a backup marked with KEEP in restore and
recovery operations, then mark these backups as UNAVAILABLE. RMAN will not
delete the records for these backups from the RMAN repository, but will not try to
use them in restore and recovery until they are marked AVAILABLE again.

See Also:

■ Oracle Database Recovery Manager Reference for CHANGE...KEEP
and CHANGE...NOKEEP syntax

Changing Retention Policy Status of RMAN Backups

4-26 Backup and Recovery Advanced User’s Guide

Part II
Performing Advanced RMAN Backup and

Recovery

Part II describes how to use the RMAN utility to perform advanced backup and
recovery operations, including the creation of duplicate and standby databases. It
also explains RMAN performance tuning and troubleshooting.

This part contains these chapters:

■ Chapter 5, "Connecting to Databases with RMAN"

■ Chapter 6, "Configuring the RMAN Environment: Advanced Topics"

■ Chapter 7, "Making Backups with RMAN: Advanced Topics"

■ Chapter 8, "Advanced RMAN Recovery Techniques"

■ Chapter 9, "Flashback Technology: Recovering from Logical Corruptions"

■ Chapter 10, "RMAN Tablespace Point-in-Time Recovery (TSPITR)"

■ Chapter 11, "Duplicating a Database with Recovery Manager"

■ Chapter 12, "Migrating Databases To and From ASM with Recovery Manager"

■ Chapter 13, "Managing the Recovery Catalog"

■ Chapter 14, "Tuning Backup and Recovery"

■ Chapter 15, "Recovery Manager Troubleshooting"

Connecting to Databases with RMAN 5-1

5
Connecting to Databases with RMAN

This chapter gives detailed instructions for starting the Recovery Manager (RMAN)
command-line interface and making database connections. This chapter contains
these topics:

■ Starting RMAN Without Connecting to a Database

■ Connecting to a Target Database and a Recovery Catalog

■ Connecting to an Auxiliary Database

■ Hiding Passwords When Connecting to Databases

■ Sending RMAN Output Simultaneously to the Terminal and a Log File

■ Executing RMAN Commands Through a Pipe

Starting RMAN Without Connecting to a Database

5-2 Backup and Recovery Advanced User’s Guide

Starting RMAN Without Connecting to a Database
You can start RMAN at the operating system command line without connecting to a
database by issuing the RMAN command without any arguments. For example,
enter:

% rman

If you did not specify the CMDFILE , SCRIPT or @ option at the command line, then
RMAN displays the RMAN prompt:

RMAN>

After the RMAN prompt is displayed, you can issue further commands to connect
to the target database, recovery catalog database, or auxiliary database.

If you start RMAN without specifying either CATALOG or NOCATALOG on the
command line, then RMAN makes no recovery catalog connection. The first time a
command is issued that requires the RMAN repository, RMAN performs the
operation in NOCATALOG mode if you have not connected to a recovery catalog
yet. After that point, the CONNECT CATALOG command can no longer be used
without exiting and restarting the RMAN client.

Connecting to a Target Database and a Recovery Catalog
The following examples use the following sample connection data, and assume that
a recovery catalog is being used.

Value Description

SYS User with SYSDBA privileges

oracle The password for connecting as SYSDBA specified in the target
database's password file

trgt The net service name for the target database

rman User that owns the recovery catalog schema. This is a user
defined in the recovery catalog database that has been granted
the RECOVERY_CATALOG_OWNER role.

cat The password for connecting to the recovery catalog as user
RMAN

catdb The net service name for the recovery catalog database

Connecting to a Target Database and a Recovery Catalog

Connecting to Databases with RMAN 5-3

Connecting to the Target Database and Recovery Catalog from the Command Line
You can specify either operating system or Oracle Net authentication information
on the command line when you start the RMAN client.

This example shows how to use operating system authentication to connect to the
target database and Oracle Net authentication for the recovery catalog:

% rman TARGET / CATALOG rman/cat@catdb

This example shows how to use Oracle Net authentication to connect to both the
target database and the recovery catalog:

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb

Connecting to the Target Database and Recovery Catalog from the RMAN Prompt
You can also start RMAN and connect to the target database from the RMAN
prompt. The following example uses operating system authentication for the target
database and Oracle Net authentication for the recovery catalog:

% rman
RMAN> CONNECT TARGET /
RMAN> CONNECT CATALOG rman/cat@catdb

The following example uses Oracle Net password file authentication for the target
database, which requires that the target database be using a password file, that
defines the password for user SYS to be ’oracle’. Oracle Net authentication is also
used for the recovery catalog.

% rman
RMAN> CONNECT TARGET SYS/oracle@trgt
RMAN> CONNECT CATALOG rman/cat@catdb

See Also: Oracle Real Application Clusters Administrator's Guide for
details on connecting RMAN to a RAC cluster.

Connecting to an Auxiliary Database

5-4 Backup and Recovery Advanced User’s Guide

Connecting to an Auxiliary Database
To use the DUPLICATE command, you need to connect to an auxiliary instance. To
perform RMAN TSPITR, you may also need to connect to an auxiliary instance if,
for example, you do not let RMAN manage the auxiliary instance for you.

If the auxiliary instance uses a password file for authentication, then you can
connect using a password for either local or remote access. If you are connecting
remotely through a net service name, then authentication through a password file is
mandatory.

The following dummy values have been substituted into the following examples:

Connecting to an Auxiliary Database from the Command Line
To launch RMAN connected to an auxiliary instance from the operating system
command line, enter the following:

% rman AUXILIARY SYS/aux@auxdb

To connect to target, auxiliary, and recovery catalog databases, launch the RMAN
client with these command line arguments:

% rman TARGET SYS/oracle@trgt AUXILIARY SYS/aux@auxdb CATALOG rman/cat@catdb

Connecting to an Auxiliary Database from the RMAN Prompt
To launch RMAN without connecting to an auxiliary, and connect to the auxiliary
database from the RMAN prompt, enter the following commands:

% rman

See Also:

■ Chapter 11, "Duplicating a Database with Recovery Manager"
for more details on using the DUPLICATE command

■ Chapter 10, "RMAN Tablespace Point-in-Time Recovery
(TSPITR)" for more details on performing TSPITR

Value Description

aux The password for connecting as SYSDBA specified in the
auxiliary database's orapwd file

auxdb The net service name for the auxiliary database

Hiding Passwords When Connecting to Databases

Connecting to Databases with RMAN 5-5

RMAN> CONNECT AUXILIARY SYS/aux@auxdb

To connect to the target, auxiliary, and recovery catalog databases from within
RMAN, enter the following commands:

% rman
RMAN> CONNECT TARGET SYS/oracle@trgt
RMAN> CONNECT CATALOG rman/cat@catdb
RMAN> CONNECT AUXILIARY SYS/aux@auxdb

Diagnosing Connection Problems
When diagnosing errors RMAN encounters in connecting to the target, catalog and
auxiliary databases, using SQL*Plus to connect to the databases directly can reveal
underlying problems with the connection information or the databases.

Diagnosing Target and Auxiliary Database Connection Problems
RMAN always connects to target and auxiliary databases using the SYSDBA role.
Thus, when using SQL*Plus to diagnose connection problems to the target or
auxiliary databases, request a SYSDBA connection to reproduce RMAN’s behavior.

For example, if the following RMAN command encountered connection errors:

RMAN> CONNECT target sys/oracle@target

you would reproduce the connection attempt with the SQL*Plus command:

SQL> CONNECT sys/oracle@target AS SYSDBA

Diagnosing Recovery Catalog Connection Problems
When RMAN connects to the recovery catalog database, it does not use the
SYSDBA role. So, when you are using SQL*Plus to diagnose connection problems to
the recovery catalog database, you must enter the catalog connect string exactly as it
was entered into RMAN. Do not also specify AS SYSDBA.

Hiding Passwords When Connecting to Databases
If you create an RMAN command file which uses a CONNECT command with
database level credentials (user name and password), then anyone with read access

Hiding Passwords When Connecting to Databases

5-6 Backup and Recovery Advanced User’s Guide

to this file can learn the password. There is no secure way to incorporate a CONNECT
string with a password into a command file.

It is also possible, using the ps command under Unix or some similar command
under other operating systems, to view command lines and arguments entered into
the shell or other host operating system command line interpreter. Therefore, it is
risky to invoke RMAN with a command line like this example:

% rman TARGET sys/oracle@target

To connect to RMAN from the operating system command line and hide
authentication information, you can start RMAN without connecting to databases,
and then enter CONNECT commands at the RMAN prompt. You can also start
RMAN without a password in the connect string, as in this example:

% rman TARGET sys@target

RMAN will prompt for a password in such a case.

If you create an RMAN command file which uses a CONNECT command that
includes authentication information, RMAN does not echo the connect string when
you run the command file with the "@" command. This prevents connect strings
from appearing in any log files that contain RMAN output.

For example, create a command file listbkup.rman which reads:

CONNECT target sys/oracle@target
LIST BACKUP;

Then execute this script by running RMAN with the @ command line option:

% rman @bkup.rman

When the command file executes, RMAN replaces the connection string with an
asterisk, as shown in the following output:

Recovery Manager: Release 10.1.0.2.0 - Production

Copyright (c) 1995, 2003, Oracle. All rights reserved.

RMAN> connect target *
2> list backup;
3>
connected to target database: RDBMS (DBID=771530996)

using target database controlfile instead of recovery catalog

Executing RMAN Commands Through a Pipe

Connecting to Databases with RMAN 5-7

List of Backup Sets
===================
...rest of output omitted

Sending RMAN Output Simultaneously to the Terminal and a Log File
If you specify the LOG option at the command line, then RMAN displays command
input but does not display the RMAN output. The easiest way to send RMAN
output both to a log file and to standard output is to use the UNIX tee command or
its equivalent on another operating system. For example:

% rman | tee rman.log
RMAN>

In this way, both input and output are visible within the RMAN command-line
interface.

Executing RMAN Commands Through a Pipe
The RMAN pipe interface is an alternative method for issuing commands to RMAN
and receiving the output. By using a pipe, RMAN can interface with the DBMS_
PIPE PL/SQL package and avoid the operating system command shell altogether.

If the pipes are not already initialized, then RMAN creates them as private pipes. If
you want to put commands on the input pipe before starting RMAN, be careful to
first create the pipe by calling DBMS_PIPE.CREATE_PIPE. Whenever a pipe is not
explicitly created as a private pipe, the first access to the pipe automatically creates
it as a public pipe, and RMAN returns an error if it is told to use a public pipe.

RMAN does not permit the pipe interface to be used with public pipes, because
they are a potential security problem. With a public pipe, any user who knows the
name of the pipe can send commands to RMAN and intercept its output.

Note: If multiple RMAN sessions can run against the target
database, then use unique pipe names for each session of RMAN.
The DBMS_PIPE.UNIQUE_SESSION_NAME function is one method
that can be used to generate unique pipe names.

Executing RMAN Commands Through a Pipe

5-8 Backup and Recovery Advanced User’s Guide

Executing Multiple RMAN Commands In Succession Through a Pipe: Example
This scenario assumes that the application controlling RMAN wants to run multiple
commands in succession. After each command is sent down the pipe and executed and the
output returned, RMAN will pause and wait for the next command.

1. Start RMAN by connecting to a target database (required) and specifying the
PIPE option. For example, issue:

% rman PIPE abc TARGET SYS/oracle@trgt

You can also specify the TIMEOUT option, which forces RMAN to exit
automatically if it does not receive any input from the input pipe in the
specified number of seconds. For example, enter:

% rman PIPE abc TARGET SYS/oracle@trgt TIMEOUT = 60

2. Connect to the target database and put the desired commands on the input pipe
by using DBMS_PIPE.PACK_MESSAGE and DBMS_PIPE.SEND_MESSAGE. In
pipe mode, RMAN issues message RMAN-00572 when it is ready to accept
input instead of displaying the standard RMAN prompt.

3. Read the RMAN output from the output pipe by using DBMS_PIPE.RECEIVE_
MESSAGE and DBMS_PIPE.UNPACK_MESSAGE.

4. Repeat steps 2 and 3 to execute further commands with the same RMAN
instance that was started in step 1.

5. If you used the TIMEOUT option when starting RMAN, RMAN terminates
automatically after not receiving any input for the specified length of time. To
force RMAN to terminate immediately, send the EXIT command.

Executing RMAN Commands In a Single Job Through a Pipe: Example
This scenario assumes that the application controlling RMAN wants to run one or more
commands as a single job. After running the commands that are on the pipe, RMAN will exit.

1. After connecting to the target database, create a pipe (if it does not already exist
under the name ORA$RMAN_pipe_IN).

2. Put the desired commands on the input pipe. In pipe mode, RMAN issues
message RMAN-00572 when it is ready to accept input instead of displaying the
standard RMAN prompt.

3. Start RMAN with the PIPE option, and specify TIMEOUT = 0. For example,
enter:

Executing RMAN Commands Through a Pipe

Connecting to Databases with RMAN 5-9

% rman PIPE abc TARGET SYS/oracle@trgt TIMEOUT = 0

4. RMAN reads the commands that were put on the pipe and executes them by
using DBMS_PIPE.PACK_MESSAGE and DBMS_PIPE.SEND_MESSAGE. When it
has exhausted the input pipe, RMAN exits immediately.

5. Read RMAN output from the output pipe by using DBMS_PIPE.RECEIVE_
MESSAGE and DBMS_PIPE.UNPACK_MESSAGE.

See Also: PL/SQL Packages and Types Reference for documentation
on the DBMS_PIPE package and "RMAN Pipe Interface" on
page 1-6 for a brief overview of RMAN pipes

Executing RMAN Commands Through a Pipe

5-10 Backup and Recovery Advanced User’s Guide

Configuring the RMAN Environment: Advanced Topics 6-1

6
Configuring the RMAN Environment:

Advanced Topics

This chapter describes how to perform setup and configuration tasks. This chapter
contains these topics:

■ Configuring the Flash Recovery Area: Advanced Topics

■ Configuring RMAN to Make Backups to a Media Manager

■ Configuring Automatic Channels

■ Configuring the Maximum Size of Backup Sets and Pieces

■ Configuring Backup Optimization

■ Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES

■ Configuring Tablespaces for Exclusion from Whole Database Backups

■ Setting the Snapshot Control File Location

■ Setting Up RMAN for Use with a Shared Server

See Also: Oracle Database Backup and Recovery Basics for basic
RMAN configuration information

Configuring the Flash Recovery Area: Advanced Topics

6-2 Backup and Recovery Advanced User’s Guide

Configuring the Flash Recovery Area: Advanced Topics
To take maximum advantage of the flash recovery area, it should be used to store
and manage as many different types of file as possible: online redo logs, archived
redo logs, control files and RMAN’s own working files for backup and restore
operations.

This section contains the following topics:

■ Configuring Online Redo Log Creation in the Flash Recovery Area

■ Configuring Control File Creation in the Flash Recovery Area

■ Archived Redo Log Creation in the Flash Recovery Area

■ RMAN File Creation in the Flash Recovery Area

Configuring Online Redo Log Creation in the Flash Recovery Area
The following statements can create online redo logs in the flash recovery area:

■ CREATE DATABASE

■ ALTER DATABASE ADD LOGFILE

■ ALTER DATABASE ADD STANDBY LOGFILE

■ ALTER DATABASE OPEN RESETLOGS

The default size of an online log created in the flash recovery area is 100 MB. The
log member filenames are automatically generated by the database.

The initialization parameters that determine where online redo log files are created
are DB_CREATE_ONLINE_LOG_DEST_n, DB_RECOVERY_FILE_DEST and DB_
CREATE_FILE_DEST. Details of the effect of various combinations of these
parameters on online redo log creation can be found inOracle Database SQL Reference
in the description of the LOGFILE clause of the CREATE DATABASE statement.

Configuring Control File Creation in the Flash Recovery Area
The initialization parameters CONTROL_FILES, DB_CREATE_ONLINE_LOG_DEST_
n, DB_RECOVERY_FILE_DEST, and DB_CREATE_FILE_DEST all interact to
determine the location where the database control files are created.

For a full description of how these parameters interact, see the "Semantics" section
of the description of CREATE CONTROLFILE in Oracle Database SQL Reference.

Configuring the Flash Recovery Area: Advanced Topics

Configuring the RMAN Environment: Advanced Topics 6-3

If the database creates an Oracle managed control file, and if the database uses a
server parameter file, then the database sets the CONTROL_FILES initialization
parameter in the server parameter file. If the database uses a client-side
initialization parameter file, then you must set the CONTROL_FILES initialization
parameter manually in the initialization parameter file.

Archived Redo Log Creation in the Flash Recovery Area
It is recommended that you the use flash recovery area as an archived log location
because the archived logs are automatically managed by the database. Whatever
archiving scheme you choose, it is always advisable to create multiple copies of
archived logs.

You have the following basic options, listed from most to least recommended:

1. Enable archiving to the flash recovery area only and use disk mirroring to create
copies of the archived redo logs.

2. Enable archiving to the flash recovery area and set other LOG_ARCHIVE_DEST_
n initialization parameter to locations outside the flash recovery area.

3. Set LOG_ARCHIVE_DEST_n initialization parameters to archive only to
non-flash recovery area locations.

If you want to use the flash recovery area, you cannot use the LOG_ARCHIVE_DEST
and LOG_ARCHIVE_DUPLEX_DEST initialization parameters. You must use instead
the LOG_ARCHIVE_DEST_n parameters, which have somewhat different semantics.
Once your database is using LOG_ARCHIVE_DEST_n, you can configure a flash
recovery area.

Rules for Initialization Parameters Affecting Redo Log File Destinations
The interactions among different initialization parameters affecting redo log
archiving desintations are as follows:

■ If LOG_ARCHIVE_DEST (and, optionally, LOG_ARCHIVE_DUPLEX_DEST) is set,
these parameters will specify the only redo log archiving destinations.

■ If DB_RECOVERY_FILE_DEST is specified (that is, if a flash recovery area is
configured) and no LOG_ARCHIVE_DEST_n is specified, then LOG_ARCHIVE_
DEST_10 is implicitly set to the flash recovery area. (You can override this
behavior by explicitly setting LOG_ARCHIVE_DEST_10 to an empty string.)

■ If you set any local destinations for LOG_ARCHIVE_DEST_n, then archived redo
logs are stored only in the destinations you specify using those parameters. In
this case, redo log files are not archived in the flash recovery area by default. If

Configuring the Flash Recovery Area: Advanced Topics

6-4 Backup and Recovery Advanced User’s Guide

you have a flash recovery area configured, you can explicitly add the flash
recovery area to the set of archiving destinations by setting one of the LOG_
ARCHIVE_DEST_n parameters to LOCATION=USE_DB_RECOVERY_FILE_DEST
(note that this does not have to be LOG_ARCHIVE_DEST_10).

■ If you do not set any value for LOG_ARCHIVE_DEST, LOG_ARCHIVE_DEST_n,
or DB_RECOVERY_FILE_DEST, then the redo logs are archived to a default
location that is platform-specific. On Solaris, for example, the default is ?/dbs.

Filenames for Archived Redo Log Files in the Flash Recovery Area
The generated filenames for the archived redo logs in the flash recovery area are
Oracle Manged Filenames and are not determined by LOG_ARCHIVE_FORMAT.

RMAN File Creation in the Flash Recovery Area
This section describes RMAN commands or implicit actions (such as control file
autobackup) that can create files in the flash recovery area, and how to control
whether a specific command creates files there or in some other destination. The
assumption in all cases is that a flash recovery area has already been configured for
your database. The commands are:

■ BACKUP

Do not specify a FORMAT option to the BACKUP command, and do not
configure a FORMAT option for disk backups. In such a case, RMAN creates
backup pieces and image copies in the flash recovery area, with names in Oracle
Managed Files name format.

■ Control File Autobackup

RMAN can create control file autobackups in the flash recovery area. Use the
RMAN command CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR
DEVICE TYPE DISK CLEAR to clear any configured format option for the
control file autobackup location on disk. Control file autobackups will be placed
in the flash recovery area when no other destination is configured.

■ RESTORE ARCHIVELOG

Explicitly or implicitly (as in the case of), set one of the LOG_ARCHIVE_DEST_
n) parameters to ’LOCATION=USE_DB_RECOVERY_FILE_DEST’. If you do not
specify SET ARCHIVELOG DESTINATION to override this behavior, then
restored archived redo log files will be stored in the flash recovery area.

■ RECOVER DATABASE or TABLESPACE, BLOCKRECOVER, and FLASHBACK
DATABASE

Configuring RMAN to Make Backups to a Media Manager

Configuring the RMAN Environment: Advanced Topics 6-5

These commands restore archived redo logs from backup for use during media
recovery, as required by the command. RMAN restores any redo log files
needed during these operations to the flash recovery area, and delete them once
they are applied during media recovery.

To direct the restored archived redo logs to the flash recovery area, set one of
the LOG_ARCHIVE_DEST_n parameters to ’LOCATION=USE_DB_RECOVERY_
FILE_DEST", and make sure you are not using SET ARCHIVELOG
DESTINATION to direct restored archived logs to some other destination.

Configuring RMAN to Make Backups to a Media Manager
On most platforms, to back up to and restore from sequential media such as tape
you must integrate a media manager with your Oracle database. A media manager
is not an Oracle product and must be obtained from a third-party vendor. If you
choose to use RMAN with a media manager, then you must obtain all
product-specific information from the vendor.

This section describes the generic steps for configuring RMAN for use with a media
manager. The actual steps depend on the media management product that you
install and the platform on which you are running the database.

Read the following sections in order when configuring the media manager:

1. Prerequisites for Using a Media Manager with RMAN

2. Locating the Media Management Library: The SBT_LIBRARY Parameter

3. Testing Whether the Media Manager Library Is Integrated Correctly

4. Configuring Automatic Channels for Use with a Media Manager

Prerequisites for Using a Media Manager with RMAN
Before you can begin using RMAN with a media manager, you must install it and
make sure that RMAN can communicate with it. Instructions for this procedure
should be available in the media manager vendor’s software documentation.

In general, you should begin by installing and configuring the media management
software on the target host or production network. Ensure that you can make
non-RMAN backups of operating system files on the target database host. This step
makes later troubleshooting much easier, by confirming that the basic integration of

See Also: "Media Management" on page 1-11 for an overview of
media management software and its implications for RMAN

Configuring RMAN to Make Backups to a Media Manager

6-6 Backup and Recovery Advanced User’s Guide

the media manager with the target host has been successful. Refer to your media
management documentation to learn how to back up files to the media manager
outside of RMAN.

Then, obtain and install the third-party media management module for integration
with the database server. This module contains the media management library that
the Oracle database loads and uses when accessing the media manager. It is
generally a third-party product which must be purchased separately. Contact your
media management vendor for details.

Locating the Media Management Library: The SBT_LIBRARY Parameter
When allocating or configuring channels for RMAN to use to communicate with a
media manager, specify the SBT_LIBRARY parameter to provide the path to the
media management software library. When RMAN actually allocates channels to
communicate with a media manager, it attempts to load the library indicated by the
SBT_LIBRARY parameter.

If you do not provide a value for this parameter, RMAN looks in a platform-specific
default location. On UNIX, the default library filename is $ORACLE_
HOME/lib/libobk.so, with the extension name varying according to platform:
.so, .sl, .a, and so forth. On Windows the default library location is %ORACLE_
HOME%\bin\orasbt.dll.

If the database is unable to locate a media management library in the location
specified by the SBT_LIBRARY parameter or the default location, then RMAN
issues an ORA-27211 error and exits.

Whenever channel allocation fails, the database writes a trace file to the USER_
DUMP_DEST directory. The following shows sample output:

SKGFQ OSD: Error in function sbtinit on line 2278
SKGFQ OSD: Look for SBT Trace messages in file /oracle/rdbms/log/sbtio.log
SBT Initialize failed for /oracle/lib/libobk.so

Note: The default media management library file is not part of the
standard database installation. It is only present if you install
third-party media management software.

Configuring RMAN to Make Backups to a Media Manager

Configuring the RMAN Environment: Advanced Topics 6-7

Testing Whether the Media Manager Library Is Integrated Correctly
After you have confirmed that the database server can load the media management
library, test to make sure that RMAN can back up to the media manager. The
process for testing the media management library is described in the following
sections:

■ Configuring Media Management Software for RMAN Backups

■ Testing ALLOCATE CHANNEL on the Media Manager

■ Testing a Backup to the Media Manager

Configuring Media Management Software for RMAN Backups
After installing the media management software, perform whatever configuration
that your vendor requires so that the software can accept RMAN backups.
Depending on the type of media management software that you installed, you may
have to define media pools, configure users and classes, and so forth.

Then, determine which PARMS settings are needed for the ALLOCATE CHANNEL or
CONFIGURE CHANNEL commands as well as the recommended FORMAT string for
the BACKUP command (if needed). The PARMS parameter sends instructions to the
media manager. For example, the following vendor-specific PARMS setting instructs
the media manager to back up to a volume pool called oracle_tapes:

PARMS='ENV=(NSR_DATA_VOLUME_POOL=oracle_tapes)'

Refer to your third-party vendor documentation for the appropriate settings.

See Also:

■ Your operating system specific Oracle documentation and the
documentation supplied by your media vendor for instructions
on how to achieve media manager integration on your platform

■ "After Installation of Media Manager, RMAN Channel
Allocation Fails: Scenario" on page 15-17 for troubleshooting
scenarios involving media manager problems

See Also:

■ Oracle Database Recovery Manager Reference for ALLOCATE
CHANNEL syntax

■ Oracle Database Recovery Manager Reference for channel control
options

Configuring RMAN to Make Backups to a Media Manager

6-8 Backup and Recovery Advanced User’s Guide

Configuring Backup Piece Names and Sizes for a Media Manager
To work with restrictions on file names and sizes imposed by your media manager,
you may need to configure RMAN settings that control the naming and size of
backup pieces.

Configuring Backup Piece Names for RMAN Backups to a Media Manager You may need to
manage the naming of backup pieces to be written to the media manager, so that
backup pieces have unique names. A backup piece name is determined by the
FORMAT string specified in the BACKUP command, the CONFIGURE CHANNEL
command, or the ALLOCATE CHANNEL command. The media manager considers the
backup piece name as the filename of the backup file, so this name must be unique
in the media manager catalog.

You can use the substitution variables provided by RMAN to generate unique
backup piece names. If you do not specify the FORMAT parameter, then RMAN
automatically generates a unique filename with the %U substitution variable.

Configuring Backup Piece Sizes for RMAN Backups to a Media Manager Some media
managers have limits on the maximum size of files that they can back up or restore.
You must ensure that RMAN does not produce backup sets larger than limits
imposed by your media manager.

To limit backup piece sizes, use the parameter MAXPIECESIZE, which you can set
in the CONFIGURE CHANNEL and ALLOCATE CHANNEL commands. Refer to the
*.rcv scripts in the demo subdirectory on your system, which is located in an

Note: Refer to your media management documentation to
determine the string character limit for the media manager. For
example, some media managers only support a 14-character
backup piece name, and some require special FORMAT strings. The
unique backup piece names generated by %U are less than 14
characters.

See Also: Oracle Database Recovery Manager Reference for the
complete list of variables allowable in format strings with the
BACKUP command

Configuring RMAN to Make Backups to a Media Manager

Configuring the RMAN Environment: Advanced Topics 6-9

operating system specific location ($ORACLE_HOME/rdbms on UNIX) for an
example.

Testing ALLOCATE CHANNEL on the Media Manager
Use the following steps to confirm that RMAN is able to load the media
management library when allocating a channel for your media manager.

1. Start RMAN and connect to the target database. For example, enter:

% rman TARGET /

2. Run the ALLOCATE CHANNEL command with the PARMS required by your
media management software. For example, run this command:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_SERVER=tape_
srv,NSR_GROUP=oracle_tapes)';
}

If you do not receive an error message, then the database successfully loaded the
media management library. If you receive the ORA-27211 error, the media
management library could not be loaded:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of allocate command on c1 channel at 11/30/2001 13:57:18
ORA-19554: error allocating device, device type: SBT_TAPE, device name:
ORA-27211: Failed to load Media Management Library
Additional information: 25

In this case, you must check your media management installation to make sure that
the library is correctly installed, and re-check the value for the SBT_LIBRARY
parameter as described in "Locating the Media Management Library: The SBT_
LIBRARY Parameter" on page 6-6.

For any other errors, check the trace file in USER_DUMP_DEST directory for more
information.

See Also: Oracle Database Recovery Manager Reference and "Size of
Backup Pieces" on page 2-28for details on how to set
MAXPIECESIZE

Configuring RMAN to Make Backups to a Media Manager

6-10 Backup and Recovery Advanced User’s Guide

Testing a Backup to the Media Manager
After testing a channel allocation on the media manager, make a test backup. For
example, to test whether your backup goes successfully to tape, you might run the
following command:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_SERVER=tape_srv,NSR_
GROUP=oracle_tapes)';
 BACKUP CURRENT CONTROLFILE;
}

The specifics of your PARMS and FORMAT settings depend on the media
management software that you are using.

If the backup succeeds, then you are ready to make backups to your media
manager.

Possible failures include the following cases:

See Also: "After Installation of Media Manager, RMAN Channel
Allocation Fails: Scenario" on page 15-17 for a troubleshooting
scenario

Case Response

The backup hangs. A hanging backup usually indicates that the media manager is
waiting to mount a tape. Check if there are any media manager
jobs in "tape mount request" mode and fix the problem.

Ensure that the steps in "Configuring RMAN to Make Backups to a
Media Manager" on page 6-5 are correctly done. Refer to "Backup
Job Is Hanging: Scenario" on page 15-19 if the problem persists.

The backup fails with
an ORA-19511

This error indicates that the media management software is not
correctly configured. Ensure that the steps in "Configuring RMAN
to Make Backups to a Media Manager" on page 6-5 are correctly
done. Also, ensure that you have the correct PARMS and FORMAT
strings required by your media management software.

See Also: "Testing the Media Management API" on page 15-10
and "RMAN Troubleshooting Scenarios" on page 15-16 for more
information about troubleshooting RMAN with a media manager

Configuring RMAN to Make Backups to a Media Manager

Configuring the RMAN Environment: Advanced Topics 6-11

Configuring Automatic Channels for Use with a Media Manager
This section describes how to configure automatic channels specifically for use with
a media manager. For an overview of automatic channels and how they are used,
refer to the section "Configuring Automatic Channels" on page 6-12. The following
setup procedure references the sections in "Configuring Automatic Channels" where
it is appropriate.

To configure automatic channels for use with a media manager:

1. Configure a generic channel of DEVICE TYPE sbt as described in "Configuring
a Generic Automatic Channel for a Device Type" on page 6-13. In the
configuration enter all parameters that you tested in the section "Testing a
Backup to the Media Manager" on page 6-10. For example, assume that your
media vendor requires PARMS settings as follows:

RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt
PARMS='SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_SERVER=tape_svr,NSR_
CLIENT=oracleclnt,NSR_GROUP=ora_tapes)'
 FORMAT "BACKUP_%U";

2. After configuring the channel, test by backing up something small, such as the
control file:

RMAN> BACKUP DEVICE TYPE sbt CURRENT CONTROLFILE;

3. Check your configuration by running the following command:

RMAN> SHOW CHANNEL FOR DEVICE TYPE sbt;

4. Configure the default device to sbt so that RMAN sends all backups to the
media manager. For example:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;

5. After configuring the default device, make a test backup to determine whether
it is really going to the media manager:

RMAN> BACKUP CURRENT CONTROLFILE;

6. Check your configuration by running the following command:

RMAN> SHOW DEFAULT DEVICE TYPE;

7. If you use more than one tape device, then you must specify the channel
parallelism as described in "Configuring Parallelism for Automatic Channels"

Configuring Automatic Channels

6-12 Backup and Recovery Advanced User’s Guide

on page 6-12. Assume that you want to back up to your media manager using
two tape drives in parallel. In this case, you can run the following commands:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 2;
RMAN> BACKUP DATABASE;

Configuring Automatic Channels
You can save persistent configuration information such as channel parameters,
parallelism, and the default device type in the RMAN repository. Hence, you do not
have to manually allocate channels for each backup. Instead, you can configure
automatic channels for use in backup, restore, recovery, and maintenance jobs.

You can always override automatic channels with ALLOCATE CHANNEL to allocate
channels manually for a particular backup job.

By default, RMAN has preconfigured a disk channel so that you can back up to disk
without doing any manual configuration. You may, however, want to parallelize the
channels for disk or tape devices to improve performance.

Configuring Parallelism for Automatic Channels
By default, channel parallelism for each configured device is set to 1. As a rule,
allocate one channel for each physical device. If you are backing up to only one disk
location or only one tape drive, then you need only one channel.

The CONFIGURE DEVICE TYPE ... PARALLELISM integer command specifies
how many channels (up to 254) RMAN should allocate for jobs on the specified
device type. This command allocates three channels for jobs on device type DISK :

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 3;

These commands back up to a media manager using two tape drives in parallel:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt; # default backup device is tape
RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # configure two tape channels
RMAN> BACKUP DATABASE; # backup goes to two tapes, in two parallel streams

Each configured sbt channel will back up roughly half the total data.

See Also: "About RMAN Channels" on page 2-2 for a conceptual
overview of automatic and manual channels, and Oracle Database
Recovery Manager Reference for syntax

Configuring Automatic Channels

Configuring the RMAN Environment: Advanced Topics 6-13

Configuring a Generic Automatic Channel for a Device Type
By default, RMAN automatically allocates a preconfigured DISK channel without
any options. However, you may use a media manager that requires special options
(PARMS, FORMAT, MAXPIECESIZE, and so forth) or you may want to change the
default DISK setting. By configuring channels, you define which parameters are
used when RMAN automatically allocates channels.

Use the CONFIGURE CHANNEL command to configure automatic channel options for
the available device types: DISK and sbt. You can use the same options for
CONFIGURE CHANNEL that you use for ALLOCATE CHANNEL, and you must specify
at least one of these options. For example, you can configure generic disk and tape
channels as in this example:

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT = '?/bkup_%U';
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_SERVER=tape_svr,NSR_
CLIENT=oracleclnt,NSR_GROUP=ora_tapes)';

To configure a generic channel, that is, a template that is used for all parallelized
channels, do not assign a number for the channel. If you set the PARALLELISM for a
device, and then make the device default, then RMAN uses the same channel
configuration for each parallelized channel.

To configure new generic channel settings for a specified device type, simply run a
new command for the device type. The following example configures the default
DISK channel to MAXPIECESIZE 2G, then erases this setting and sets a FORMAT:

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE 2G;
RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT = /tmp/%U;

Configured Channels and the Default Device Type
The automatic channel that RMAN allocates for its backups depends on the default
device type. If the default device type is DISK, then RMAN uses the DISK channel
only. If the default device type is sbt, then RMAN uses the sbt channel only.
RMAN cannot automatically allocate channels in backup jobs for multiple device
types simultaneously (and, in fact, you should never attempt to use channels for
multiple device types simultaneously for any backup job).

The following example creates a configuration in which all backups go to two tapes
in parallel. For this example, the media management software requires additional

See Also: "Determining Channel Parallelism to Match Hardware
Devices" on page 2-9

Configuring Automatic Channels

6-14 Backup and Recovery Advanced User’s Guide

parameters besides specifying the SBT_LIBRARY: ENV=(NSR_DATA_VOLUME_
POOL=oracle_tapes). The chosen FORMAT for backup file names is %U_
backup.

CONFIGURE DEFAULT DEVICE TYPE TO sbt; # by default, backup goes to MML
CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # two tapes in parallel
CONFIGURE CHANNEL DEVICE TYPE # sets parameters for all channels
 PARMS 'SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_DATA_VOLUME_
POOL=oracle_tapes)' FORMAT '%U_backup';
BACKUP DATABASE; # backs up database

Showing the Automatic Channel Configuration Settings
The SHOW CHANNEL, SHOW DEVICE TYPE and SHOW DEFAULT DEVICE
TYPE commands are used to display the current configured settings for automatic
channels.

Showing the Automatic Channel Settings
After connecting to the target database and recovery catalog (if you use one), issue
the SHOW CHANNEL command to display the settings for all automatically allocated
channels. For example, connect the RMAN client to the target and possibly catlaog
databases, and enter:

RMAN> SHOW CHANNEL; # shows the CONFIGURE setting for the automatic channels

Sample output for SHOW CHANNEL follows:

RMAN configuration parameters are:
CONFIGURE CHANNEL DEVICE TYPE 'SBT' RATE 1500K;

Showing the Configured Device Types
Issue the SHOW DEVICE TYPE command to display the configured devices and their
PARALLELISM and backup type settings. The DISK device type is preconfigured.

To show the default device type and configuration for automatic channels:

After connecting to the target database and recovery catalog (if you use one), run
the SHOW DEVICE TYPE command. For example, enter:

SHOW DEVICE TYPE; # shows the CONFIGURE DEVICE TYPE ... PARALLELISM settings

Sample output for SHOW DEVICE TYPE follows:

RMAN configuration parameters are:

Configuring Automatic Channels

Configuring the RMAN Environment: Advanced Topics 6-15

CONFIGURE DEVICE TYPE 'SBT_TAPE' PARALLELISM 1 BACKUP TYPE TO BACKUPSET;
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO COMPRESSED BACKUPSET; # default

Showing the Default Device Type
Issue the SHOW DEFAULT DEVICE TYPE command to display the settings for the
default device type used by the automatic channels. When you issue the BACKUP
command, RMAN allocates only default channels of the type set by the CONFIGURE
DEFAULT DEVICE TYPE command. This default device type setting is not in effect
when you use commands other than BACKUP. Note that you cannot disable the
default device type: it is always either DISK (default setting) or sbt.

To show the default device type for automatic channels:

After connecting to the target database and recovery catalog (if you use one), run
the SHOW DEFAULT DEVICE TYPE command. For example, enter:

SHOW DEFAULT DEVICE TYPE; # shows the CONFIGURE DEFAULT DEVICE TYPE setting

Sample output for SHOW DEFAULT DEVICE TYPE follows:

RMAN configuration parameters are:
CONFIGURE DEFAULT DEVICE TYPE TO 'SBT';

Manually Overriding Configured Channels
If you manually allocate a channel during a job, then RMAN disregards any
automatic channel settings. For example, assume that the default device type is
configured to sbt, and you execute this command:

RMAN> RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE DISK;
 BACKUP TABLESPACE users;
}

Note: As with all SHOW commands, the output of SHOW
DEVICE TYPE is in the form of a valid RMAN CONFIGURE
command. You can in fact enter one command, like those shown in
the preceding sample output, to configure the backup type and
parallelism simultaneously. Refer to the syntax diagrams for
CONFIGURE in Oracle Database Recovery Manager Reference for
details on all of the possible ways of combining arguments to the
CONFIGURE command.

Configuring Automatic Channels

6-16 Backup and Recovery Advanced User’s Guide

In this case, RMAN uses only the disk channel that you manually allocated within
the RUN block, overriding any defaults set by using CONFIGURE DEVICE TYPE,
CONFIGURE DEFAULT DEVICE, or CONFIGURE CHANNEL settings.

Configuring a Specific Channel for a Device Type
Besides configuring a generic channel for a device, you can also configure one or
more specific channels for each device type by manually assigning your own
channel numbers to the channels. Run the CONFIGURE CHANNEL n command
(where n is a positive integer less than 255) to configure a specific channel. When
manually numbering channels, you must specify one or more channel options (for
example, MAXPIECESIZE or FORMAT) for each channel. When you use that specific
numbered channel in a backup, the configured settings for that channel will be used
instead of the configured generic channel settings.

Configure specific channels by number when it is necessary to control the
parameters set for each channel separately. This could arise in the following
situations:

■ When running a Real Application Clusters (RAC) configuration, in which
multiple nodes back up the cluster requiring different connect strings

■ When running a Real Application Cluster and using a media manager with
multiple tape drives requiring different PARMS settings

Configuring Specific Channels: Examples
For example, assume that you have two tape drives and want one tape drive to use
tapes from the first pool and the second tape drive to use tapes from second tape
pool. You run the following commands:

CONFIGURE DEFAULT DEVICE TYPE TO sbt; # backup goes to sbt
CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # two tapes used in parallel
configure first stream to go to data volume pool named first_pool

See Also:

■ "About RMAN Channels" on page 2-2 to learn about automatic
channels

■ Oracle Database Recovery Manager Reference for ALLOCATE
syntax

■ Oracle Database Recovery Manager Reference for CONFIGURE
syntax

Configuring Automatic Channels

Configuring the RMAN Environment: Advanced Topics 6-17

CONFIGURE CHANNEL 1 DEVICE TYPE sbt
 PARMS 'SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_DATA_VOLUME_POOL=first_
pool)';
configure second stream to go to data volume pool named second_pool
CONFIGURE CHANNEL 2 DEVICE TYPE sbt
 PARMS 'SBT_LIBRARY=/mediavendor/lib/libobk.so ENV=(NSR_DATA_VOLUME_
POOL=second_pool)';
BACKUP DATABASE; # first stream goes to 'first_pool' and second to 'second_pool'

In this example, you want to back up to two different disks because not enough
space exists on a single disk. So, you do the following:

CONFIGURE DEFAULT DEVICE TYPE TO disk; # backup goes to disk
CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # two channels used in in parallel
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/disk1/%U' # 1st channel to disk1
CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT '/disk2/%U' # 2nd channel to disk2
BACKUP DATABASE; # backup - first channel goes to disk1 and second to disk2

Mixing Generic and Specific Channels
When parallelizing, RMAN always allocates channels beginning with CHANNEL 1
and ending with channel number equal to the PARALLELISM setting. Hence,
RMAN uses a specific configuration for a given channel if you have configured it;
otherwise, it uses a generic configuration.

Assume you enter the following channel configuration:

disk channel configuration
CONFIGURE DEVICE TYPE DISK PARALLELISM 4;
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT = '/tmp/backup_%U';
CONFIGURE CHANNEL 2 DEVICE TYPE DISK MAXPIECESIZE = 20M;
CONFIGURE CHANNEL 4 DEVICE TYPE DISK MAXPIECESIZE = 40M;

sbt channel configuration
CONFIGURE DEVICE TYPE sbt PARALLELISM 3;
CONFIGURE CHANNEL DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=oracle.disksbt, ENV=(BACKUP_DIR=?/oradata)';
CONFIGURE CHANNEL 3 DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=oracle.disksbt, ENV=(BACKUP_DIR=/tmp)';

The following table illustrates the channel names and channel settings that RMAN
allocates when the default device is DISK and PARALLELISM for DISK is set to 4.

Configuring Automatic Channels

6-18 Backup and Recovery Advanced User’s Guide

The following table illustrates the channel names and channel settings that RMAN
allocates when the default device is sbt and PARALLELISM for sbt is set to 3.

Relationship Between CONFIGURE CHANNEL and Parallelism Setting
The PARALLELISM setting is not constrained by the number of specifically
configured channels. For example, if you back up to 20 different tape devices, then
you can configure 20 different sbt channels, each with a manually assigned
number (from 1 to 20) and each with a different set of channel options. In such a
situation, you can set PARALLELISM to any value up to the number of devices, in
this instance 20.

RMAN always numbers parallel channels starting with 1 and ending with the
PARALLELISM setting. For example, if the default device is sbt and PARALLELISM
for sbt is set to 3, then RMAN names the channels as follows:

ORA_SBT_TAPE_1
ORA_SBT_TAPE_2
ORA_SBT_TAPE_3

RMAN always uses the name ORA_SBT_TAPE_n even if you configure DEVICE
TYPE sbt (not the synonymous sbt_tape). RMAN always allocates the number of
channels specified in PARALLELISM, using specifically configured channels if you
have configured them and generic channels if you have not.

Channel Name Setting

ORA_DISK_1 FORMAT = '/tmp/backup_%U'

ORA_DISK_2 MAXPIECESIZE = 20M

ORA_DISK_3 FORMAT = '/tmp/backup_%U'

ORA_DISK_4 MAXPIECESIZE = 40M

Channel Name Setting

ORA_SBT_TAPE_1 PARMS='ENV=(BACKUP_DIR=?/oradata)'

ORA_SBT_TAPE_2 PARMS='ENV=(BACKUP_DIR=?/oradata)'

ORA_SBT_TAPE_3 PARMS='ENV=(BACKUP_DIR=/tmp)'

Configuring Automatic Channels

Configuring the RMAN Environment: Advanced Topics 6-19

Clearing Channel and Device Settings
To clear a configuration is to return it to its default settings. You can clear channel
and device settings by using these commands:

■ CONFIGURE DEVICE TYPE ... CLEAR

■ CONFIGURE DEFAULT DEVICE TYPE CLEAR

■ CONFIGURE CHANNEL DEVICE TYPE ... CLEAR

■ CONFIGURE CHANNEL n DEVICE TYPE ... CLEAR (where n is an integer)

Each CONFIGURE ... CLEAR command clears only itself. For example, CONFIGURE
DEVICE TYPE ... CLEAR does not clear CONFIGURE DEFAULT DEVICE TYPE. The
CONFIGURE DEVICE TYPE ... CLEAR command removes the configuration for the
specified device type and returns it to the default (PARALLELISM 1).

The CONFIGURE DEFAULT DEVICE TYPE ... CLEAR command clears the
configured default device and returns it to DISK (the default setting).

The CONFIGURE CHANNEL DEVICE TYPE ... CLEAR command erases the channel
configuration for the specified device type. RMAN does not change the
PARALLELISM setting for the device type because PARALLELISM is specified
through a separate CONFIGURE command.

If you have manually assigned options to automatic channels, then clear the options
for these channels individually by specifying the channel number in CONFIGURE
CHANNEL n DEVICE TYPE ... CLEAR. For example, assume that you run the
following:

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE = 1800K;
RMAN> CONFIGURE CHANNEL 3 DEVICE TYPE DISK FORMAT = /tmp/%U;
RMAN> CONFIGURE CHANNEL 3 DEVICE TYPE DISK CLEAR;

In this case, RMAN clears the settings for CHANNEL 3, but leaves the settings for the
generic DISK channel (the channel with no number manually assigned) intact.

See Also: "Automatic Channel-Specific Configurations" on
page 2-8 for concepts about manually numbered channels, and
"Configuring Specific Channels: Examples" on page 6-16

Note: You cannot specify any other options when clearing a
device type.

Configuring the Maximum Size of Backup Sets and Pieces

6-20 Backup and Recovery Advanced User’s Guide

Configuring the Maximum Size of Backup Sets and Pieces
The CONFIGURE MAXSETSIZE command limits the size of backup sets created on a
channel. This CONFIGURE setting applies to any channel, whether manually or
automatically allocated, when the BACKUP command is used to create backup sets.

You can set MAXSETSIZE in bytes (default), kilobytes (K), megabytes (M), and
gigabytes (G). The default value is given in bytes and is rounded down to the lowest
kilobyte value. For example, if you set the maximum set size to 2000, then RMAN
rounds down this value to 1 kilobyte (1024 bytes). If you set the maximum set size
to 2049, then RMAN rounds down this value to 2 kilobytes (2048 bytes).

The value set by the CONFIGURE MAXSETSIZE command is a default for the given
channel. You can override the configured MAXSETSIZE value by specifying a
MAXSETSIZE option for an individual BACKUP command.

Assume that you issue the following commands at the RMAN prompt:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE sbt PARMS 'ENV=(NSR_DATA_VOLUME_POOL=first_pool)';
CONFIGURE MAXSETSIZE TO 7500K;
BACKUP TABLESPACE users;
BACKUP TABLESPACE tools MAXSETSIZE 5G;

The results will be as follows:

■ The backup of the users tablespace uses the automatic sbt channel and the
configured default MAXSETSIZE setting of 7500K.

■ The backup of the tools tablespace uses the MAXSETSIZE setting of 5G used in
the BACKUP command.

See Also: "Clearing Automatic Channel Settings" on page 2-8

Note: There is no equivalent to MAXSETSIZE for controlling the
size of image copies. Since an image copy is an exact duplicate of
the file being backed up, its size must be identical to the source file.

This fact can present a problem with some older operating systems
which limit the size of individual files. If you are using a raw
partition to store a 10GB datafile, and your operating system only
supports 4GB files on the file system, you cannot take image copy
backups of that file.

Configuring Backup Optimization

Configuring the RMAN Environment: Advanced Topics 6-21

Showing the Default Maximum Size of Backup Sets: SHOW MAXSETSIZE
You can use SHOW MAXSETSIZE to view the maximum backup set size set using
CONFIGURE MAXSETSIZE. The size of a backup set is measured in the total bytes of
the included backup pieces. After connecting to the target database and recovery
catalog (if you use one), issue the SHOW MAXSETSIZE command. For example,
enter:

SHOW MAXSETSIZE; # shows the CONFIGURE MAXSETSIZE settings

Sample output for SHOW MAXSETSIZE follows:

RMAN configuration parameters are:
CONFIGURE MAXSETSIZE TO 3072K;

Configuring Backup Optimization
Run the CONFIGURE command to enable and disable backup optimization. Backup
optimization skips the backup of files in certain circumstances if the identical file or
an identical version of the file has already been backed up. Full details on the
backup optimization algorithm are provided in "Backup Optimization" on
page 2-16.

Note that backup optimization applies only to the following commands:

■ BACKUP DATABASE

■ BACKUP ARCHIVELOG with ALL or LIKE options

■ BACKUP BACKUPSET ALL

You can override optimization at any time by specifying the FORCE option on the
BACKUP command. For example, you can run:

BACKUP DATABASE FORCE;
BACKUP ARCHIVELOG ALL FORCE;

By default, backup optimization is configured to OFF. To enable backup
optimization, run the following command:

CONFIGURE BACKUP OPTIMIZATION ON;

See Also: Oracle Database Recovery Manager Reference for BACKUP
syntax

Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES

6-22 Backup and Recovery Advanced User’s Guide

To disable backup optimization, run the following command:

CONFIGURE BACKUP OPTIMIZATION OFF;

To clear the current backup optimization setting, that is, return backup optimization
to its default setting of OFF, run this command:

CONFIGURE BACKUP OPTIMIZATION CLEAR;

Displaying Backup Optimization Setting: SHOW BACKUP OPTIMIZATION
You can use SHOW BACKUP OPTIMIZATION to view the current settings of backup
optimization as configured with the CONFIGURE BACKUP OPTIMIZATION
command. After connecting to the target database and recovery catalog (if you use
one), issue the SHOW BACKUP OPTIMIZATION command. For example, enter:

SHOW BACKUP OPTIMIZATION;

Sample output for SHOW BACKUP OPTIMIZATION follows:

RMAN configuration parameters are:
CONFIGURE BACKUP OPTIMIZATION ON;

Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES
Use the CONFIGURE ... BACKUP COPIES command to specify how many copies of
each backup piece should be created on the specified device type for the specified
type of file. This feature is known as duplexing. The CONFIGURE settings applies
only to backup sets of datafiles (which includes the current control file) and
archived redo logs. It does not affect image copies.

See Also:

■ "Backup Optimization Algorithm" on page 2-49 for the
complete criteria that determine whether a file is identical and
the conditions under which backup optimization is operative

■ "Backing Up Files Using Backup Optimization" on page 7-9 for
examples of how to optimize RMAN backups

Note: Control file autobackups on disk are a special case and are
never duplexed: RMAN always creates one and only one copy.

Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES

Configuring the RMAN Environment: Advanced Topics 6-23

To configure the number of backup set copies, specify an integer. The following
examples show possible configurations:

Makes 2 disk copies of each datafile and control file backup set
(autobackups excluded)
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;
Makes 3 copies of every archived redo log backup to tape
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE sbt TO 3;

If you use the duplexing feature in conjunction with multiple FORMAT strings, then
you can name each individual backup set copy. For example, assume that you
configure BACKUP COPIES to 3. Then, you can issue:

BACKUP DATABASE FORMAT '/tmp/%U', '?/dbs/%U', '?/oradata/%U';

RMAN generates 3 identical copies of each backup piece in the backup set, and
names each piece according to the specified FORMAT string: the first copy is placed
in the /tmp directory, the second in the ?/dbs directory, and the third in the
?/oradata directory. Note that you can specify the FORMAT string on the BACKUP,
CONFIGURE CHANNEL, and ALLOCATE CHANNEL commands.

To return a BACKUP COPIES configuration to its default value, run the same
CONFIGURE command with the CLEAR option, as in this example:

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE sbt CLEAR;

By default, CONFIGURE ... BACKUP COPIES is set to 1 for each device type.

Note: If you do not want to create a persistent copies
configuration, then you can specify copies with the BACKUP
COPIES and SET BACKUP COPIES commands.

See Also:

■ "Manual Parallelization of Backups" on page 2-18 for concepts

■ Oracle Database Recovery Manager Reference for BACKUP syntax

■ Oracle Database Recovery Manager Reference for CONFIGURE
syntax

■ Oracle Database Recovery Manager Reference for SET syntax

Configuring Tablespaces for Exclusion from Whole Database Backups

6-24 Backup and Recovery Advanced User’s Guide

Showing the Configured Degree of Duplexing: SHOW... BACKUP COPIES
SHOW... BACKUP COPIES lets you view how you have used CONFIGURE ...
BACKUP COPIES command to set the number of identical copies that RMAN makes
of each of several types of backup.

After connecting to the target database and recovery catalog (if you use one), run
the SHOW ARCHIVELOG BACKUP COPIES or SHOW DATAFILE BACKUP COPIES
commands. For example, enter:

SHOW DATAFILE BACKUP COPIES; # shows CONFIGURE DATAFILE BACKUP COPIES setting

Sample output for SHOW DATAFILE BACKUP COPIES follows:

RMAN configuration parameters are:
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE SBT_TAPE TO 1; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

Configuring Tablespaces for Exclusion from Whole Database Backups
You can run CONFIGURE EXCLUDE FOR TABLESPACE to exempt the specified
tablespace from the BACKUP DATABASE command. The exclusion condition applies
to any datafiles that you add to this tablespace in the future.

This tablespace exclusion feature is useful when you do not want to make a
specified tablespace part of the regular backup schedule, as in these cases:

■ A tablespace is easy to rebuild, so it is more cost-effective to rebuild it than back
it up every day.

■ A tablespace contains temporary or test data that you do not need to back up.

■ A tablespace does not change often and therefore should be backed up on a
different schedule from other backups.

For example, you can exclude testing tablespaces cwmlite and example from
whole database backups as follows:

CONFIGURE EXCLUDE FOR TABLESPACE cwmlite;
CONFIGURE EXCLUDE FOR TABLESPACE example;

If you run the following command, then RMAN backs up all tablespaces in the
database except cwmlite and example:

BACKUP DATABASE;

Configuring Auxiliary Instance Datafile Names: CONFIGURE AUXNAME

Configuring the RMAN Environment: Advanced Topics 6-25

You can still back up the configured tablespaces by explicitly specifying them in a
BACKUP command or by specifying the NOEXCLUDE option on a BACKUP DATABASE
command. For example, you can enter one of the following commands:

backs up the whole database, including cwmlite and example
BACKUP DATABASE NOEXCLUDE;
BACKUP TABLESPACE cwmlite, example; # backs up only cwmlite and example

You can disable the exclusion feature for cwmlite and example as follows:

CONFIGURE EXCLUDE FOR TABLESPACE cwmlite CLEAR;
CONFIGURE EXCLUDE FOR TABLESPACE example CLEAR;

RMAN includes these tablespaces in future whole database backups.

Showing the Tablespaces Excluded from Backups
SHOW EXCLUDE shows how you have used the CONFIGURE EXCLUDE command to
exclude tablespaces from whole database backups.

After connecting to the target database and recovery catalog (if you use one), run
the SHOW EXCLUDE command. For example, enter:

RMAN> SHOW EXCLUDE; # shows the CONFIGURE EXCLUDE setting

Sample output for SHOW EXCLUDE follows:

RMAN configuration parameters are:
CONFIGURE EXCLUDE FOR TABLESPACE 'OLD_ACCOUNTS';

Configuring Auxiliary Instance Datafile Names: CONFIGURE AUXNAME
When performing tablespace point-in-time recovery (TSPITR) or duplicating a
database using RMAN, you may want to set the names of datafiles in the auxiliary
instance before startingthe actual TSPITR or database duplication.

The command for doing so is:

CONFIGURE AUXNAME FOR datafileSpec TO ’filename’;

See Also:

■ Oracle Database Recovery Manager Reference for BACKUP syntax

■ Oracle Database Recovery Manager Reference for CONFIGURE
syntax

Setting the Snapshot Control File Location

6-26 Backup and Recovery Advanced User’s Guide

where datafileSpec identifies some datafile by its original name or datafile
number, and filename is the new path for the specified file.

For example, you might configure a new auxiliary name for datafile 2 as follows:

CONFIGURE AUXNAME FOR DATAFILE 2 TO ’/newdisk/datafiles/df2.df;’

As with other settings, thisCONFIGURE setting is persistent across RMAN sessions
until cleared usingCONFIGURE ...CLEAR , as shown here:

CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR;

If you are performing TSPITR or running the DUPLICATE command, then by using
CONFIGURE AUXNAME you can preconfigure the filenames for use on the auxiliary
database without manually specifying the auxiliary filenames during the procedure.

When renaming files with the DUPLICATE command, CONFIGURE AUXNAME is an
alternative to SET NEWNAME. The difference is that after you set the AUXNAME the
first time, you do not need to reset the filename when you issue another
DUPLICATE command: the AUXNAME setting remains in effect until you issue
CONFIGURE AUXNAME ... CLEAR. In contrast, you must reissue the SET NEWNAME
command every time you rename files.

See Chapter 10, "RMAN Tablespace Point-in-Time Recovery (TSPITR)" for more
details on using CONFIGURE AUXNAME in connection with TSPITR, and Chapter 11,
"Duplicating a Database with Recovery Manager" for more on using CONFIGURE
AUXNAME in performing database duplication.

Showing the Default Filenames Configured for Auxiliary Channels
To view auxiliary datafile names currently configured for your database, you can
use the SHOW AUXNAME command:

RMAN> SHOW AUXNAME;

Sample output follows:

RMAN configuration parameters are:
CONFIGURE AUXNAME FOR DATAFILE '/oracle/oradata/trgt/tools01.dbf' TO
 '/tmp/tools01.dbf';

Setting the Snapshot Control File Location
When RMAN needs to resynchronize from a read-consistent version of the control
file, it creates a temporary snapshot control file. RMAN needs a snapshot control

Setting the Snapshot Control File Location

Configuring the RMAN Environment: Advanced Topics 6-27

file only when resynchronizing with the recovery catalog or when making a backup
of the current control file.

The default value for the snapshot control file is platform-specific and depends on
the Oracle home. For example, the default filename on some UNIX platforms in
Oracle Database 10g is $ORACLE_HOME/dbs/snapcf_@.f. Note that if you have a
flash recovery area configured, the default location for the snapshot control file is
not the flash recovery area.

In general, you should only need to set the control file location when you are
upgrading to the current release from a release earlier than 8.1.7. In these earlier
releases, the default location for the snapshot control file was not dependent on the
Oracle home, whereas in the current release the default location is dependent on the
Oracle home.

Default Location of the Snapshot Control File
By default, the location of the snapshot control file is determined by the rules in the
following table:

Viewing the Configured Location of the Snapshot Control File
You can see the current snapshot location by running the SHOW command. This
example shows a snapshot location that is determined by the default rule:

RMAN> SHOW SNAPSHOT CONTROLFILE NAME;
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/dbs/snapcf_trgt.f'; # default

This example shows a snapshot control file that has a nondefault filename:

RMAN> SHOW SNAPSHOT CONTROLFILE NAME;
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/oradata/trgt/snap_trgt.ctl';

If you ... Then ...

Create a new database
in the current release

The snapshot control file location uses the default value. In this
case, the default snapshot control file location changes if you
change the Oracle home.

Upgrade to the current
release from a release
prior to 8.1.7

The snapshot control file location is not set to the default value.
Instead, RMAN uses the snapshot location that is already stored
in the control file. In this case, the snapshot control file location
does not change if you change the Oracle home.

Setting the Snapshot Control File Location

6-28 Backup and Recovery Advanced User’s Guide

Setting the Location of the Snapshot Control File
Use the CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'filename' command to
change the name of the snapshot control file. Subsequent snapshot control files that
RMAN creates use the specified filename.

For example, start RMAN and then enter:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/oradata/trgt/snap_trgt.ctl';

You can also set the snapshot control file name to a raw device:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/dev/vgd_1_0/rlvt5';

If one RMAN job is already backing up the control file while another needs to create
a new snapshot control file, you may see the following message:

waiting for snapshot controlfile enqueue

Under normal circumstances, a job that must wait for the control file enqueue waits
for a brief interval and then successfully retrieves the enqueue. Recovery Manager
makes up to five attempts to get the enqueue and then fails the job. The conflict is
usually caused when two jobs are both backing up the control file, and the job that
first starts backing up the control file waits for service from the media manager.

To reset the snapshot control file location to the default, run the CONFIGURE
SNAPSHOT CONTROLFILE LOCATION CLEAR command.

Showing the Current Snapshot Control File Name
Issue the SHOW SNAPSHOT CONTROLFILE command to display the value set by
CONFIGURE SNAPSHOT CONTROLFILE NAME.

See Also: "Backup Fails Because of Control File Enqueue:
Scenario" on page 15-25, Oracle Real Application Clusters
Administrator's Guide for handling of snapshot control files in RAC
configurations, and Oracle Database Recovery Manager Reference for
CONFIGURE syntax

Note: In releases prior to Oracle9i, the CONFIGURE SNAPSHOT
CONTROLFILE command was called SET SNAPSHOT
CONTROLFILE.

Setting Up RMAN for Use with a Shared Server

Configuring the RMAN Environment: Advanced Topics 6-29

To show the snapshot control file filename:

After connecting to the target database and recovery catalog (if you use one), run
the SHOW SNAPSHOT CONTROLFILE command. For example, enter:

SHOW SNAPSHOT CONTROLFILE NAME; # shows CONFIGURE SNAPSHOT CONTROLFILE setting

Sample output for SHOW SNAPSHOT CONTROLFILE follows:

RMAN configuration parameters are:
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/dbs/cf_snap.f';

Setting Up RMAN for Use with a Shared Server
RMAN cannot connect to the target database through a shared server dispatcher.
RMAN requires a dedicated server process. Nevertheless, you can connect specified
sessions to dedicated servers, even when the target is configured for a shared server.

To ensure that RMAN does not connect to a dispatcher when the target database is
configured for a shared server, the net service name used by RMAN must include
(SERVER=DEDICATED) in the CONNECT_DATA attribute of the connect string.

Oracle Net configuration varies greatly from system to system. The following
procedure illustrates only one method. This scenario assumes that the following
service name in the tnsnames.ora connects to the target database using the
shared server architecture, where inst1 is a value of the SERVICE_NAMES
initialization parameter:

inst1_shs =
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=inst1_host)(port1521))
 (CONNECT_DATA=(SERVICE_NAME=inst1)(SERVER=shared))

)

To use RMAN with a shared server:

1. Create a net service name in the tnsnames.ora file that connects to the
nonshared SID. For example, enter:

inst1_ded =
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=inst1_host)(port1521))
 (CONNECT_DATA=(SERVICE_NAME=inst1)(SERVER=dedicated))
)

See Also: "Setting the Snapshot Control File Location" on
page 6-26 to learn about the snapshot control file and its function

Setting Up RMAN for Use with a Shared Server

6-30 Backup and Recovery Advanced User’s Guide

2. Start SQL*Plus and then connect using both the shared server and dedicated
server service names to confirm the mode of each session. For example, to
connect to a dedicated session you can issue:

CONNECT SYS/oracle@inst1_ded
SELECT SERVER
 FROM V$SESSION
 WHERE SID = (SELECT DISTINCT SID FROM V$MYSTAT);

SERVER

DEDICATED
1 row selected.

To connect to a shared server session, you can issue:

CONNECT SYS/oracle@inst1_shs AS SYSDBA
SELECT SERVER
 FROM V$SESSION
 WHERE SID = (SELECT DISTINCT SID FROM V$MYSTAT);

SERVER

SHARED
1 row selected.

3. Connect to the target database (and optionally the recovery catalog) with the
dedicated service name. For example, enter:

% rman TARGET SYS/oracle@inst1_ded CATALOG rman/cat@catdb

See Also: Your operating system-specific Oracle documentation
and your Oracle Net Services Reference Guide for a complete
description of Oracle Net connect string syntax

Making Backups with RMAN: Advanced Topics 7-1

7
Making Backups with RMAN: Advanced

Topics

This chapter describes how to use RMAN to make backups. This chapter contains
these topics:

■ Configuring and Allocating Channels for Use in Backups

■ Configuring the Default Backup Type for Disk

■ Duplexing Backup Sets

■ Making Split Mirror Backups with RMAN

■ Backing Up Backup Sets with RMAN

■ Restarting and Optimizing RMAN Backups

■ Validating Backups with RMAN

■ RMAN Backup Examples

Configuring and Allocating Channels for Use in Backups

7-2 Backup and Recovery Advanced User’s Guide

Configuring and Allocating Channels for Use in Backups
You have the following options for executing backups:

■ Configure automatic channels with the CONFIGURE command, and then issue
BACKUP commands at the RMAN prompt or within a RUN block

■ Within a RUN block only, you can allocate channels manually with the
ALLOCATE CHANNEL command, and then issue BACKUP commands using
those channels

The easiest way to make backups is to configure automatic channels. For example,
so long as you have already configured an sbt device type, you can configure a
default sbt channel as follows (note that the PARMS value is vendor-specific) and
then back up the database using these defaults:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt PARMS 'ENV=(NSR_SERVER=bksvr1)';
RMAN> BACKUP DATABASE;

RMAN preconfigures a DISK channel for you, so you can make disk backups using
automatic channels without performing any configuration whatsoever.

The other method is to allocate channels manually within a RUN command. For
example, this command allocates multiple disk channels and then backs up the
database and archived redo logs:

RMAN> RUN
{
 ALLOCATE CHANNEL ch1 DEVICE TYPE DISK;
 ALLOCATE CHANNEL ch2 DEVICE TYPE DISK;
 ALLOCATE CHANNEL ch3 DEVICE TYPE DISK;
 BACKUP DATABASE PLUS ARCHIVELOG;
}

The following example manually allocates an sbt channel (with a vendor-specific
PARMS value) and backs up a datafile copy:

RMAN> RUN
{
 ALLOCATE CHANNEL ch1 DEVICE TYPE sbt PARMS 'ENV=(NSR_SERVER=bksvr1)';
 BACKUP DATAFILECOPY '/tmp/system01.dbf';
}

For the most part, the procedures in this chapter assume that you have configured
automatic channels.

Duplexing Backup Sets

Making Backups with RMAN: Advanced Topics 7-3

Configuring the Default Backup Type for Disk
When backing up to disk, it is recommended to create image copies, rather than
backup sets. Some features of RMAN backups, such as incrementally updated
backups, require the use of image copies. Also, image copy backups are more
convenient to use in some restore and recovery scenarios. However, by default, the
BACKUP command creates backups as backup sets, when backing up to disk as well
as to tape. (Backups to tape must be stored as backup sets.)

To configure RMAN to create image copies by default when backing up to disk, use
the following command:

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY;

To return RMAN to its default behavior of producing backup sets, use the following
command:

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE CLEAR;

Duplexing Backup Sets
It is safer to make multiple copies of backups to protect against disaster, media
damage, or human error. RMAN can make up to four copies of a backup set
simultaneously, each an exact duplicate of the others. A copy of a backup set is a
copy of each backup piece in the backup set, with each copy getting a unique copy
number (for example, 0tcm8u2s_1_1 and 0tcm8u2s_1_2).

In most cases, the easiest method is to use BACKUP... COPIES or CONFIGURE ...
BACKUP COPIES to duplex backup sets. There is little value in creating multiple
copies on the same physical media. For DISK channels, specify multiple values in
the FORMAT option to direct the multiple copies to different physical disks. For sbt
channels, if you use a media manager that supports Version 2 of the SBT API, then
the media manager will automatically put each copy onto a separate medium (for
example, a separate tape).

Note that it is not possible to duplex backup sets to the flash recovery area, and that
duplexing only applies to backup sets, not image copies. It is an error to specify the
BACKUP... COPIES when creating image copy backups, and the CONFIGURE...
BACKUP COPIES setting is ignored for image copy backups.

Duplexing Backup Sets with CONFIGURE BACKUP COPIES
The CONFIGURE ... BACKUP COPIES command specifies the number of identical
backup sets that you want to create on the specified device type. This setting applies

Duplexing Backup Sets

7-4 Backup and Recovery Advanced User’s Guide

to all backups except control file autobackups (because the autobackup of a control
file always produces one copy) and backup sets when backed up with the BACKUP
BACKUPSET command. You must have automatic channels configured.

To duplex a backup with CONFIGURE BACKUP COPIES:

1. Configure the number of copies on the desired device type for datafiles and
archived redo logs on the desired device types. This example configures
duplexing for datafiles and archived logs on tape as well as duplexing for
datafiles (but not archived logs) on disk:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/save1/%U', '/save2/%U';
RMAN> CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE sbt TO 2;
RMAN> CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE sbt TO 2;
RMAN> CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;

2. Execute the BACKUP command. The following command backs up the database
and archived logs to tape, making two copies of each datafile and archived redo
log:

RMAN> BACKUP DATABASE PLUS ARCHIVELOG; # uses default sbt channel

Because of the configured formats for the disk channel, the following command
backs up the database to disk, placing one copy of the backupsets produced in
the /save1 directory and the other in the /save2 directory:

RMAN> BACKUP DEVICE TYPE DISK AS COPY DATABASE;

3. Issue a LIST BACKUP command to see a listing of backup sets and pieces . For
example, enter:

RMAN> LIST BACKUP SUMMARY;

The #Copies column shows the number of backupsets, which may have been
produced by duplexing or by multiple backup commands.

Duplexing Backupsets with BACKUP... COPIES
The COPIES option of the BACKUP command overrides every other COPIES or
DUPLEX setting to control duplexing of backupsets.

Making Split Mirror Backups with RMAN

Making Backups with RMAN: Advanced Topics 7-5

To duplex a backup with BACKUP COPIES:

1. Specify the number of identical copies with the COPIES option of the BACKUP
command. For example, run the following to make three copies of each backup
set in the default DISK location:

RMAN> BACKUP AS BACKUPSET DEVICE TYPE DISK
 COPIES 3
 INCREMENTAL LEVEL 0
 DATABASE;

Because you specified COPIES on the BACKUP command, RMAN makes three
backupsets of each datafile regardless of the CONFIGURE DATAFILE COPIES
setting.

2. Issue a LIST BACKUP command to see a listing of backup sets and pieces (the
#Copies column shows the number of copies, which may have been produced
through duplexing or through multiple invocations of the BACKUP command).
For example, enter:

RMAN> LIST BACKUP SUMMARY;

Making Split Mirror Backups with RMAN
Many sites keep an backup of the database stored on disk in case a failure occurs on
the primary database or an incorrect user action such as a DROP TABLE requires
point-in-time recovery. A datafile backup on disk simplifies the restore step of
recovery, making recovery much quicker and more reliable.

One way of creating a datafile backup on disk is to use disk mirroring. For example,
you can use the operating system to maintain three identical copies of each file in
the database. In this configuration, you can split off a mirrored copy of the database
to use as a backup.

Caution: Never make backups, split mirror or otherwise, of online
redo logs. Restoring online redo log backups can create two
archived logs with the same sequence number but different
contents. Also, it is best to use the BACKUP CONTROLFILE
command rather than a split mirror to make control file backups.

Making Split Mirror Backups with RMAN

7-6 Backup and Recovery Advanced User’s Guide

RMAN does not automate the splitting of mirrors, but can make use of split mirrors
in backup and recovery operations. For example, RMAN can treat a split mirror of a
datafile as a datafile copy, and can also back up this copy to disk or tape.

The following procedure shows how to make a split mirror backup with the
SUSPEND/RESUME functionality. The SUSPEND/RESUME feature is not required for
split mirror backups in most cases, although it is necessary if your system requires
the database cache to be free of dirty buffers before the volume can be split.

To make a split mirror backup of a tablespace by using SUSPEND/RESUME:

1. Start RMAN and then place the tablespaces that you want to back up into
backup mode with the ALTER TABLESPACE ... BEGIN BACKUP statement. (To
place all tablespaces in backup mode, you can use ALTER DATABASE BEGIN
BACKUP instead.)

For example, to place tablespace users in backup mode, start RMAN and run
the following commands:

RMAN> CONNECT TARGET SYS/oracle@trgt
RMAN> CONNECT CATALOG rman/cat@catdb
RMAN> SQL 'ALTER TABLESPACE users BEGIN BACKUP';

2. Suspend the I/Os if your mirroring software or hardware requires it. For
example, enter the following SQL statement:

RMAN> SQL 'ALTER SYSTEM SUSPEND';

3. Split the mirrors for the underlying datafiles contained in these tablespaces.

4. Take the database out of the suspended state:

RMAN> SQL 'ALTER SYSTEM RESUME';

5. Take the tablespaces out of backup mode. For example, enter:

RMAN> SQL 'ALTER TABLESPACE users END BACKUP';

You could also use ALTER DATABASE END BACKUP to take all tablespaces out
of backup mode.

6. Start an RMAN session and then catalog the user-managed mirror copies as
datafile copies with the CATALOG command. For example, enter:

RMAN> CATALOG DATAFILECOPY '/dk2/oradata/trgt/users01.dbf'; # catalog split
mirror

Backing Up Backup Sets with RMAN

Making Backups with RMAN: Advanced Topics 7-7

7. Back up the datafile copies. For example, assuming that you have configured
automatic channels, run the BACKUP DATAFILECOPY command at the prompt:

RMAN> BACKUP DATAFILECOPY '/dk2/oradata/trgt/users01.dbf';

8. When you are ready to resilver the split mirror, first use the CHANGE ...
UNCATALOG command to uncatalog the datafile copies you cataloged in step 6.
For example, enter:

RMAN> CHANGE DATAFILECOPY '/dk2/oradata/trgt/users01.dbf' UNCATALOG;

9. Resilver the split mirror for the affected datafiles.

Backing Up Backup Sets with RMAN
Use the BACKUP BACKUPSET command to back up backup sets rather than database
files. This command is especially useful in the following scenarios:

■ Ensuring that all backups exist both on disk and on tape

■ Moving backups from disk to tape and then deallocating the space on disk

To back up backup sets from disk to tape:

1. Assuming that you have configured an automatic sbt channel, issue the
BACKUP BACKUPSET command at the RMAN prompt. This example backs up
all disk backup sets to tape:

RMAN> BACKUP DEVICE TYPE sbt BACKUPSET ALL;

This example backs up all disk backup sets to tape and then deletes the input
disk backups:

RMAN> BACKUP DEVICE TYPE sbt BACKUPSET ALL DELETE INPUT;

2. Issue a LIST command to see a listing of backup sets and pieces.

See Also: Oracle Database SQL Reference for ALTER SYSTEM
SUSPEND syntax

Note: You cannot duplex backups when running BACKUP
BACKUPSET. RMAN always makes one and only one copy on the
specified media when performing BACKUP BACKUPSET.

Backing Up Image Copies with RMAN

7-8 Backup and Recovery Advanced User’s Guide

Backing Up Image Copies with RMAN
Use the BACKUP COPY OF command to back up image copies of datafiles, control
files, and archived logs. The output of the BACKUP command can be either backup
sets or image copies, so you can generate backup sets from your image copies. This
technique is useful when you want to back up a database backup on disk to tape,
because all backups to tape must be backup sets. You can use the MAXSETSIZE
parameter of the BACKUP command to set a maximum size for each backup set.

To back up image copies from disk to tape:

1. Assuming that you have configured an automatic sbt channel, issue the
BACKUP COPY OF command at the RMAN prompt. This example backs up the
latest image copy of the database to tape:

RMAN> BACKUP DEVICE TYPE sbt COPY OF DATABASE;

This example backs up the latest image copy backup of a database in backup
sets on tape, and then deletes the input disk backups:

RMAN> BACKUP DEVICE TYPE sbt COPY OF DATABASE DELETE INPUT;

2. Issue a LIST command to see a listing of backup sets and pieces.

When backing up your image copies, identifying the image copy to back up is
easier if you provide tags for your backups. Image copies of datafiles and archived
redo logs have associated tags (if you do not provide one, one is automatically
generated). The tag of an image copy is inherited by default when the image copy is
backed up as a new image copy. You can also specify your own tag.

To take advantage of the tags associated with your image copy backups, use the
WITH TAG selector. As explained previously, the tag of the image copy being
backed up will also be assigned to the new backup. When multiple image copies
have the same tag, the most recent image copy of a file with the specified tag will be
backed up.

Restarting and Optimizing RMAN Backups
RMAN supports two distinct features by which it can back up only those files that
require backups: restartable backups and backup optimization.

With the restartable backup feature, RMAN backs up only those files that were not
backed up after a specified date. For example, by specifying the NOT BACKED UP
SINCE TIME clause, you can direct RMAN to back up only those files that were not
backed up within the last day.

Restarting and Optimizing RMAN Backups

Making Backups with RMAN: Advanced Topics 7-9

With backup optimization, the BACKUP command skips the backup of a file if the
identical file has already been backed up to the allocated device type. To override
this behavior and back up all files whether or not they have changed, specify the
FORCE option on the BACKUP command. To enable or disable backup optimization,
specify ON or OFF on the CONFIGURE BACKUP OPTIMIZATION command.

Additionally, BACKUP ... PLUS ARCHIVELOG can archive unarchived online logs
as well as back up archived logs.

Backing Up Files Using Backup Optimization
For backup optimization to be enabled, you must CONFIGURE BACKUP
OPTIMIZATION to ON. Backup optimization is OFF by default.

To use backup optimization with a backup operation:

1. If you have not already enabled backup optimization, then enable it by running
the CONFIGURE BACKUP OPTIMIZATION command. For example, enter:

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;

2. Back up the desired files. The following example backs up to an sbt device
any archived redo logs that either have not been already backed up, or where
the existing backups do not satisfy the current duplexing setting:

RMAN> BACKUP DEVICE TYPE sbt ARCHIVELOG ALL;

RMAN does not signal an error when it skips backing up files due to backup
optimization.

Restarting a Backup After It Partially Completes
Use the SINCE TIME parameter of the BACKUP command to specify a date after
which a new backup is required. If you do not specify the SINCE parameter, then
RMAN only backs up files that have never been backed up.

See Also: "Backup Optimization" on page 2-49 for a conceptual
overview of optimization, and "Restartable Backups" on page 2-54
for a conceptual overview of restartable backups

See Also: "Backup Optimization" on page 2-49 for a conceptual
overview of optimization and backup retention policies

Validating Backups with RMAN

7-10 Backup and Recovery Advanced User’s Guide

To only back up files that were not backed up after a specified date:

Specify a valid date in the SINCE TIME parameter. For example, this command uses
the default configured channel to back up all database files and archived redo logs
that have not been backed up in the last two weeks:

RMAN> BACKUP NOT BACKED UP SINCE TIME 'SYSDATE-14'
 DATABASE PLUS ARCHIVELOG;

Validating Backups with RMAN
You can use the VALIDATE keyword of the BACKUP command to do the following:

■ Check datafiles for physical and logical corruption

■ Confirm that all database files exist and are in the correct locations

RMAN does not actually produce backup sets, but rather reads the specified files in
their entirety, to determine whether they can be backed up and are not corrupted. In
this sense, the BACKUP VALIDATE command is similar to the RESTORE VALIDATE
command, except for backups rather than restore jobs.

If the backup validation discovers corrupt blocks, then RMAN updates the
V$DATABASE_BLOCK_CORRUPTION view with rows describing the corruptions.
After a corrupt block is repaired, the row identifying this block is deleted from the
view.

For example, you can validate that all database files and archived redo logs can be
backed up by running a command as follows:

RMAN> BACKUP VALIDATE DATABASE ARCHIVELOG ALL;
This form of the command would check for physical corruption. To check for logical
corruption,

RMAN> BACKUP VALIDATE CHECK LOGICAL DATABASE ARCHIVELOG ALL;

RMAN displays the same output that it would if it were really backing up the files.
If RMAN cannot validate the backup of one or more of the files, then it displays an
error message. For example, RMAN may show output similar to the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/29/2001 14:33:47
ORA-19625: error identifying file /oracle/oradata/trgt/arch/archive1_6.dbf
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-11

Additional information: 3

You cannot use the MAXCORRUPT or PROXY parameters with the VALIDATE option.

RMAN Backup Examples
This section contains these topics:

■ Specifying the Device Type on the BACKUP Command: Example

■ Skipping Tablespaces when Backing Up a Database: Example

■ Restarting a Backup: Example

■ Spreading a Backup Across Multiple Disk Drives: Example

■ Backing Up a Large Database to Multiple File Systems: Example

■ Specifying the Size of Backup Sets: Example

■ Limiting the Size of Backup Pieces: Example

■ Backing Up Archived Redo Logs in a Failover Scenario: Example

■ Backing Up Archived Logs Needed to Recover an Online Backup: Example

■ Backing Up and Deleting Multiple Copies of an Archived Redo Log: Example

■ Performing Differential Incremental Backups: Example

■ Performing Cumulative Incremental Backups: Example

■ Determining How Channels Distribute a Backup Workload: Example

■ Backing Up in NOARCHIVELOG Mode: Example

■ Cataloging User-Managed Datafile Copies: Example

■ Keeping a Long-Term Backup: Example

■ Optimizing Backups: Examples

■ Handling Errors During Backups: Example

See Also:

■ Oracle Database Recovery Manager Reference for BACKUP syntax

■ "Recovering Blocks Listed in V$DATABASE_BLOCK_
CORRUPTION" on page 8-23 to learn how to repair corrupt
blocks discovered by BACKUP ... VALIDATE

RMAN Backup Examples

7-12 Backup and Recovery Advanced User’s Guide

Specifying the Device Type on the BACKUP Command: Example
Assume that you configure an automatic sbt channel as follows:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1; # configure device
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='...'; # configure options for
channels
RMAN> CONFIGURE DEFAULT DEVICE TYPE to sbt; # set default device type

Assume that you want to back up the database to disk and use the default
configured DISK channel. You can specify that the BACKUP command should use a
DISK channel as follows:

RMAN> BACKUP DEVICE TYPE DISK DATABASE;

To back up the database to the sbt device run this command:

RMAN> BACKUP DATABASE;

Skipping Tablespaces when Backing Up a Database: Example
The following example assumes that the database is running in ARCHIVELOG mode
and that you have an automatic sbt channel configured as follows:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='ENV=(NSR_DATA_VOLUME_
POOL=BackupPool)';

To back up the database while skipping offline and read-only tablespaces, you can
run the following command:

RMAN> BACKUP DATABASE
 SKIP READONLY
 SKIP OFFLINE;

You need to back up a read-only tablespace only once after it has been made
read-only. You can use the SKIP READONLY option to skip read-only datafiles. If
you use the SKIP OFFLINE option, then the BACKUP command does not attempt to
access offline datafiles. Use this option if the offline datafiles are not available.

Another way to persistently skip tablespaces across RMAN sessions is to issue the
CONFIGURE EXCLUDE command for each tablespace that you always want to skip.
For example, you may always want to skip the example tablespace, which has
been made read-only. You can then issue:

RMAN> CONFIGURE EXCLUDE FOR TABLESPACE example;

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-13

Then, whenever you run BACKUP DATABASE, RMAN skips this tablespace. You do
not have to specify a SKIP clause on the BACKUP command. You can override this
behavior and include the example tablespace as follows:

RMAN> BACKUP DATABASE NOEXCLUDE;

Restarting a Backup: Example
Assume that you back up the database and archived logs every night to tape by
running this command:

RMAN> BACKUP
 MAXSETSIZE 10G
 DATABASE PLUS ARCHIVELOG;

The preceding command sets an upper limit to the size of each backup set so that
RMAN produces multiple backup sets. Assume that the media management device
fails halfway through the backup and is then restarted. The next day you discover
that only half the backup sets completed. In this case, you can run this command in
the evening:

RMAN> BACKUP
 # Note that the NOT BACKED UP SINCE clause should be placed immediately after
the BACKUP
 # keyword or after each individual backupSpec clause
 NOT BACKED UP SINCE TIME 'SYSDATE-1'
 MAXSETSIZE 10M
 DATABASE PLUS ARCHIVELOG;

RMAN backs up only files that were not backed up during in the previous 24 hours.
When RMAN finds out that particular file is already backed up it displays output
similar to the following:

RMAN-06501: skipping datafile 1; already backed up on NOV 02 2003 18:10:00
RMAN-06501: skipping datafile 2; already backed up on NOV 02 2003 18:09:45
RMAN-06501: skipping datafile 3; already backed up on NOV 02 2003 18:09:45

Spreading a Backup Across Multiple Disk Drives: Example
Typically, you do not need to specify a format when backing up to tape because the
default %U variable generates a unique filename for tape backups. When backing up
to disk, however, you can specify a format if you need to spread the backup across
several drives for improved performance. In this case, allocate one DISK channel for

RMAN Backup Examples

7-14 Backup and Recovery Advanced User’s Guide

each disk drive and specify the format string on the ALLOCATE CHANNEL command
so that the filenames are on different disks. For example, issue:

RUN
{
 ALLOCATE CHANNEL disk1 DEVICE TYPE DISK FORMAT '/disk1/%d_backups/%U';
 ALLOCATE CHANNEL disk2 DEVICE TYPE DISK FORMAT '/disk2/%d_backups/%U';
 ALLOCATE CHANNEL disk3 DEVICE TYPE DISK FORMAT '/disk3/%d_backups/%U';
 BACKUP AS COPY DATABASE;
}

You can accomplish the same result by configuring automatic channels as follows:

CONFIGURE DEVICE TYPE DISK PARALLELISM 3;
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/disk1/%d_backups/%U';
CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT '/disk2/%d_backups/%U';
CONFIGURE CHANNEL 3 DEVICE TYPE DISK FORMAT '/disk3/%d_backups/%U';
BACKUP AS COPY DATABASE;

If you specify a nonexistent directory, RMAN displays output such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of backup command on ORA_DISK_1 channel at 08/29/2001
 14:36:04
ORA-19504: failed to create file "/nosuchdisk/0cd2momi_1_1"
ORA-27040: skgfrcre: create error, unable to create file
SVR4 Error: 2: No such file or directory

Backing Up a Large Database to Multiple File Systems: Example
In this scenario, you have a 35 GB database that you want to back up to disk.
Because RMAN can only write one backup piece on a raw disk device, you decide
to spread the backup across four file systems. You decide to make each backup set
roughly the same size: 10 GB. You want each backup piece to be no more than 2 GB
so that each backup set contains up to five backup pieces.

You decide to use the FORMAT parameter of the CONFIGURE CHANNEL command so
that each channel will write to a different file system. You use conversion variables
to guarantee unique names for the backup pieces. For example, the following
commands configure four channels, configures their formats so that they write to
the four file systems (/fs1, /fs2, /fs3, /fs4) and groups the datafiles so that
each backup set is about the same size.

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-15

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 4;
RMAN> CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT='/fs1/%U' MAXPIECESIZE 2G;
RMAN> CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT='/fs2/%U' MAXPIECESIZE 2G;
RMAN> CONFIGURE CHANNEL 3 DEVICE TYPE DISK FORMAT='/fs3/%U' MAXPIECESIZE 2G;
RMAN> CONFIGURE CHANNEL 4 DEVICE TYPE DISK FORMAT='/fs4/%U' MAXPIECESIZE 2G;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO DISK;

Then, you can run this command every night to generate four backup sets, each in a
different directory and each approximately the same size:

RMAN> BACKUP AS BACKUPSET DATABASE;

You can also back up the backup sets from disk to four different tapes from a tape
pool by setting PARALLELISM=4 for the sbt device (and specifying the appropriate
vendor-specific PARMS for the sbt channel), as in the following example:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 4;
RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='...';
RMAN> BACKUP DEVICE TYPE sbt BACKUPSET ALL DELETE INPUT;

Note that this example makes certain assumptions, such as no datafile is too large to
fit into a backup piece, that there are at least four datafiles in the database, and so
on. In extrapolating from this example you must take into account the specifics of
your own circumstances.

Specifying the Size of Backup Sets: Example
When making backups, RMAN divides the total number of files requiring backups
by the number of allocated channels to calculate the number of files to place in each
backup set. Use the MAXSETSIZE parameter to override this calculation and specify
how many files should go in each backup set.

The MAXSETSIZE parameter specifies a maximum size for a backup set in units of
bytes (default), kilobytes, megabytes, or gigabytes. Thus, to limit a backup set to 305
MB, specify MAXSETSIZE=305M. RMAN attempts to limit all sets to this size.

You can use MAXSETSIZE to limit the size of backup sets so that the database is
divided among more than one backup set. If you configure MAXSETSIZE so that
you generate multiple backup sets, however, then if the backup fails partway
through, you can use the restartable backup feature to back up only those files that
were not backed up during the previous attempt. See "Restartable Backups" on
page 2-54 for a conceptual overview of restartable backups.

RMAN Backup Examples

7-16 Backup and Recovery Advanced User’s Guide

The following example configures a tape device, then backs up archived redo logs
to tape, limiting the size to 100 MB so that if the backup fails partway through, it
can be restarted:

RMAN> CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> BACKUP MAXSETSIZE = 100M ARCHIVELOG ALL;

This example accomplishes the same result with CONFIGURE MAXSETSIZE:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
RMAN> CONFIGURE MAXSETSIZE = 100M;
RMAN> BACKUP ARCHIVELOG ALL;

Note that if you specify a MAXSETSIZE value that is too small to contain the biggest
file that you are backing up (either the actual size of that file, or if binary
compression is specified, then the size of tha tfile after compression), then RMAN
displays an error stack such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 11/03/03 14:40:33
RMAN-06182: archive log larger than MAXSETSIZE: thread 1 seq 1
 /oracle/oradata/trgt/arch/archive1_1.dbf

Limiting the Size of Backup Pieces: Example
Backup piece size is an issue in those situations where it exceeds the maximum file
size of the file system or media management software. Use the MAXPIECESIZE
parameter of the CONFIGURE CHANNEL or ALLOCATE CHANNEL command to limit
the size of backup pieces.

For example, to limit the backup file size to 2GB or less, you can configure the
automatic DISK channel as follows and then run BACKUP DATABASE:

max file size for backup pieces is 2GB
RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE 2GB;
RMAN> BACKUP DATABASE;

Note that in version 2.0 of the media management API, media management
vendors can specify the maximum size of a backup piece that can be written to their
media manager. RMAN will respect this limit regardless of the settings you
configure for MAXPIECESIZE.

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-17

Backing Up Archived Redo Logs in a Failover Scenario: Example
Assume that you set your initialization parameters so that you archive to the
following local destinations:

LOG_ARCHIVE_DEST_1 = 'LOCATION=/disk1/arch/'
LOG_ARCHIVE_DEST_2 = 'LOCATION=/disk2/arch/'
LOG_ARCHIVE_DEST_3 = 'LOCATION=/disk3/arch/'

Each directory contains the same set of logs, starting with log sequence 1 and
ending at log sequence 400. Unknown to you, a user inadvertently deletes logs 300
through 400 from /disk1/arch and logs 350 through 400 from /disk2/arch.
You run this backup command:

RMAN> BACKUP ARCHIVELOG
 FROM SEQUENCE 288 UNTIL SEQUENCE 388
 THREAD 1
 DELETE INPUT;

RMAN begins backing up logs starting with log sequence 288. If the copy of log 300
that was deleted from /disk1/arch is the one that RMAN attempts to back up,
then RMAN checks the repository to determine whether other copies of this log
sequence exist, and backs up the log in either /disk2/arch or /disk3/arch.
Hence, because a copy of each log in sequence 288 through 388 is located in at least
one of the three directories, RMAN can back up all the specified logs.

Backing Up Archived Logs Needed to Recover an Online Backup: Example
Assume that you back up database trgt while it is open. You want to back up only
those archived redo logs required to recover this online backup.

The recommended solution to this problem is to add the PLUS ARCHIVELOG
clause to your database backup command, as shown here:

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;

See Oracle Database Backup and Recovery Basics and Oracle Database Recovery Manager
Reference for details on using BACKUP... PLUS ARCHIVELOG.

Prior to Oracle Database Release 10g , however, you could manually determine
which archived logs are required and back them up, using the following procedure.

To determine the archived logs needed for recovery of an online backup:

1. Start SQL*Plus and archive all unarchived logs, including the current log:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

RMAN Backup Examples

7-18 Backup and Recovery Advanced User’s Guide

2. Query V$LOG to determine the log sequence number of the current redo log, as
in the following example (which includes output):

SQL> SELECT SEQUENCE# FROM V$LOG WHERE STATUS = 'CURRENT';

 SEQUENCE#

 9100

3. Start RMAN and make an online backup of the database. For example, enter:

RMAN> BACKUP DATABASE;

4. Archive all unarchived logs, including the current log:

RMAN> SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT';

5. In SQL*Plus, query V$LOG to determine the log sequence number of the current
redo log:

SQL> SELECT SEQUENCE# FROM V$LOG WHERE STATUS = 'CURRENT';

 SEQUENCE#

 9112

6. Back up the logs beginning with the first sequence number that you queried,
and ending with the last sequence number minus 1. The log before the current
log is the most recent archived log. For example, if the first query returned 9100,
then start at 9100. If the second query returned 9112, then end at 9111.

For example, issue the following to back up the necessary archived logs:

RMAN> BACKUP ARCHIVELOG FROM SEQUENCE 9100 UNTIL SEQUENCE 9111;

Backing Up and Deleting Multiple Copies of an Archived Redo Log: Example
In this scenario, you set initialization parameters so that you automatically archive
redo logs to two directories: ?/oradata/trgt/arch/dest_1 and
?/oradata/trgt/arch/dest_2. Therefore, you have two identical copies of the
archived redo log for each log sequence number. You decide to back up each copy of
the archived redo logs and then delete the originals. (Note that the degree of backup
duplexing configured or specified in the BACKUP command determines the number
of output files, independent of the number of input files. See "Duplexing Backup
Sets" on page 7-3 for details.)

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-19

The easiest solution in this case is to use the DELETE ALL INPUT option means that
RMAN deletes all logs that match the ARCHIVELOG criteria. Hence, it can remove
all logs from both ?/oradata/trgt/arch/dest_1 and
?/oradata/trgt/arch/dest_2.

For example, run the following command to back up all logs that could be used to
recover from a point 10 days ago, and then delete all logs within the specified time
range from disk:

RMAN> BACKUP DEVICE TYPE sbt
 ARCHIVELOG ALL FROM TIME 'SYSDATE-10'
 DELETE ALL INPUT;

Performing Differential Incremental Backups: Example
A differential incremental backup contains only blocks that have been changed
since the most recent backup at the same level or lower. The first incremental
backup must be a level 0 backup that contains all used blocks. The following is a
level 0 base backup:

RMAN> BACKUP INCREMENTAL LEVEL 0 DATABASE;

An incremental backup at level 1 will contain all blocks changed since the most
recent level 1 backup. If no previous level 1 backup is available, then RMAN copies
all blocks changed since the base level 0 backup. The following is a level 1 backup
of the database:

RMAN> BACKUP INCREMENTAL LEVEL 1 DATABASE;

You can perform incremental backups in NOARCHIVELOG mode, but the backups
must be consistent. Hence, you cannot take online incremental backups.

Performing Cumulative Incremental Backups: Example
A cumulative incremental backup at level 1 contains only blocks that have been
changed since the most recent backup at level 0. Cumulative backups require more
storage space than differential backups, but they are preferable during a restore
operation because only one backup for a given level is needed. Note that the first
incremental backup must be a level 0 backup that contains all used blocks.

In contrast to a cumulative backup, a differential backup at level 1 will determine
which level 0 or level 1 backup occurred most recently and copy all blocks changed
since this backup.

BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE; # blocks changed since level 0

RMAN Backup Examples

7-20 Backup and Recovery Advanced User’s Guide

Determining How Channels Distribute a Backup Workload: Example
When you create multiple backup sets and allocate multiple channels, RMAN
automatically writes multiple backup sets in parallel. The allocated server sessions
share the work of backing up the specified datafiles, control files, and archived redo
logs. Note that you cannot stripe a single backup set across multiple channels.

RMAN automatically assigns a backup set to a device. You can use the CHANNEL
parameter so that RMAN writes all backup sets for a backupSpec to a specific
channel.

For example, this example parallelizes the backup operation by specifying which
channels RMAN should back up to disk and which to sbt:

RMAN> RUN
{
 ALLOCATE CHANNEL ch1 DEVICE TYPE DISK FORMAT = '/backup/df/%U';
 ALLOCATE CHANNEL ch2 DEVICE TYPE DISK FORMAT = '/backup/cf/%U';
 ALLOCATE CHANNEL ch3 DEVICE TYPE sbt;
 BACKUP AS BACKUPSET # all output files are in backup sets
 # channel ch1 backs up datafiles to /backup/df directory
 DATAFILE 1,2,3,4
 CHANNEL ch1
 # channel ch2 backs up control file copy to /backup/cf directory
 CONTROLFILECOPY '/tmp/control01.ctl'
 CHANNEL ch2;
 BACKUP AS BACKUPSET
 # channel ch3 backs up archived redo logs to tape
 ARCHIVELOG FROM TIME 'SYSDATE-14'
 CHANNEL ch3;
}

You cannot back up to DISK and sbt at the same time using automatic channels:
you must manually allocate them.

Backing Up in NOARCHIVELOG Mode: Example
This script puts the database into the correct mode for a consistent, whole database
backup and then backs up the database. The script performs a shutdown, startup,
shutdown, and then startup again before creating multiple copies of the backup:

Shut down database cleanly with immediate option. This type of shutdown lets
current calls to the database complete, but prevents further logons or calls.
If the database is not up, you receive a message saying so but RMAN will not
treat this situation as an error.
SHUTDOWN IMMEDIATE;

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-21

Start up the database in case it suffered instance failure or was
closed with SHUTDOWN ABORT before starting this script.
The script performs instance recovery if
needed. Oracle uses the default init.ora file. Alternatively, use this form:
STARTUP FORCE DBA pfile=filename.
Use the DBA option because you are going to shut down again
and do not want to let users in during the short interval. Use the FORCE
option because it cannot hurt and might help in certain situations.
STARTUP FORCE DBA;
SHUTDOWN IMMEDIATE;

The database is cleanly closed and ready for a consistent backup. RMAN
requires that the database be started and mounted to perform a backup.
RMAN> STARTUP MOUNT;

this example uses automatic channels to make the backup
BACKUP
 COPIES 2
 INCREMENTAL LEVEL 0
 MAXSETSIZE 10M
 DATABASE;

Now that the backup is complete, open the database.
ALTER DATABASE OPEN;

You can skip tablespaces, but any skipped tablespace that has not been offline or
read-only since its last backup will be lost if the database has to be restored from a
backup. When backing up to disk, make sure that the destination file system has
enough free space.

Cataloging User-Managed Datafile Copies: Example
You can use operating system utilities to make copies of datafiles and then catalog
them in the recovery catalog.

If the database is open and the datafile is online, then issue ALTER TABLESPACE
... BEGIN BACKUP to put the datafile in backup mode. (If you will be copying all
datafiles, you can use ALTER DATABASE BEGIN BACKUP to put all tablespaces in
backup mode, instead of issuing individual commands for each tablespace.) Then
copy the files using native operating system commands. Once the copy is
completed, use ALTER TABLESPACE... END BACKUP to take the datafile out of
backup mode (or use ALTER DATABASE END BACKUP to take all tablespaces in

RMAN Backup Examples

7-22 Backup and Recovery Advanced User’s Guide

backup mode out of backup mode). Finally, catalog the resulting datafile copy using
the RMAN CATALOG DATAFILECOPY command.

For example, if you created a copy of your datafile /oracle/oradata/users01.dbf into
file /tmp/users01.dbf, this command will add /tmp/users01.dbf to the catalog:

CATALOG DATAFILECOPY '/tmp/users01.dbf';

If you try to catalog a datafile copy from a database other than the connected target
database, then RMAN issues an error such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of catalog command on default channel at 08/29/2001 14:44:34
ORA-19563: datafile copy header validation failed for file /tmp/tools01.dbf

Keeping a Long-Term Backup: Example
If you configure a retention policy, then you may want to exclude specified backups
from this policy. For example, you may want to archive a consistent backup of the
database once a year to serve as a historical record. This long-term backups does not
function as a backup that you may perform recovery on, but an archived snapshot
of data at a particular time.

To exempt a backup from the retention policy, specify the KEEP option on the
BACKUP command. You can also specify LOGS or NOLOGS to indicate whether
RMAN should save archived logs for possible recovery of this backup. If you
specify NOLOGS, then the backup must be consistent.

 This example keeps the backup of the database indefinitely and does not save
archived logs needed to recover it:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT; # put database in consistent state
RMAN> BACKUP DATABASE KEEP FOREVER NOLOGS
 TAG 'db_archive_1'; # make long-term consistent backup

mark backup as unavailable in the repository so that RMAN does not attempt to
restore it unless explicitly specified on the RESTORE command
RMAN> CHANGE BACKUP TAG 'db_archive_1' UNAVAILABLE;
RMAN> SQL 'ALTER DATABASE OPEN';

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-23

Optimizing Backups: Examples
Run the CONFIGURE BACKUP OPTIMIZATION command to enable backup
optimization. When specific conditions are met (described in "Backup Optimization
Algorithm" on page 2-49), RMAN skips backups of files that are identical to files
that are already backed up.

Assume that you configure optimization and a retention policy as follows:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS;

Optimizing a Database Backup: Example
Then, you run this command every night to back up the database to tape:

BACKUP DATABASE;

Because backup optimization is configured, RMAN skips backups of offline and
read-only datafiles only if the most recent backups were made on or after the
earliest point in the recovery window. RMAN does not skip backups when the most
recent backups are older than the window. For example, optimization ensures you
do not end up with a new backup of the read-only datafile
?/oradata/trgt/history01.dbf every night, so long as one backup set
containing this file exists within the recovery window.

For example, if the most recent backup of the datafiles was on Sunday, and the
point of recoverability (that is, the earliest date in the recovery window) is on
Saturday, then RMAN skips the datafiles when you run the Wednesday backup. On
Friday, the point of recoverability is now Monday, so the Sunday backup is now
outside the window. Hence, the Friday backup does not skip the datafiles.

Optimizing a Daily Archived Log Backup to a Single Tape: Example
Assume that you want to back up all the archived logs every night. However, you
do not want to have multiple copies of each log sequence number. So, you configure
backup optimization to ON, then run this command in a script every night at 1 a.m.:

BACKUP DEVICE TYPE sbt ARCHIVELOG ALL;

RMAN skips all logs except those produced in the last 24 hours. In this way, you
keep only one copy of each archived log on tape.

RMAN Backup Examples

7-24 Backup and Recovery Advanced User’s Guide

Optimizing a Daily Archived Log Backup to Multiple Tapes: Example
In this example, you back up logs that are not already on tape to one tape pool, then
back up the same logs to a second tape pool. Finally, you delete old logs.

For the first step, perform the one-time configuration:

configure backup optimization
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;

Then, run the following script at the same time every night to back up the logs
generated during the previous day to two separate tape pools:

The following command backs up just the logs that are not on tape. The
first copies are saved to the tapes from the pool "archivelog_pool_1"
RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='NSR_DATA_VOLUME_POOL=ARCHIVELOG_POOL_1';
 BACKUP ARCHIVELOG ALL;
}
Make one more copy of the archived logs and save them to tapes from a
different pool
RUN
{
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt
 PARMS='NSR_DATA_VOLUME_POOL=ARCHIVELOG_POOL_2';
 BACKUP ARCHIVELOG
 FROM TIME 'SYSDATE-1'
 UNTIL TIME 'SYSDATE'; # specify UNTIL so RMAN does not archive current log
}
Delete old logs - for example, delete logs created within the last week.
DELETE ARCHIVELOG ALL COMPLETED AFTER 'SYSDATE-7';

Creating a Weekly Secondary Backup of Archived Logs: Example
Assume a more sophisticated scenario in which your goal is to back up the archived
logs to tape every day. However, you are worried about tape failure, so you want to
ensure that you have more than copy of each log sequence number on an separate
tape before you perform your weekly deletion of logs from disk.

First, perform a one-time configuration:

configure backup optimization
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE DEVICE TYPE sbt PARALLELISM 1;

RMAN Backup Examples

Making Backups with RMAN: Advanced Topics 7-25

CONFIGURE default DEVICE TYPE TO sbt;
configure a default channel that sends backups to tape pool "first_copy"
CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='ENV=(NSR_DATA_VOLUME_POOL=first_copy);

Because you have optimization enabled, you can run the following command every
evening to back up all archived logs to the "first_copy" pool that have not already
been backed up:

BACKUP ARCHIVELOG ALL TAG first_copy;

Every Friday evening you create an additional backup of all archived logs in a
different tape pool. Also, at the end of the backup, you want to delete all archived
logs that already have at least two copies on tape. So you run the following script:

RUN
{
 # manually allocate a channel, in order to specify that the backup run by this
 # channel should go to both pools "first_copy" and "second_copy"
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='ENV=(NSR_DATA_VOLUME_POOL=second_copy)';
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt
 PARMS='ENV=(NSR_DATA_VOLUME_POOL=first_copy)';
 BACKUP CHANNEL C1 ARCHIVELOG UNTIL TIME 'SYSDATE'
 NOT BACKED UP 2 TIMES # back up only logs without 2 backups on tape
 TAG SECOND_COPY;
 BACKUP CHANNEL C2 ARCHIVELOG UNTIL TIME 'SYSDATE'
 NOT BACKED UP 2 TIMES # back up only logs without 2 backups on tape
 TAG FIRST_COPY;
}

now delete from disk all logs that have been backed up to tape at least twice
DELETE ARCHIVELOG ALL
 BACKED UP 2 TIMES TO DEVICE TYPE sbt;

The Friday script creates a second copy of all archived logs in the "second_copy"
tape pool. After the backup, you can send the tape from the pool "second_copy" to
secure storage. You should use this tape backup only if the primary tape from pool
"first_copy" is damaged. Because the secondary tape is in a secure place, you do not
want RMAN to use it for recovery, so you can mark the backup as unavailable:

CHANGE BACKUP OF ARCHIVELOG TAG SECOND_COPY UNAVAILABLE;

RMAN Backup Examples

7-26 Backup and Recovery Advanced User’s Guide

Handling Errors During Backups: Example
By default a checksum is calculated for every block read from a datafile and stored
in the backup or image copy. If you use the NOCHECKSUM option, then checksums
are not calculated. If the block already contains a checksum, however, then the
checksum is validated and stored in the backup. If the validation fails, then the
block is marked corrupt in the backup.

The SET MAXCORRUPT FOR DATAFILE command sets how many corrupt blocks in a
datafile that BACKUP will tolerate. If a datafile has more corrupt blocks than
specified by the MAXCORRUPT parameter, the command terminates. If you specify
the CHECK LOGICAL option, RMAN checks for logical and physical corruption.

By default, the BACKUP command terminates when it cannot access a datafile. You
can specify parameters to prevent termination, as listed in the following table.

The following example uses an automatic channel to back up the database, and sets
the corruption level for the datafile in the SYSTEM tablespace so that up to 10 errors
will be accepted:

RMAN> RUN
{
 SET MAXCORRUPT FOR DATAFILE 1 TO 10;
 BACKUP DATABASE
 SKIP INACCESSIBLE
 SKIP READONLY
 SKIP OFFLINE;
}

If you specify the option ... Then RMAN skips...

SKIP INACCESSIBLE Inaccessible datafiles. A datafile is only considered
inaccessible if it cannot be read. Some offline datafiles can still
be read because they exist on disk. Others have been deleted
or moved and so cannot be read, making them inaccessible.

SKIP OFFLINE Offline datafiles.

SKIP READONLY Datafiles in read-only tablespaces.

Advanced RMAN Recovery Techniques 8-1

8
Advanced RMAN Recovery Techniques

This chapter describes how to use Recovery Manager to perform restore and
recovery operations. This chapter contains these topics:

■ Performing Database Point-In-Time Recovery

■ Performing Recovery with a Backup Control File

■ Restoring the Database to a New Host

■ Performing Disaster Recovery

■ Performing Block Media Recovery with RMAN

■ RMAN Restore and Recovery Examples

Performing Database Point-In-Time Recovery

8-2 Backup and Recovery Advanced User’s Guide

Performing Database Point-In-Time Recovery
RMAN can perform recovery of the whole database to a specified past time, SCN,
or log sequence number. This type of recovery is sometimes called incomplete
recovery because it does not completely use all of the available redo. Incomplete
recovery of the whole database is also called database point-in-time recovery
(DBPITR).

If you have enabled the collectionof flashback logs, you may be able to use Oracle
Flashback Database instead of performing DBPITR. Flashback Database is generally
faster and simpler to use, when it is available, because it does not require restoring a
past backup. Depending upon your situation, you may also find one of the other
Oracle flashback features can meet your data recovery need. See "Oracle Flashback
Technology: Overview" on page 9-2 for more details about these alternatives before
deciding whether to use DBPITR.

DBPITR requires restoring your database from an older backup, then performing
media recovery until your specified target time, SCN or log sequence number. Note
that because you need your archived redo log files to perform this process, you
cannot perform database point-in-time recovery if you have been running your
database in NOARCHIVELOG mode.

After database point-in-time recovery, you must open the database with the
RESETLOGS option. Using the RESETLOGS option archives the current online redo
logs, resets the log sequence to 1, and then gives the online redo logs a new time
stamp and SCN. In this way, the database eliminates the possibility of corrupting
datafiles by the application of obsolete archived redo logs.

You have to recover all datafiles: you cannot recover some datafiles before the
RESETLOGS and others after the RESETLOGS.

The OPEN RESETLOGS operation will fail if a datafile is off-line, unless the datafile
went offline normally or is read-only. You can bring files in read-only or offline
normal tablespaces online after the RESETLOGS because they do not need any redo.

When performing DBPITR, consider using the SET UNTIL command to set the
target time at the beginning of the process, rather than specifying the UNTIL clause
on the RESTORE and RECOVER commands individually. SET UNTIL sets the
desired time for any subsequent RESTORE, SWITCH, and RECOVER commands in
the same RUN job.

Note that if you specify a SET UNTIL command after a RESTORE and before a
RECOVER, you may not be able to recover the database to the point in time required
because the restored files may already have time stamps more recent than the set

Performing Database Point-In-Time Recovery

Advanced RMAN Recovery Techniques 8-3

time. Hence, it is recommended that you specify the SET UNTIL command before the
RESTORE command.

Performing Point-in-Time Recovery with a Current Control File
The database must be closed to perform database point-in-time recovery. If you are
recovering to a time, then you should set the time format environment variables
before invoking RMAN. The following are sample Globalization Support settings:

NLS_LANG = american_america.us7ascii
NLS_DATE_FORMAT="Mon DD YYYY HH24:MI:SS"

To recover the database until a specified time, SCN, or log sequence number:

1. After connecting to the target database and, optionally, the recovery catalog
database, ensure that the database is mounted. If the database is open, shut it
down and then mount it:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

2. Determine the time, SCN, or log sequence that should end recovery. For
example, if you discover that a user accidentally dropped a tablespace at 9:02
a.m., then you can recover to 9 a.m.—just before the drop occurred. You will
lose all changes to the database made after that time.

You can also examine the alert.log to find the SCN of an event and recover
to a prior SCN. Alternatively, you can determine the log sequence number that
contains the recovery termination SCN, and then recover through that log. For
example, query V$LOG_HISTORY to view the logs that you have archived.

RECID STAMP THREAD# SEQUENCE# FIRST_CHAN FIRST_TIM NEXT_CHANG
---------- ---------- ---------- ---------- ---------- --------- ----------
 1 344890611 1 1 20037 24-SEP-02 20043
 2 344890615 1 2 20043 24-SEP-02 20045
 3 344890618 1 3 20045 24-SEP-02 20046

3. Perform the following operations within a RUN command:

a. Set the end recovery time, SCN, or log sequence. If specifying a time, then
use the date format specified in the NLS_LANG and NLS_DATE_FORMAT
environment variables.

b. If automatic channels are not configured, then manually allocate one or
more channels.

Performing Database Point-In-Time Recovery

8-4 Backup and Recovery Advanced User’s Guide

c. Restore and recover the database.

The following example performs an incomplete recovery until November 15 at
9 a.m.

RUN
{
 SET UNTIL TIME 'Nov 15 2002 09:00:00';
 # SET UNTIL SCN 1000; # alternatively, specify SCN
 # SET UNTIL SEQUENCE 9923; # alternatively, specify log sequence number
 RESTORE DATABASE;
 RECOVER DATABASE;
}

4. If recovery was successful, then open the database and reset the online logs:

ALTER DATABASE OPEN RESETLOGS;

Point-in-Time Recovery to a Previous Incarnation
RMAN can seamlessly restore and recover backups from previous incarnations to
the current incarnation. To perform point-in-time recovery to a target time prior to
the most recent RESETLOGS, however, you must run the RESET DATABASE
command to reset the database to the incarnation current at the desired target time.

Assume the following situation:

■ You run RMAN with a recovery catalog.

■ You made a backup of target database trgt on October 2, 2002.

■ You performed incomplete recovery on this database and opened it with the
RESETLOGS option on October 10, 2002. A new database incarnation was
created.

On October 25, you discover that you need crucial data that was dropped from the
database at 8:00 a.m. on October 8, 2002. You decide to reset trgt to the prior
incarnation, restore the October 2 backup, and recover to 7:55 a.m. on October 8.

Note: It is not possible to restore one datafile of a previous
incarnation while the current database is in a different
incarnation—you must restore the whole database.

Performing Database Point-In-Time Recovery

Advanced RMAN Recovery Techniques 8-5

To recover the database by means of a backup from the old incarnation:

1. Obtain the primary key of the prior incarnation with a LIST command:

obtain primary key of old incarnation
LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-OCT-02
1 582 TRGT 1224038686 CURRENT 59727 10-OCT-02

2. Make sure the database is started but not mounted:

SHUTDOWN FORCE NOMOUNT

3. Reset the incarnation to the primary key that you just obtained:

reset database to old incarnation
RESET DATABASE TO INCARNATION 2;

4. Recover the database, performing the following actions in the RUN command:

■ Set the end time for recovery to the time just before the loss of the data.

■ If automatic channels are not configured, then manually allocate one or
more channels.

■ Restore the control file and mount it.

■ Restore and recover the database.

For example, run the following commands:

RUN
{
 # set time to just before data was lost.
 SET UNTIL TIME 'Oct 8 2002 07:55:00';
 RESTORE CONTROLFILE; # FROM AUTOBACKUP not needed in catalog mode
 ALTER DATABASE MOUNT; # mount database after restoring control file
 RESTORE DATABASE;
 RECOVER DATABASE;
}

5. If recovery is successful, then reset the online redo logs:

this command automatically resets the database so that this incarnation is
the new incarnation

Performing Recovery with a Backup Control File

8-6 Backup and Recovery Advanced User’s Guide

ALTER DATABASE OPEN RESETLOGS;

Performing Recovery with a Backup Control File
If all copies of the current control file are lost or damaged, then you must restore
and mount a backup control file before you can perform recovery. There are two
cases to consider:

■ Performing Recovery with a Backup Control File and a Recovery Catalog

■ Performing Recovery with a Backup Control File and No Recovery Catalog

The following notes and restrictions apply regardless of whether you use a recovery
catalog:

■ You must run the RECOVER command after restoring a backup control file, even
if no datafiles have been restored.

■ After restoring a backup control file, entries for tempfiles in locally-managed
temporary tablespaces are removed. Hence, you must add new tempfiles to
these tablespaces after you open with the RESETLOGS option. If you do not,
then the database can display the following error when attempting to sort:
ORA-25153: Temporary Tablespace is Empty.

■ You must open the database with the RESETLOGS option after performing
either complete or point-in-time recovery with a backup control file.

■ If the online redo logs are inaccessible, then you must perform incomplete
recovery to an SCN before the earliest SCN in the online redo logs. This
limitation is necessary because RMAN does not back up online logs.

■ RMAN automatically searches in specific locations for online and archived redo
logs during recovery that are not recorded in the RMAN repository, and
catalogs any that it finds. RMAN attempts to find a valid archived log in any of
the current archiving destinations with the current log format. The current
format is specified in the initialization parameter file used to start the instance
(or all instances in a Real Application Clusters installation). Similarly, RMAN
attempts to find the online redo logs by using the filenames as specified in the
control file.

If you changed the archiving destination or format during recovery, or if you
added new online log members after the backup of the control file, then RMAN
may not be able to automatically catalog a needed online or archived log. In this
situation, RMAN reports errors similar to the following:

RMAN-00571: ===

Performing Recovery with a Backup Control File

Advanced RMAN Recovery Techniques 8-7

RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of recover command at 08/29/2001 14:23:09
RMAN-06054: media recovery requesting unknown log: thread 1 scn 86945

In this case, you must use the CATALOG command to manually add the required
logs to the repository so that recovery can proceed. The cataloging procedure is
described in Oracle Database Backup and Recovery Basics.

Performing Recovery with a Backup Control File and a Recovery Catalog
If you use a recovery catalog and have a backup control file available, then this
procedure does not differ substantially from a standard restore and recovery. The
procedure in this section assumes that you are restoring the control file to its default
location. If you must restore the control file to a new location, then refer to Oracle
Database Backup and Recovery Basics for instructions.

When you perform a restore operation using a backup control file and you use a
recovery catalog, RMAN automatically adjusts the control file to reflect the
structure of the restored backup.

The following procedure assumes that you do not have more than one target
database registered in the catalog with the same name. If multiple target databases
are registered with the same name, then you must specify the DBID with the SET
DBID command so that RMAN knows which control file to restore. The DBID is the
unique numerical identifier for a database.

To recover the database with a backup control file and a recovery catalog:

1. After connecting to the target database and recovery catalog database, start the
instance without mounting the database:

STARTUP NOMOUNT

2. Restore the backup control file, then restore and recover the database. Do the
following:

a. Run the RESTORE CONTROLFILE command to restore the control file to all
default locations specified in the CONTROL_FILES initialization parameter.
To restore a control file from an older backup, you can run SET UNTIL or
specify the UNTIL clause on the RESTORE CONTROLFILE command.

See Also: "Performing Recovery with a Backup Control File and
No Recovery Catalog" on page 8-8 to learn how to set the DBID

Performing Recovery with a Backup Control File

8-8 Backup and Recovery Advanced User’s Guide

b. Mount the restored control file.

c. Optionally, run a SET UNTIL command for incomplete recovery. Note that
you can also specify the UNTIL clause on the RESTORE and RECOVER
commands.

d. Restore and recover the database

This example restores the control file to its default location, then restores and
completely recovers the database:

RESTORE CONTROLFILE;
ALTER DATABASE MOUNT;
RESTORE DATABASE;
RECOVER DATABASE;

3. If recovery was successful, then open the database and reset the online logs:

ALTER DATABASE OPEN RESETLOGS;

4. If the database uses locally-managed temporary tablespaces, then add new
tempfiles to these tablespaces. For example:

SQL "ALTER TABLESPACE temp
 ADD TEMPFILE ''?/oradata/trgt/temp01.dbf'' REUSE";

Performing Recovery with a Backup Control File and No Recovery Catalog
This section assumes that you have RMAN backups of the control file, but do not
use a recovery catalog. Assuming that you enabled the control file autobackup
feature for the target database, you can restore an autobackup of the control file.
Because the autobackup uses a default format, RMAN can restore it even though it
does not have a repository available that lists the available backups. You can restore
the autobackup to the default or a new location. RMAN replicates the control file to
all CONTROL_FILES locations automatically.

Because you are not connected to a recovery catalog, the control file must have a
record of all needed backups. If any backups are not listed in the control file, then

Note: If you know the backup piece name (for example, from the
media manager or because the piece is on disk), then you can
specify the piece name using the RESTORE CONTROLFILE FROM
'filename' command. The server records the location of every
autobackup in the alert log.

Performing Recovery with a Backup Control File

Advanced RMAN Recovery Techniques 8-9

RMAN cannot restore them. You can add backup pieces and image copies to the
control file repository with the CATALOG command.

Because the repository is not available when you restore the control file, run the SET
DBID command to identify the target database. You should only run the SET DBID
command in the following specialized circumstances:

■ You are not connected to a recovery catalog and want to restore the control file
or server parameter file.

■ You are connected to a recovery catalog and want to restore the control file, but
the database name is not unique in the recovery catalog.

■ The server parameter file is lost and you want to restore it.

To recover the database with an autobackup of the control file without a recovery
catalog:

1. Start RMAN and connect to the target database. For example, run:

CONNECT TARGET /

2. Start the target instance without mounting the database. For example:

STARTUP NOMOUNT;

3. Set the database identifier for the target database with SET DBID. RMAN
displays the DBID whenever you connect to the target. You can also obtain it by
inspecting saved RMAN log files, querying the catalog, or looking at the
filenames of control file autobackup. (refer to "Restoring When Multiple
Databases in the Catalog Share the Same Name: Example" on page 8-25). For
example, run:

SET DBID 676549873;

4. Restore the autobackup control file, then perform recovery. Do the following:

a. Optionally, specify the most recent backup time stamp that RMAN can use
when searching for a control file autobackup to restore.

b. If a nondefault format was used to create the control file, then specify a
nondefault format for the restore of the control file.

c. If the channel that created the control file autobackup was device type sbt,
then you must allocate one or more sbt channels. Because no repository is
available, you cannot use preconfigured channels. If the autobackup was
created on a disk channel, however, then you do not need to manually
allocate a channel.

Performing Recovery with a Backup Control File

8-10 Backup and Recovery Advanced User’s Guide

d. Restore the autobackup of the control file, optionally setting the maximum
number of days backward that RMAN can search (up to 366) and the initial
sequence number that it should use in its search for the first day.

e. If you know that your control file contained information about configured
channels that will be useful to you in the rest of the restore process, you can
exit the RMAN client at this point, to clear manually allocated channels
from step "c". If you then restart the RMAN client and mount the database
those configured channels become available for your use in the rest of the
restore and recovery process.

If you do not care about using configured channels from your control file,
then you can simply mount the database at this point.

f. If the online logs are inaccessible, then restore and recover the database as
described in "Performing Database Point-In-Time Recovery" on page 8-2.
You must terminate recovery by setting the UNTIL clause to a time, log
sequence, or SCN before the online redo logs. If the online logs are usable,
then perform a complete recovery as described in Oracle Database Backup
and Recovery Basics.

In this example, the online redo logs have been lost. This example limits the
restore of the control file autobackup, then performs recovery of the database to
log sequence 13243, which is the most recent archived log:

RUN
{
 # Optionally, set upper limit for eligible time stamps of control file
 # backups
 # SET UNTIL TIME '09/10/2000 13:45:00';
 # Specify a nondefault autobackup format only if required
 # SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK
 # TO '?/oradata/%F.bck';
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS=’...’; # allocate manually
 RESTORE CONTROLFILE FROM AUTOBACKUP
 MAXSEQ 100 # start at sequence 100 and count down
 MAXDAYS 180; # start at UNTIL TIME and search back 6 months
 ALTER DATABASE MOUNT DATABASE;
}
uses automatic channels configured in restored control file
RESTORE DATABASE UNTIL SEQUENCE 13243;
RECOVER DATABASE UNTIL SEQUENCE 13243; # recovers to latest archived log

5. If recovery was successful, then open the database and reset the online logs:

ALTER DATABASE OPEN RESETLOGS;

Restoring the Database to a New Host

Advanced RMAN Recovery Techniques 8-11

Restoring the Database to a New Host
Various scenarios are possible when restoring a database to a new host. For
example, you may want to:

■ Create a duplicate version of the production database for testing or other
purposes, while retaining the production database on the original host.

■ Test the restore of the production database to a new host, while retaining the
production database on the original host.

■ Move the location of the production database to a new host (possibly because
the original host has failed).

To create a duplicate database for testing while maintaining the original database,
use the DUPLICATE command instead of the RESTORE command (refer to
"Duplicating a Database with Recovery Manager" on page 11-1). RMAN
automatically creates a unique database identifier for the duplicate database. This
chapter covers the use of the RESTORE command only.

To test the restore of a database to a new host or to move the database to a new host,
run the RESTORE command. If you perform a test restore only, then you should do
the following to prevent overwriting the target records in the recovery catalog:

■ Run RMAN in the default NOCATALOG mode when restoring the datafiles.

■ If you must use a recovery catalog because the control file is not large enough to
contain all of the backups that you need to restore, then export the catalog and
import it into a different schema or database and use the copied recovery
catalog for the test restore. Otherwise, the catalog considers the restored
database as the current target database.

Table 8–1 describes the impact on the RMAN repository when you are restoring or
duplicating to a new host.

Table 8–1 Restoring and Duplicating to a New Host

Command Catalog? Effect on Repository

RESTORE yes If you run SWITCH commands after the restore, then RMAN
considers the restored database on the new host as the new
location of the original target database. If you do not run
SWITCH commands, then RMAN views the restored datafiles as
image copies that are candidates for future restore jobs.

Restoring the Database to a New Host

8-12 Backup and Recovery Advanced User’s Guide

Specifying Filenames When Restoring to a New Host
The basic procedure for restoring the database to a new host does not differ
substantially from incomplete recovery on the original host. The principal issue is
whether the path names of the database files on the new host are going to be the
same as the path names of the files on the primary host.

Which restore procedure you should use depends on your situation. If the path
names of the restored files will be the same as the original path names, see
"Restoring Datafile Copies to a New Host: Example" on page 8-13. If the path names
are different, refer to "Performing Disaster Recovery" on page 8-18.

Note the following when restoring to a new host:

■ Make the target initialization parameter file accessible on the new host by
copying it from the old host to a new host using an operating system utility.

■ Make sure backups used for the restore are accessible on the restore host. For
example, if the backups were made with a media manager, then make sure the
tape device is connected to the new host.

■ If the files are in the same location in the new host, then you do not need to
recatalog them. If you transfer the files to a new location, then use the CATALOG
command to update the RMAN repository with the new filenames and use the
CHANGE ... UNCATALOG command to uncatalog the old filenames.

RESTORE no If you run SWITCH commands after the restore, then RMAN
considers the restored database as a new target database. This
new database, however, has the same DBID as the original. As a
result, you cannot later register this duplicate in the same
recovery catalog as the original target database.

If you do not run SWITCH commands, then the restore operation
has no effect on the repository.

DUPLICATE yes Generates a new DBID for the duplicate database, which you
must manually register in the catalog. After registration, the
repository has records of two distinct databases: the target and
the duplicate.

DUPLICATE no Generates a new DBID for the duplicate database. The
repository in the original target control file is unaffected.

Table 8–1 Restoring and Duplicating to a New Host

Command Catalog? Effect on Repository

Restoring the Database to a New Host

Advanced RMAN Recovery Techniques 8-13

Determining the SCN for Incomplete Recovery After Restore
Because the restored database will not have the online redo logs of the production
database, perform incomplete recovery up to the lowest SCN of the most recently
archived log in each thread and then open with the RESETLOGS option. Obtain the
SCN for recovery termination by finding the lowest SCN among the most recent
archived logs for each thread.

Start SQL*Plus and use the following query to determine the necessary SCN:

SQL> SELECT MIN(maxnc) FROM
 (SELECT MAX(a.NEXT_CHANGE#) maxnc
 FROM V$ARCHIVED_LOG a, V$THREAD t
 WHERE a.THREAD# = t.THREAD#
 AND a.ARCHIVED=’YES’
 AND t.ENABLED=’DISABLED’
 GROUP BY a.THREAD#);

Testing the Restore of a Database to a New Host: Scenario
The DUPLICATE command is the preferred method of copying the target database.
DUPLICATE creates a new DBID for the copied database, allowing it to be registered
in the same recovery catalog as the original target database. However, you may
wish to perform a test run of your disaster recovery scenarios that uses exactly the
same steps that you would use in a genuine emergency. If so, then you should use
the RESTORE and RECOVER commands rather than DUPLICATE.

This scenario assumes the following:

■ Two networked machines, hosta and hostb, are running Sun Solaris

■ A media management subsystem is accessible by both machines

■ The directory structure of hostb is different from hosta, so that trgta is
located in /net/hosta/dev3/oracle/dbs, but you want to restore the
database to /net/hostb/oracle/oradata/test

■ A target database named trgta is on hosta and uses a recovery catalog catdb

■ Database trgta uses a server parameter file (not a client-side initialization
parameter file)

■ You want to test the restore and recovery of trgta on hostb, while keeping
database trgta up and running on hosta

■ The ORACLE_SID for the trgta database is trgta and will not change for the
restored database

Restoring the Database to a New Host

8-14 Backup and Recovery Advanced User’s Guide

■ You have recoverable backups on tape of all datafiles

■ You have backups of the archived logs required to recover the datafiles

■ You have control file and server parameter file autobackups on tape

■ You have a record of the DBID for trgta

To test the restore of the database to a new host:

1. Make backups of the target database available to hostb. To test disaster
recovery, you need to have a recoverable backup of the target database. When
preparing your disaster recovery strategy, ensure that the backups of the
datafiles, control files, and server parameter file are restorable on hostb.
Hence, you must configure the media management software so that hostb is a
media manager client and can read the backup sets created on hosta. Consult
the media management vendor for support on this issue.

2. Configure the ORACLE_SID on hostb. This case study assumes that you want
to authenticate yourself through the operating system, which is much faster
than configuring Oracle Net and creating a password file. However, you must
be connected to hostb either locally or through telnet.

While connected to hostb with administrator privileges, edit the /etc/group
file so that you are included:

dba:*:614:<your_user_name>

Run the setenv command on hostb to set the ORACLE_SID. In this example,
you set the SID to the same value that you used on hosta:

% setenv ORACLE_SID trgta

Start RMAN and connect to the target instance without connecting to the
recovery catalog.

% rman TARGET / NOCATALOG

3. Start the instance without mounting it. To start the instance, you first need to set
the DBID. The DBID is recorded in several places, including:

– V$DATABASE in the target and RC_DATABASE in the catalog

– The RMAN output (command-line and V$RMAN_STATUS)

– The filename of the control file autobackups

Restoring the Database to a New Host

Advanced RMAN Recovery Techniques 8-15

Run SET DBID to set the DBID, then run STARTUP NOMOUNT:

SET DBID 1340752057;
STARTUP NOMOUNT

RMAN will fail to find the server parameter file, which has not yet been
restored, but will start the instance with a "dummy" file. Sample output follows:

startup failed: ORA-01078: failure in processing system parameters
LRM-00109: could not open parameter file
’/net/hostb/oracle/dbs/inittrgta.ora’

trying to start the Oracle instance without parameter files ...
Oracle instance started

4. Restore and edit the server parameter file. Because you enabled the control file
autobackup feature when making your backups, the server parameter file is
included in the backup sets. Hence, you can allocate a channel to the media
manager and restore the server parameter file to a new location as a client-side
initialization parameter file. Then you can edit the client-side file and restart the
instance with the edited client-side file. For example:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS=’...’;
 RESTORE SPFILE TO PFILE ’?/oradata/test/inittrgta.ora’ FROM AUTOBACKUP;
 SHUTDOWN ABORT;
}

Change any location-specific parameters, for example, those ending in _DEST
and _PATH, to reflect the new directory structure. For example, edit the
following parameters:

 - IFILE
 - *_DUMP_DEST
 - LOG_ARCHIVE_DEST*
 - CONTROL_FILES

Restart the instance, specifying the client-side initialization parameter file that
you restored:

STARTUP FORCE NOMOUNT PFILE=’?/oradata/test/inittrgta.ora’;

5. Restore the control file from an autobackup and then mount the database.
Because you edited the init.ora in the preceding step, RMAN restores the

Restoring the Database to a New Host

8-16 Backup and Recovery Advanced User’s Guide

control file to whatever location you specified in the CONTROL_FILES
initialization parameter. For example:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS=’...’;
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 ALTER DATABASE MOUNT;
}

6. Query the database filenames recorded in the control file on the new host
(hostb). Because the control file is from the trgta database, the recorded
filenames use the original hosta filenames. You can query V$ views to obtain
this information. Start a new SQL*Plus session and connect to the newly created
instance on hostb:

% sqlplus ’/ AS SYSDBA’

Run the following query in SQL*Plus:

SQL> COLUMN NAME FORMAT a60
SQL> SPOOL LOG ’db_filenames.out’
SQL> SELECT FILE# AS "File/Grp#", NAME FROM V$DATAFILE
 UNION
 SELECT GROUP#,MEMBER FROM V$LOGFILE;
SQL> SPOOL OFF
SQL EXIT

7. Restore and recover the database. At this point you are ready to write the
RMAN recovery script. The script should do the following:

– Run SET NEWNAME for each datafile so it is renamed to its new hostb path
name

– Run SQL commands to rename the online redo logs to their new hostb
path names

– Perform a SET UNTIL to limit media recovery to the end of the archived
redo logs, as described in "Determining the SCN for Incomplete Recovery
After Restore" on page 8-13

– Run SWITCH so that the control file recognizes the new path names as the
official new names of the datafiles

– Restore and recover the database

Restoring the Database to a New Host

Advanced RMAN Recovery Techniques 8-17

The following is an example of an RMAN script to perform these steps, which is
contained in text file reco_test.rman:

RUN
{
 # allocate a channel to the tape device
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS=’...’;

 # rename the datafiles and online redo logs
 SET NEWNAME FOR DATAFILE 1 TO ’?/oradata/test/system01.dbf’;
 SET NEWNAME FOR DATAFILE 2 TO ’?/oradata/test/undotbs01.dbf’;
 SET NEWNAME FOR DATAFILE 3 TO ’?/oradata/test/cwmlite01.dbf’;
 SET NEWNAME FOR DATAFILE 4 TO ’?/oradata/test/drsys01.dbf’;
 SET NEWNAME FOR DATAFILE 5 TO ’?/oradata/test/example01.dbf’;
 SET NEWNAME FOR DATAFILE 6 TO ’?/oradata/test/indx01.dbf’;
 SET NEWNAME FOR DATAFILE 7 TO ’?/oradata/test/tools01.dbf’;
 SET NEWNAME FOR DATAFILE 8 TO ’?/oradata/test/users01.dbf’;
 SQL "ALTER DATABASE RENAME FILE ’’/dev3/oracle/dbs/redo01.log’’
 TO ’’?/oradata/test/redo01.log’’ ";
 SQL "ALTER DATABASE RENAME FILE ’’/dev3/oracle/dbs/redo02.log’’
 TO ’’?/oradata/test/redo02.log’’ ";

 # Do a SET UNTIL to prevent recovery of the online logs
 SET UNTIL SCN 123456;
 # restore the database and switch the datafile names
 RESTORE DATABASE;
 SWITCH DATAFILE ALL;

 # recover the database
 RECOVER DATABASE;
}
EXIT

For example, connect and execute as follows:

% rman TARGET / NOCATALOG
RMAN> @reco_test.rman

Caution: It is imperative that you not be connected with the
recovery catalog when you run this script, so that you do not
incorporate extraneous repository data about backups into the
recovery catalog.

Performing Disaster Recovery

8-18 Backup and Recovery Advanced User’s Guide

RMAN will apply as many of the archived redo logs as it can and leave the
database in a state in which is can be opened.

8. Open the database. From the RMAN prompt, open the database with the
RESETLOGS options:

RMAN> ALTER DATABASE OPEN RESETLOGS;

9. Remove the test files from the operating system. If the test is successful, then
shut down the instance and exit the RMAN session:

RMAN> SHUTDOWN ABORT
RMAN> EXIT

Remove all test files. You can do this with an operating system utility or in
RMAN. For example, in Unix you could perform the procedure this way:

% rm $ORACLE_HOME/oradata/test/*

You can also use RMAN for a procedure that works ok all platforms. For
example:

RMAN> STARTUP FORCE NOMOUNT PFILE=’?/oradata/test/inittrgta.ora’;
RMAN> DROP DATABASE;

Because you did not perform the restore and recovery when connected to the
recovery catalog, the recovery catalog contains no records for any of the
restored files or the procedures performed during the test. Likewise, the control
file of the trgta database is completely unaffected by the test.

Performing Disaster Recovery
If you are in a disaster recovery scenario, then presumably you have lost the target
database, the recovery catalog database, all control files, all online redo logs, and all
parameter files.

To perform a disaster recovery, the minimum required set of backups is backups of
some datafiles, some archived redo logs generated after the time of the backup, and
at least one autobackup of the control file.

The basic procedure for disaster recovery is found in "Performing Recovery with a
Backup Control File" on page 8-6, with an additional first step of restoring an

See Also: "Control File and Server Parameter File Autobackups"
on page 2-38

Performing Disaster Recovery

Advanced RMAN Recovery Techniques 8-19

autobackup of the server parameter file as described in Oracle Database Backup and
Recovery Basics. After the instance is started, you can restore an autobackup of the
control file, mount it, then restore and recover the datafiles. Because you are
restoring to a new host, you should review the considerations described in
"Restoring the Database to a New Host" on page 8-11.

The following scenario restores and recovers the database to the most recently
available archived log, which in this example is log 1124 in thread 1. It assumes that:

■ You are restoring the database to a new host with the same directory structure.

■ You have one tape drive containing backups of all the datafiles and archived
redo logs through log 1124, as well as autobackups of the control file and server
parameter file.

■ You do not use a recovery catalog.

In this scenario, perform the following steps:

1. If possible, restore all relevant network files such as tnsnames.ora and
listener.ora by means of operating system utilities.

2. Start RMAN and connect to the target database. If you do not have the Oracle
Net files, then connect through operating system authentication.

3. Specify the DBID for the target database with the SET DBID command, as
described in "Performing Recovery with a Backup Control File and No
Recovery Catalog" on page 8-8.

4. Run the STARTUP NOMOUNT command. RMAN attempts to start the instance
with a dummy server parameter file.

5. Allocate a channel to the media manager and then run the RESTORE SPFILE
FROM AUTOBACKUP command.

6. Run STARTUP FORCE NOMOUNT mode so that the instance is restarted with the
restored server parameter file.

7. Allocate a channel to the media manager and then restore a control file
autobackup (refer to"Performing Recovery with a Backup Control File and No
Recovery Catalog" on page 8-8).

8. Mount the restored control file.

9. Catalog any backups not recorded in the repository with the CATALOG
command (refer to"Removing Recovery Catalog Records with Status
DELETED" on page 13-11).

Performing Disaster Recovery

8-20 Backup and Recovery Advanced User’s Guide

10. Restore the datafiles to their original locations. If volume names have changed,
then run SET NEWNAME commands before the restore and perform a switch after
the restore to update the control file with the new locations for the datafiles
(refer to"Performing Disaster Recovery" on page 8-18).

11. Recover the datafiles. RMAN stops recovery when it reaches the log sequence
number specified.

12. Open the database in RESETLOGS mode. Only complete this last step if you are
certain that no other archived logs can be applied.

Start RMAN and connect to the target database
% rman TARGET SYS/oracle@trgt

Set the DBID for the target database
RMAN> SET DBID 676549873;
RMAN> STARTUP FORCE NOMOUNT; # rman starts instance with dummy parameter file
RUN
{
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt;
 RESTORE SPFILE FROM AUTOBACKUP;
}
Restart instance with restored server parameter file
RMAN> STARTUP FORCE NOMOUNT;

RMAN> RUN
{
 # Manually allocate a channel to the media manager
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt;
 # Restore autobackup of the control file. This example assumes that you have
 # accepted the default format for the autobackup name.
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 # The set until command is used in case the database
 # structure has changed in the most recent backups, and you wish to
 # recover to that point-in-time. In this way RMAN restores the database
 # to the same structure that the database had at the specified time.
 ALTER DATABASE MOUNT;
 SET UNTIL SEQUENCE 1124 THREAD 1;
 RESTORE DATABASE;
 RECOVER DATABASE;
}
RMAN> ALTER DATABASE OPEN RESETLOGS; # Reset the online logs after recovery
completes

Performing Block Media Recovery with RMAN

Advanced RMAN Recovery Techniques 8-21

The following example of the RUN command shows the same scenario except with
new filenames for the restored datafiles:

RMAN> RUN
{
 # If you need to restore the files to new locations, tell Recovery Manager
 # to do this using SET NEWNAME commands:
 SET NEWNAME FOR DATAFILE 1 TO '/dev/vgd_1_0/rlvt5_500M_1';
 SET NEWNAME FOR DATAFILE 2 TO '/dev/vgd_1_0/rlvt5_500M_2';
 SET NEWNAME FOR DATAFILE 3 TO '/dev/vgd_1_0/rlvt5_500M_3';
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt;
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 ALTER DATABASE MOUNT;
 SET UNTIL SEQUENCE 124 THREAD 1;
 RESTORE DATABASE;
 SWITCH DATAFILE ALL; # Update control file with new location of datafiles.
 RECOVER DATABASE;
}
RMAN> ALTER DATABASE OPEN RESETLOGS;

Performing Block Media Recovery with RMAN
The BLOCKRECOVER command can restore and recover individual datablocks
within a datafile. This procedure is useful when a trace file or standard output
reveals that a small number of blocks within a datafile are corrupt.

Block media recovery is not useful in cases where the extent of data loss or
corruption is not known; in this case, use datafile recovery instead.

Recovering Datablocks By Using All Available Backups
In this scenario, you identify the blocks that require recovery and then use any
available backup to perform the restore and recovery of these blocks.

See Also:

■ "Block Media Recovery with RMAN" on page 3-10 for an
overview of block media recovery,

■ Oracle Database Recovery Manager Reference for BLOCKRECOVER
syntax

■ Oracle Database Reference for details about the $DATABASE_
BLOCK_CORRUPTION view

Performing Block Media Recovery with RMAN

8-22 Backup and Recovery Advanced User’s Guide

To recover datablocks by using all available backups:

1. Obtain the datafile numbers and block numbers for the corrupted blocks.
Typically, you obtain this output from the standard output, the alert.log,
trace files, or a media management interface. For example, you may see the
following in a trace file:

ORA-01578: ORACLE data block corrupted (file # 8, block # 13)
ORA-01110: data file 8: '/oracle/oradata/trgt/users01.dbf'
ORA-01578: ORACLE data block corrupted (file # 2, block # 19)
ORA-01110: data file 2: '/oracle/oradata/trgt/undotbs01.dbf'

2. Assuming that you have preallocated automatic channels, run the
BLOCKRECOVER command at the RMAN prompt, specifying the file and block
numbers for the corrupted blocks as in the following example:

RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19;

Recovering Datablocks By Using Selected Backups
In this scenario, you identify the blocks that require recovery, and then use only
selected backups to perform the restore and recovery of these blocks.

To recover datablocks while limiting the type of backup:

1. Obtain the datafile numbers and block numbers for the corrupted blocks.
Typically, you obtain this output from the standard output, the alert.log,
trace files, or a media management interface. For example, you may see the
following in a trace file:

ORA-01578: ORACLE data block corrupted (file # 8, block # 13)
ORA-01110: data file 8: '/oracle/oradata/trgt/users01.dbf'
ORA-01578: ORACLE data block corrupted (file # 2, block # 19)
ORA-01110: data file 2: '/oracle/oradata/trgt/undotbs01.dbf'

2. Assuming that you have preallocated automatic channels, execute the
BLOCKRECOVER command at the RMAN prompt, specifying the file and block
numbers for the corrupted blocks and limiting the backup candidates by means
of the available options. For example, you can specify what type of backup
should be used to restore the blocks:

restore from backupset
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19 FROM BACKUPSET;
restore from datafile image copy
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19
 FROM DATAFILECOPY;

Performing Block Media Recovery with RMAN

Advanced RMAN Recovery Techniques 8-23

You can indicate the backup by specifying a tag:

restore from backupset with tag "mondayam"
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 199
 FROM TAG = mondayam;

You can limit the backup candidates to those made before a certain point:

restore using backups made before one week ago
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19
 RESTORE UNTIL 'SYSDATE-7';
restore using backups made before SCN 100
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19
 RESTORE UNTIL SCN 100;
restore using backups made before log sequence 7024
RMAN> BLOCKRECOVER DATAFILE 8 BLOCK 13 DATAFILE 2 BLOCK 19
 RESTORE UNTIL SEQUENCE 7024;

Note that if you limit the restore of datablocks with the UNTIL clause, then RMAN
must perform more recovery on the blocks, and the recovery phase must scan all
logs for changes to the specified blocks.

Recovering Blocks Listed in V$DATABASE_BLOCK_CORRUPTION
The V$DATABASE_BLOCK_CORRUPTION view indicates which blocks in a datafile
were marked corrupt since the most recent BACKUP or BACKUP VALIDATE
command was run. After a corrupt block is repaired, the row identifying this block
is deleted from the view.

You can check for logical corruption in the database by running the BACKUP (with
or without VALIDATE option) with the CHECK LOGICAL command. If RMAN finds
corrupt blocks, then it populates V$DATABASE_BLOCK_CORRUPTION. The backup
will stop if the number of corrupt blocks exceeds MAXCORRUPT. A historical record
of block corruptions in RMAN backups is kept in V$BACKUP_CORRUPTION and
V$COPY_CORRUPTION.

In this scenario, you identify the blocks that require recovery by querying
V$DATABASE_BLOCK_CORRUPTION, and then instruct RMAN to recover all blocks
listed in this view by means of the CORRUPTION LIST keyword.

To recover datablocks while limiting the type of backup:

1. Query V$DATABASE_BLOCK_CORRUPTION to determine whether corrupt
blocks exist in the most recent backups of the datafiles:

RMAN Restore and Recovery Examples

8-24 Backup and Recovery Advanced User’s Guide

SQL> SELECT * FROM V$DATABASE_BLOCK_CORRUPTION;

2. Assuming that you have preallocated automatic channels, recover all blocks
marked corrupt in V$DATABASE_BLOCK_CORRUPTION by running the
BLOCKRECOVER CORRUPTION LIST command. For example, this command
restores blocks from backups created more than 10 days ago:

BLOCKRECOVER CORRUPTION LIST
 RESTORE UNTIL TIME 'SYSDATE-10';

See Oracle Database Recovery Manager Reference for more details on block media
recovery in RMAN.

RMAN Restore and Recovery Examples
The following sections illustrate the use of RMAN restore and recovery techniques
in advanced scenarios.

Restoring Datafile Copies to a New Host: Example
To move the database to a new host by means of datafile copies, you must transfer
the copies manually to the new machine. This example assumes that you are using a
recovery catalog.

1. After connecting to the target database and recovery catalog, run a LIST
command to see a listing of datafile copies and their associated primary keys, as
in the following example:

LIST COPY;

2. Copy the datafile copies to the new host with an operating system utility. For
example, in UNIX:

% cp -r /tmp/*dbf /net/new_host/oracle/oradata/trgt

3. Start RMAN and then uncatalog the datafile copies on the old host. For
example, enter:

CHANGE COPY OF DATAFILE 1,2,3,4,5,6,7,8 UNCATALOG;

4. Catalog the datafile copies, using their new filenames or CATALOG START
WITH (if you know all the files are in directories with a common prefix easily
addressed with a CATALOG START WITH). For example, run:

CATALOG START WITH ’?/oradata/trgt/’;

RMAN Restore and Recovery Examples

Advanced RMAN Recovery Techniques 8-25

Or this example specifies files individually:

CATALOG DATAFILECOPY
 '?/oradata/trgt/system01.dbf', '?/oradata/trgt/undotbs01.dbf',
 '?/oradata/trgt/cwmlite01.dbf', '?/oradata/trgt/drsys01.dbf',
 '?/oradata/trgt/example01.dbf', '?/oradata/trgt/indx01.dbf',
 '?/oradata/trgt/tools01.dbf', '?/oradata/trgt/users01.dbf';

5. Perform the restore and recovery operation described in "Performing Disaster
Recovery" on page 8-18.

Restoring When Multiple Databases in the Catalog Share the Same Name: Example
As explained in the description for SET DBID in Oracle Database Recovery Manager
Reference, you must run the SET DBID command to restore the control file when the
target database is not mounted and multiple databases registered in the recovery
catalog share the same name. In this case, do the following steps in order:

1. Start RMAN and connect to the target database.

2. Run the STARTUP FORCE NOMOUNT command.

3. Run the SET DBID command to distinguish this connected target database from
other target databases that have the same name.

4. Run the RESTORE CONTROLFILE command. After restoring the control file, you
can mount the database to restore the rest of the database.

This procedure avoids the RMAN-20005 message when you attempt to restore the
control file. This message occurs because more than one target database has the
same name, so RMAN requires the unique DBID to distinguishes the databases
from one another.

Obtaining the DBID of a Database That You Need to Restore
If you have saved the RMAN output log files, then refer to these logs to determine
the database identifier. RMAN automatically provides the DBID whenever you
connect to the database:

% rman TARGET /

Recovery Manager: Release 10.1.0.2.0 - Production

connected to target database: RMAN (DBID=1231209694)

RMAN Restore and Recovery Examples

8-26 Backup and Recovery Advanced User’s Guide

The output from RMAN jobs is also stored persistently in V$RMAN_STATUS and
RC_RMAN_STATUS. The DBID is also stored in the RC_DATABASE and RC_
DATABASE_INCARNATION recovery catalog views.

Because the names of the databases that are registered in the recovery catalog are
presumed nonunique in this scenario, you must use some other unique piece of
information to determine the correct DBID. If you know the filename of a datafile or
online redo log associated with the database you wish to restore, and this filename
is unique across all databases registered in the recovery catalog, then substitute this
fully specified filename for filename_of_log_or_df in the following queries.
Determine the DBID by performing one of the following queries:

SELECT DISTINCT DB_ID
FROM DB, DBINC, DFATT
WHERE DB.DB_KEY = DBINC.DB_KEY
 AND DBINC.DBINC_KEY = DFATT.DBINC_KEY
 AND DFATT.FNAME = 'filename_of_log_or_df';

SELECT DISTINCT DB_ID
FROM DB, DBINC, ORL
WHERE DB.DB_KEY = DBINC.DB_KEY
 AND DBINC.DBINC_KEY = ORL.DBINC_KEY
 AND ORL.FNAME = 'filename_of_log_or_df';

Restoring a Backup Control File By Using the DBID
To set the DBID, connect RMAN to the target database and run the following SET
command, where target_dbid is the value you obtained from the previous step:

SET DBID = target_dbid;

To restore the control file to its default location and then mount it, run:

RESTORE CONTROLFILE;
ALTER DATABASE MOUNT;

To restore and recover the database, run:

RESTORE DATABASE;
RECOVER DATABASE
 # optionally, delete logs restored for recovery and limit disk space used
 DELETE ARCHIVELOG MAXSIZE 2M;

RMAN Restore and Recovery Examples

Advanced RMAN Recovery Techniques 8-27

Recovering a Database in NOARCHIVELOG Mode: Example
You can recover a database running in NOARCHIVELOG mode with incremental
backups. Note that the incremental backups must be consistent, like all backups of a
database run in NOARCHIVELOG mode, so you cannot make backups of the database
when it is open.

Assume the following scenario:

■ You run database trgt in NOARCHIVELOG mode.

■ You use a recovery catalog.

■ You shut down the database consistently and make a level 0 backup of database
trgt to tape on Sunday afternoon.

■ You shut down the database consistently and make a level 1 differential
incremental backup to tape at 3:00 a.m. on Wednesday and Friday.

■ The database has a media failure on Saturday, destroying half of the datafiles as
well as the online redo logs.

In this case, you must perform an incomplete media recovery until Friday, since that
is the date of the most recent incremental backup. RMAN uses the level 0 Sunday
backup as well as the Wednesday and Friday level 1 backups.

Because the online redo logs are lost, you must specify the NOREDO option in the
RECOVER command. You must also specify NOREDO if the online logs are available
but the redo cannot be applied to the incrementals. If you do not specify NOREDO,
then RMAN searches for redo logs after applying the Friday incremental backup,
and issues an error message when it does not find them. If the correct online logs
for the restored backup had been available, then you could have run RECOVER
DATABASE without specifying NOREDO. The changes in the online logs would have
been applied.

After connecting to trgt and the catalog database, recover the database with the
following command:

STARTUP FORCE MOUNT;
RESTORE CONTROLFILE; # restore control file from consistent backup
ALTER DATABASE MOUNT;
RESTORE DATABASE; # restore datafiles from consistent backup
RECOVER DATABASE NOREDO; # specify NOREDO because online redo logs are lost
ALTER DATABASE OPEN RESETLOGS;

RMAN Restore and Recovery Examples

8-28 Backup and Recovery Advanced User’s Guide

The recovered database reflects only changes up through the time of the Friday
incremental backup. Because there are no archived redo logs, there is no way to
recover changes made after the incremental backup.

Recovering a Lost Datafile Without a Backup: Example
RMAN can handle lost datafiles without user intervention during restore and
recovery. When a datafile is lost, the possible cases can be classified as follows:

■ The control file knows about the datafile, that is, the user backed up the control
file after datafile creation, but the datafile itself is not backed up. If the datafile
record is in the control file, then RESTORE creates the datafile in the original
location or in a user-specified location (for example, with SET NEWNAME). The
RECOVER command can then apply the necessary logs to the datafile.

■ The control file does not have the datafile record, that is, the user did not back
up the control file after datafile creation. During recovery, the database will
detect the missing datafile and report it to RMAN, which will create a new
datafile and continue recovery by applying the remaining logs. If the datafile
was created in a parent incarnation, it will be created during restore or recover
as appropriate.

In this example, the following sequence of events occurs:

1. You make a whole database backup of your ARCHIVELOG mode database.

2. You create a tablespace history containing a single datafile called
/mydb/history01.dbf.

3. You populate the newly created datafile with data.

4. You archive all the active online redo logs.

5. A user accidentally deletes the datafile history01.dbf from the operating
system before you have a chance to back it up.

In this case, the current control file knows about the datafile. To restore and recover
the datafile, start RMAN, connect to the target database, and then enter the
following commands at the RMAN prompt:

take the tablespace with the missing datafile offline
SQL "ALTER TABLESPACE history OFFLINE IMMEDIATE";
restore the tablespace even though you have no backup
RESTORE TABLESPACE history;
recover tablespace
RECOVER TABLESPACE hisotry;
bring the recovered tablespace back online

RMAN Restore and Recovery Examples

Advanced RMAN Recovery Techniques 8-29

SQL "ALTER TABLESPACE history ONLINE";

Transporting a Tablespace to a Different Database on the Same Platform: Example
You can use the transportable tablespace feature to copy a tablespace from one
database to another database. As described in Oracle Database Administrator's Guide,
the basic method for transporting tablespaces to a database on the same platform
does not make use of RMAN. Nevertheless, if you use RMAN to back up your
target database, then you can also use RMAN to transport backups of a tablespace
from one database into another, following the procedure described in this section.

Reasons for using this procedure instead of ordinary tablespace transport include:

■ The tablespace cannot be made read-only currently on the target database

■ The current contents of the tablespace are not the desired ones, but there is a
backup which could be restored and recovered to a point in time where the data
is the version needed for transport

■ The target host is too busy and cannot sustain the overhead involved with
copying the tablespace

■ There is no space to make a copy of the tablespace to be transported on the
target host.

In the following procedure, assume that:

■ You are transporting a backup of tablespace users from database trgta,
located on computer hosta, to database trgtb, located on computer hostb

■ Both hosts run the same operating system.

■ The platform being used is Solaris or another similar Unix system. (For other
platforms, file naming conventions and steps performed at the host operating
system level may need different syntax.)

■ You want to name the restored backup of the users datafile as
/net/hostb/oracle/oradata/trgtb/users01.dbf in database trgtb

■ You have recoverable backups of the following files from database trgta:

– All datafiles in the tablespaces that you are transporting (in this example,
the users tablespace)

– Datafiles in the SYSTEM tablespace

– Datafiles with rollback or undo segments

– A control file that contains the metadata for the preceding datafile backups

RMAN Restore and Recovery Examples

8-30 Backup and Recovery Advanced User’s Guide

■ The backups of trgta are accessible by hostb through a tape device.

To transport a tablespace into a different database:

1. Create an auxiliary instance on hostb according to the instructions in the
"Preparing the Auxiliary Instance for Duplication: Basic Steps" on page 11-9.

2. Connect RMAN to the auxiliary instance as if it were a new target instance. For
example:

rman TARGET SYS/oracle@auxdb CATALOG rman/rman@catdb

3. Restore the control file to a temporary location, then mount the control file and
exit the session. For example:

RESTORE CONTROLFILE TO '/net/hostb/tmp/cf.f';
STARTUP FORCE MOUNT;
EXIT

4. Reconnect RMAN to the same auxiliary instance in NOCATALOG mode. You
connect in NOCATALOG so that you do not pollute the recovery catalog with
unecessary metadata about the restored files. For example:

rman TARGET SYS/oracle@auxdb NOCATALOG

5. Restore and recover the auxiliary database. Perform the following steps:

a. Specify the past point in time, SCN, or archived log sequence number to
which you want to recover the tablespace. You cannot recover the
tablespace to the current time. Use the specified UNTIL time to indicate
which backup of the tablespace that you want to restore.

b. If the restored control file does not included configured channels, then
manually allocate a channel to the device containing the backups.

c. Run SET NEWNAME to specify temporary filenames for the SYSTEM datafiles
and the datafiles containing rollback or undo segments.

d. Run SET NEWNAME to specify the filenames in the trgtb database that will
be used by the datafiles in the transported tablespace.

e. Restore and recover the tablespaces.

For example, run the following commands:

See Also: Oracle Database Administrator's Guide to learn how to
transport a tablespace

RMAN Restore and Recovery Examples

Advanced RMAN Recovery Techniques 8-31

RUN
{
 SET UNTIL ARCHIVELOG 1243 THREAD 1; # set the end recovery log
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt; # allocate channels if not configured
 # specify temporary name for SYSTEM datafile
 SET NEWNAME FOR DATAFILE 1 TO '/net/hostb/tmp/df1.dbf';
 # specify temporary names for datafiles with undo or rollback segments
 SET NEWNAME FOR DATAFILE 2 TO '/net/hostb/tmp/df2.dbf';
 # specify names for datafiles to be plugged into trgtb database
 SET NEWNAME FOR DATAFILE 8 TO
 '/net/hostb/oracle/oradata/trgtb/users01.dbf';
 # restore and recover the datafiles
 RESTORE DATAFILE 1, 2, 8;
 SWITCH DATAFILE ALL; # points control file to SET NEWNAME filenames
 RECOVER DATAFILE 1, 2, 8;
}

6. Take all auxiliary tablespaces offline except the tablespaces that you recovered
in the preceding step. For example:

SQL 'ALTER TABLESPACE cwmlite,drsys,example,indx,tools OFFLINE IMMEDIATE';

7. Open the auxiliary database with the RESETLOGS option. For example:

ALTER DATABASE OPEN RESETLOGS;

8. Make the tablespace that you are transporting into trgtb read-only. For
example:

SQL 'ALTER TABLESPACE users READ ONLY';

9. Export the metadata from the transported users tablespace as described in
"Step 2: Generate a Transportable Tablespace Set" in Oracle Database
Administrator's Guide. For example:

exp TRANSPORT_TABLESPACE=y TABLESPACES=(users)
 TRIGGERS=y CONSTRAINTS=n GRANTS=n FILE=expdat.dmp

10. Shut down the auxiliary instance, and then delete all auxiliary files except the
datafiles in the transported tablespace. For example:

% sqlplus SYS/oracle@auxdb
SQL> SHUTDOWN ABORT
SQL> EXIT
% rm /net/hostb/tmp/*

RMAN Restore and Recovery Examples

8-32 Backup and Recovery Advanced User’s Guide

11. Import the metadata from the transported tablespace into the trgtb database
as described in "Step 4: Plug In the Tablespace Set" in Oracle Database
Administrator's Guide. For example:

imp TRANSPORT_TABLESPACE=y FILE=expdat.dmp
 DATAFILES=('/net/hostb/oracle/oradata/trgtb/users01.dbf')
 TABLESPACES=(users) TTS_OWNERS=(usera)
 FROMUSER=(usera) TOUSER=(userb)

Note: You cannot make a backup of a transported tablespace until
after it has been opened read/write.

9-1

9
Flashback Technology: Recovering from

Logical Corruptions

This chapter describes how to use the flashback features of Oracle to retrieve lost
data in data recovery scenarios. This chapter includes the following sections:

■ Oracle Flashback Technology: Overview

■ Oracle Flashback Query: Recovering at the Row Level

■ Oracle Flashback Table: Returning Individual Tables to Past States

■ Oracle Flashback Drop: Undo a DROP TABLE Operation

■ Oracle Flashback Database: Alternative to Point-In-Time Recovery

■ Using Oracle Flashback Features Together in Data Recovery: Scenario

Oracle Flashback Technology: Overview

9-2 Backup and Recovery Advanced User’s Guide

Oracle Flashback Technology: Overview
Oracle Flashback Technology provides a set of features that support viewing and
rewinding data back and forth in time. The flashback features offer the capability to
query past versions of schema objects, query historical data, analyze database
changes, or perform self-service repair to recover from logical corruptions while the
database is online.

■ Oracle Flashback Query feature lets you specify a target time and then run
queries against your database, viewing results as they would have appeared at
that time. To recover from an unwanted change like an erroneous update to a
table, a user could choose a target time before the error and run a query to
retrieve the contents of the lost rows.

■ Oracle Flashback Version Query lets you view all the versions of all the rows
that ever existed in one or more tables in a specified time interval. You can also
retrieve metadata about the differing versions of the rows, including start time,
end time, operation, and transaction ID of the transaction that created the
version. This feature can be used both to recover lost data values and to audit
changes to the tables queried.

■ Oracle Flashback Transaction Query lets you view changes made by a single
transaction, or by all the transactions during a period of time.

■ Oracle Flashback Table returns a table to its state at a previous point in time.
You can restore table data while the database is online, undoing changes only to
the specified table.

■ Oracle Flashback Drop reverses the effects of a DROP TABLE statement.

■ Oracle Flashback Database provides a more efficient alternative to database
point-in-time recovery. When you use flashback database, your current datafiles
revert to their contents at a past time. The result is much like the result of a
point-in-time recovery using datafile backups and redo logs, but you do not
have to restore datafiles from backup and you do not have to re-apply as many
individual changes in the redo logs as you would have to do in conventional
media recovery.

Flashback Table, Flashback Query, Flashback Transaction Query and Flashback
Version Query all rely on undo data, records of the effects of each update to an
Oracle database and values overwritten in the update. Used primarily for such
purposes as providing read consistency for SQL queries and rolling back
transactions, these undo records contain the information required to reconstruct

Oracle Flashback Query: Recovering at the Row Level

Flashback Technology: Recovering from Logical Corruptions 9-33

data as it stood at a past time and examine the record of changes since that past
time.

Oracle Flashback Query: Recovering at the Row Level
In a data recovery context, it is useful to be able to query the state of a table at a
previous time. If, for instance, you discover that at 12:30 PM, an employee ’JOHN’
had been deleted from your EMPLOYEE table, and you know that at 9:30AM that
employee’s data was correctly stored in the database, you could query the contents
of the table as of a time before the deletion to find out what data had been lost, and,
if appropriate, re-insert the lost data in the database.

Querying the past state of the table is achieved using the AS OF clause of the
SELECT statement. For example, the following query retrieves the state of the
employee record for ’JOHN’ at 9:30AM, April 4, 2003:

SELECT * FROM EMPLOYEE AS OF TIMESTAMP
 TO_TIMESTAMP('2003-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE name = 'JOHN';

Restoring John’s information to the table EMPLOYEE requires the following
update:

INSERT INTO employee
 (SELECT * FROM employee AS OF TIMESTAMP
 TO_TIMESTAMP('2003-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE name = 'JOHN');

See Also:

■ Oracle Database Concepts and Oracle Database Administrator's
Guide for more information on undo data and automatic undo
management

■ "Oracle Flashback Drop: Undo a DROP TABLE Operation" on
page 9-6 for more information on Flashback Drop and the
recycle bin

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on Flashback Query, Flashback Transaction
Query and Flashback Version Query

Oracle Flashback Table: Returning Individual Tables to Past States

9-4 Backup and Recovery Advanced User’s Guide

The missing row is re-created with its previous contents, with minimal impact to
the running database.

Oracle Flashback Table: Returning Individual Tables to Past States
Oracle Flashback Table provides the DBA the ability to recover a table or set of
tables to a specified point in time in the past very quickly, easily, and without taking
any part of the database offline. In many cases, Flashback Table eliminates the need
to perform more complicated point-in-time recovery operations. Flashback Table
restores tables while automatically maintaining associated attributes such as current
indexes, triggers and constraints, and not requiring the DBA to find and restore
application-specific properties. Using Flashback Table causes the contents of one or
more individual tables to revert to their state at some past SCN or time.

Flashback Table uses information in the undo tablespace to restore the table. This
provides significant benefits over media recovery in terms of ease of use,
availability and faster restoration of data.

For more information on Automatic Undo Management, see Oracle Database
Administrator's Guide.

Prerequisites for Using Flashback Table
The prerequisites for performing a FLASHBACK TABLE operation are as follows:

■ You must have been granted the FLASHBACK ANY TABLE system privilege or
you must have the FLASHBACK object privilege on the table.

■ You must have SELECT, INSERT, DELETE, and ALTER privileges on the table.

■ Undo information retained in the undo tablespace must go far enough back in
time to satisfy the specified target point in time or SCN for the FLASHBACK
TABLE operation.

■ Row movement must be enabled on the table for which you are issuing the
FLASHBACK TABLE statement. You can enable row movement with the
following SQL statement:

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
a more extensive discussion of the use of the SELECT... AS OF
SQL statement and extensive examples of its use.

■ Oracle Database SQL Reference for more details on the syntax of
the SELECT... AS OF form of the SELECT statement.

Oracle Flashback Table: Returning Individual Tables to Past States

Flashback Technology: Recovering from Logical Corruptions 9-55

ALTER TABLE table ENABLE ROW MOVEMENT;

Performing Flashback Table
The following SQL*Plus statement performs a FLASHBACK TABLE operation on the
table employee:

FLASHBACK TABLE employee TO TIMESTAMP
 TO_TIMESTAMP(’2003-04-04 09:30:00’, ‘YYYY-MM-DD HH24:MI:SS’);

The employee table is restored to its state when the database was at the time
specified by the timestamp.

You can also specify the target point in time for the FLASHBACK TABLE operation
using an SCN:

FLASHBACK TABLE employee TO SCN 123456;

The default for a FLASHBACK TABLE operation is for triggers on a table to be
disabled. The database disables triggers for the duration of the operation, and then
returns them to the state that they were in before the operation was started. If you
wish for the triggers to stay enabled, then use the ENABLE TRIGGERS clause of the
FLASHBACK TABLE statement, as shown in this example:

FLASHBACK TABLE t1 TO TIMESTAMP '2003-03-03 12:05:00' ENABLE TRIGGERS;

The following scenario is typical of the kind of logical corruption where Flashback
Table could be used:

At 17:00 an HR administrator discovers that an employee "JOHN" is missing from
the EMPLOYEE table. This employee was present at 14:00, the last time she ran a
report. Someone accidentally deleted the record for "JOHN" between 14:00 and the
present time. She uses Flashback Table to return the table to its state at 14:00, as
shown in this example:

FLASHBACK TABLE EMPLOYEES TO TIMESTAMP
 TO_TIMESTAMP(’2003-04-04 14:00:00’,’YYYY-MM-DD HH:MI:SS’)
 ENABLE TRIGGERS;

See Also: Oracle Database SQL Reference for a simple Flashback
Table scenario

Oracle Flashback Drop: Undo a DROP TABLE Operation

9-6 Backup and Recovery Advanced User’s Guide

Oracle Flashback Drop: Undo a DROP TABLE Operation
Oracle Flashback Drop reverses the effects of a DROP TABLE operation. The
intention behind this feature is to provide users with a recovery mechanism for an
accidental drop of a table. Flashback Drop is substantially faster than other recovery
mechanisms (such as point-in-time recovery) and also does not lead to any loss of
recent transactions.

When you drop a table, the database does not immediately remove the space
associated with the table. Instead, the table is renamed and, along with any
associated objects, it is placed in the Recycle Bin of the database. The Flashback
Drop operation recovers the table from the recycle bin.

To understand how to use Oracle Flashback Drop, you must also understand how
the recycle bin works, and how to access and manage its contents.

This section covers the following topics:

■ What is the Recycle Bin?

■ How Tables and Other Objects Are Placed in the Recycle Bin

■ Naming Convention for Objects in the Recycle Bin

■ Viewing and Querying Objects in the Recycle Bin

■ Recycle Bin Capacity and Space Pressure

■ Purging Objects from the Recycle Bin

What is the Recycle Bin?
The recycle bin is a logical container for all dropped tables and their dependent
objects. When a table is dropped, the database will store the table, along with its
dependent objects in the recycle bin so that they can be recovered later. Dependent
objects which are stored in the recycle bin include indexes, constraints, triggers,
nested tables, LOB segments and LOB index segments.

How Tables and Other Objects Are Placed in the Recycle Bin
Tables are placed in the recycle bin along with their dependent objects whenever a
DROP TABLE statement is executed. For example, this statement places the
EMPLOYEE_DEMO table, along with any indexes, constraints, or other dependent
objects listed previously, in the recycle bin:

SQL> DROP TABLE EMPLOYEE_DEMO;
Table Dropped

Oracle Flashback Drop: Undo a DROP TABLE Operation

Flashback Technology: Recovering from Logical Corruptions 9-77

The table and its dependent objects will remain in the recycle bin until they are
purged from the recycle bin. You can explicitly purge a table or other object from
the recycle bin with the SQL*Plus PURGE statement, as described in "Purging
Objects from the Recycle Bin" on page 9-12. If you are sure that you will not want to
recover a table later, you can drop it immediately and permanently, instead of
placing it in the recycle bin, by using the PURGE option of the DROP TABLE
statement, as shown in this example:

DROP TABLE employee_demo PURGE;

Even if you do not purge objects from the recycle bin, the database purges objects
from the recycle bin to meet tablespace space constraints. See "Recycle Bin Capacity
and Space Pressure" on page 9-9 for more details.

Recycle bin objects are not counted as used space. If you query the space views to
obtain the amount of free space in the database, objects in the recycle bin are
counted as free space.

Dropped objects still appear in the views USER_TABLES, ALL_TABLES, DBA_
TABLES, USER_INDEX, ALL_INDEX and DBA_INDEX.A new column, DROPPED, is
set to YES for these objects. You can use the DROPPED column in queries against
these views to view only objects that are not dropped.

To view only objects in the recycle bin, use the USER_RECYCLEBIN and DBA_
RECYCLEBIN views, described later in this chapter.

Naming Convention for Objects in the Recycle Bin
When a table and its dependent objects are moved to the recycle bin, they are
assigned unique names, to avoid name conflicts that may arise in the following
circumstances:

■ A user drops a table, creates another with the same name, then drops the
second table.

■ Two users have tables with the same name, and both users drop their tables.

The assigned names are globally unique and are used to identify the objects while
they are in the recycle bin. Object names are formed as follows:

BIN$$globalUID$version

where:

Oracle Flashback Drop: Undo a DROP TABLE Operation

9-8 Backup and Recovery Advanced User’s Guide

■ globalUID is a globally unique, 24 character long identifier generated for the
object.

■ version is a version number assigned by the database

The recycle bin name of an object is always 30 characters long.

Note that the globalUID used in the recycle bin name is not readily correlated
with any externally visible piece of information about the object or the database.

Viewing and Querying Objects in the Recycle Bin
You can view the contents of the recycle bin using the SQL*Plus command SHOW
RECYCLEBIN.

SQL> show recyclebin;
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- --------------------------------- ------------ -------------------
EMPLOYEE_DEMO BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 TABLE 2003-06-11:17:08:54

The ORIGINAL NAME column shows the orignal name of the object, while the
RECYCLEBIN NAME column shows the name of the object as it exists in the recycle
bin. Use the RECYCLEBIN NAME when issuing queries against tables in the recycle
bin.

The database also provices two views for obtaining information about objects in the
recycle bin:

This example uses the views to determine the original names of dropped objects:

SQL> SELECT object_name as recycle_name, original_name, object_type
 FROM recyclebin;

RECYCLE_NAME ORIGINAL_NAME OBJECT_TYPE
-------------------------------- --------------------- -------------
BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 EMPLOYEE_DEMO TABLE
BIN$JKS983293M1dsab4gsz/I249==$0 I_EMP_DEMO INDEX
BIN$NR72JJN38KM1dsaM4gI348as==$0 LOB_EMP_DEMO LOB
BIN$JKJ399SLKnaslkJSLK330SIK==$0 LOB_I_EMP_DEMO LOB INDEX

View Description

USER_RECYCLEBIN Lets users see their own dropped objects in the recycle bin. It
has a synonym RECYCLEBIN, for ease of use.

DBA_RECYCLEBIN Lets administrators see all dropped objects in the recycle bin

Oracle Flashback Drop: Undo a DROP TABLE Operation

Flashback Technology: Recovering from Logical Corruptions 9-99

You can query objects that are in the recycle bin, just as you can query other objects,
if these three conditions are met:

■ You must have the FLASHBACK privilege.

■ You must have the privileges that were required to perform queries against the
object before it was placed in the recycle bin.

■ You must use the recycle bin name of the object in your query, rather than the
object’s original name.

This example shows the required syntax:

SQL> SELECT * FROM "BIN$KSD8DB9L345KLA==$0";

(Note the use of quotes due to the special characters in the recycle bin name.)

You can also use Oracle Flashback Query on tables in the recycle bin (again,
assuming that you have the privileges described previously).

Recycle Bin Capacity and Space Pressure
There is no fixed amount of space pre-allocated for the recycle bin. Therefore, there
is no guaranteed minimum amount of time during which a dropped object will
remain in the recycle bin.

The rules that govern how long an object is retained in the recycle bin and how and
when space is reclaimed are explained in this section.

Understanding Space Pressure
Dropped objects are kept in the recycle bin until such time as no new extents can be
allocated in the tablespace to which the objects belong without growing the
tablespace. This condition is referred to as space pressure. Space pressure can also
arise due to user quotas defined for a particular tablespace. A tablespace may have
free space, but the user may have exhausted his or her quota on it.

Oracle never automatically reclaims space or overwrites objects in the recycle bin
unless forced to do so in response to space pressure.

How the Database Responds to Space Pressure
When space pressure arises, the database selects objects for automatic purging from
the recycle bin. Objects are selected for purging on a first-in, first-out basis, that is,
the first objects dropped are the first selected for purging.

Oracle Flashback Drop: Undo a DROP TABLE Operation

9-10 Backup and Recovery Advanced User’s Guide

Actual purging of objects is done only as needed to meet ongoing space pressure,
that is, the databases purges the minimum possible number of objects selected for
purging to meet immediate needs for space. This policy serves two purposes:

■ It minimizes the performance penalty on transactions that encounter space
pressure, by not reclaiming more than is required;

■ It maximizes the length of time objects remain in the recycle bin, by leaving
them there until space is needed.

Dependent objects such as indexes on a table are selected for purging before the
associated table (or other required segment).

If space pressure is due to an individual user’s quota on a tablespace being
exhausted, the recycle bin purges objects belonging to the tablespace which count
against that user’s space quotas.

For AUTO EXTEND-able tablespaces, objects are purged from the recycle bin to
reclaim space before datafiles are extended.

Recycle Bin Objects and Segments
The recycle bin operates at the object level, in terms of tables, indexes, and so on. An
object may have multiple segments associated with it, such as partitioned tables,
partitioned indexes, lob segments, nested tables, and so on. Because the database
reclaims only the segments needed to immediately satisfy space pressure, it can
happen that some but not all segments of an object are reclaimed. When this
happens, any segments of the object not reclaimed immediately are marked as
temporary segments. These temporary segments are the first candidates to be
reclaimed the next time space pressure arises.

In such a case, the partially-reclaimed object can no longer be removed from the
recycle bin with Flashback Drop. (For example, if one partition of a partitioned table
is reclaimed, the table can no longer be the object of a Flashback Drop.)

Performing Flashback Drop on Tables in the Recycle Bin
Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from
the recycle bin. You can specify either the name of the table in the recycle bin or the
original table name. This can be obtained from either the DBA_RECYCLEBIN or
USER_RECYCLEBIN view as shown in "Viewing and Querying Objects in the
Recycle Bin" on page 9-8. To use the FLASHBACK TABLE ... TO BEFORE DROP
statement, you need the same privileges you need to drop the table.

Oracle Flashback Drop: Undo a DROP TABLE Operation

Flashback Technology: Recovering from Logical Corruptions 9-1111

The following example restores the BIN$KSD8DB9L345KLA==$0 table, changes its name
back to hr.int_admin_emp, and purges its entry from the recycle bin:

FLASHBACK TABLE "BIN$KSD8DB9L345KLA==$0" TO BEFORE DROP;

You can also use the table's original name in the Flashback Drop operation:

FLASHBACK TABLE HR.INT_ADMIN_EMP TO BEFORE DROP;

You can assign a new name to the restored table by specifying the RENAME TO
clause. For example:

FLASHBACK TABLE "BIN$KSD8DB9L345KLA==$0" TO BEFORE DROP
 RENAME TO hr.int2_admin_emp;

Flashback Drop of Multiple Objects With the Same Original Name
You can create, and then drop, several objects with the same original name, and
they will all be stored in the recycle bin. For example, consider these SQL
statements:

CREATE TABLE EMP (...columns); # EMP version 1
DROP TABLE EMP;
CREATE TABLE EMP (...columns); # EMP version 2
DROP TABLE EMP;
CREATE TABLE EMP (...columns); # EMP version 3
DROP TABLE EMP;

In such a case, each table EMP is assigned a unique name in the recycle bin when it
is dropped. You can use a FLASHBACK TABLE... TO BEFORE DROP statement
with the original name of the table, as shown in this example:

FLASHBACK TABLE EMP TO BEFORE DROP;

The most recently dropped table with that original name is retrieved from the
recycle bin, with its original name. You can retrieve it and assign it a new name
using a RENAME TO clause. The following example shows the retrieval from the
recycle bin of all three dropped EMP tables from the previous example, with each
assigned a new name:

FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_3;
FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_2;
FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_1;

Note that the last table dropped is the first one to be retrieved.

Oracle Flashback Drop: Undo a DROP TABLE Operation

9-12 Backup and Recovery Advanced User’s Guide

You can also retrieve any table you want from the recycle bin, regardless of any
such name collisions, by using the table's unique recycle bin name.

Purging Objects from the Recycle Bin
The PURGE command is used to permanently purge objects from the recycle bin.
Once purged, objects can no longer be retrieved from the bin using Flashback Drop.

There are a number of forms of the PURGE statement, depending on exactly which
objects you want to purge from the recycle bin

PURGE TABLE: Purging a Table and Dependent Objects
The PURGE TABLE command purges an individual table and all of its dependent
objects from the recycle bin. This example shows the syntax, using the table’s
original name:

PURGE TABLE EMP;

You can also use the recycle bin name of an object with PURGE TABLE:

PURGE TABLE "BIN$KSD8DB9L345KLA==$0";

If you have created and dropped multiple tables with the same orignal name, then
when you use the PURGE TABLE statement the first table dropped will be the one
to be purged.

For example, consider the following series of CREATE TABLE and DROP TABLE
statements:

CREATE TABLE EMP; # version 1 of the table
DROP TABLE EMP; # version 1 dropped
CREATE TABLE EMP; # version 2 of the table
DROP TABLE EMP; # version 2 dropped
CREATE TABLE EMP; # version 3 of the table
DROP TABLE EMP; # version 3 dropped

There are now three EMP tables in the recycle bin. If you execute PURGE TABLE
EMP several times, the effect is as described here:

PURGE TABLE EMP; # version 1 of the table is purged
PURGE TABLE EMP; # version 2 of the table is purged
PURGE TABLE EMP; # version 3 of the table is purged

See Also: Oracle Database SQL Reference for more information on
the PURGE statement

Oracle Flashback Drop: Undo a DROP TABLE Operation

Flashback Technology: Recovering from Logical Corruptions 9-1313

Note that this is the opposite of the behavior of FLASHBACK TABLE... TO
BEFORE DROP, where using the original name of the table retrieves the most
recently dropped version from the recycle bin.

PURGE INDEX: Freeing Space in the Recycle Bin
You can use PURGE INDEX to purge just an index for a table, while keeping the
base table in the recycle bin. The syntax for purging an index is as follows:

PURGE INDEX "BIN$GTE72KJ22H9==$0";

By purging indexes from the recycle bin, you can reduce the chance of space
pressure, so that dropped tables can remain in the recycle bin longer. If you retrieve
a table from the recycle bin using Flashback Drop, you can rebuild the indexes after
you retrieve the table.

PURGE TABLESPACE: Purging All Objects in a Tablespace
You can use the PURGE TABLESPACE command to purge all dropped tables and
other dependent objects from a specific tablespace. The syntax is as follows:

PURGE TABLESPACE hr;

You can also purge only objects from a tablespace belonging to a specific user, using
the following form of the command:

PURGE TABLESPACE hr USER scott;

PURGE RECYCLEBIN: Purging All Objects in a User’s Recycle Bin
The PURGE RECYCLEBIN command purges the contents of the recycle bin for the
currently logged-in user.

PURGE RECYCLEBIN;

It purges all tables and their dependent objects for this user, along with any other
indexes owned by this user but not on tables owned by the user.

PURGE DBA_RECYCLEBIN: Purging All Recycle Bin Objects
If you have the SYSDBA privilege, then you can purge all objects from the recycle
bin, regardless of which user owns the objects, using this command:

PURGE DBA_RECYCLEBIN;

Oracle Flashback Drop: Undo a DROP TABLE Operation

9-14 Backup and Recovery Advanced User’s Guide

Dropping a Tablespace, Cluster, User or Type and the Recycle Bin
When a tablespace is dropped including its contents, the objects in the tablespace
are dropped immediately, and not placed in the recycle bin. Any objects in the
recycle bin from the dropped tablespace are purged from the recycle bin.

If all objects from a tablespace have been placed in the recycle bin, then dropping
the tablespace causes the objects to be purged, even if you do not use the
INCLUDING CONTENTS clause with DROP TABLESPACE.

When a user is dropped, any objects belonging to the user that are not in the recycle
bin are dropped immediately, not placed in the recycle bin. Any objects in the
recycle bin that belonged to the user are purged from the recycle bin.

When you drop a cluster, all tables in the cluster are purged. When you drop a
user-defined data type, all objects directly or indirectly dependent upon that type
are purged.

Privileges and Security
This section summariezes the system privileges required for the operations related
to Flashback Drop and the recycle bin.

■ DROP

Any user with drop privileges over the object can drop the object, placing it in
the recycle bin.

■ FLASHBACK TABLE... TO BEFORE DROP

Privileges are tied to the privileges for DROP. That is, any user who can drop an
object can perform Flashback Drop.

■ PURGE

Privileges are tied to the DROP privileges. Any user having DROP TABLE or
DROP ANY TABLE privileges can purge the objects from the recycle bin.

■ SELECT for objects in the Recycle Bin

Users must have SELECT and FLASHBACK privileges over an object in the
recycle bin to be able to query the object in the recycle bin. Any users who had
the SELECT privilege over an object before it was dropped continue to have the
SELECT privilege over the object in the recycle bin.Users must have
FLASHBACK privilege to query any object in the recycle bin, because these are
objects from a past state of the database.

Oracle Flashback Database: Alternative to Point-In-Time Recovery

Flashback Technology: Recovering from Logical Corruptions 9-1515

Limitations and Restrictions on Flashback Drop
■ The recycle bin functionality is only available for non-system, locally managed

tablespaces. If a table is in a non-system, locally managed tablespace, but one or
more of its dependent segments (objects) is in a dictionary-managed tablespace,
then these objects are protected by the recycle bin.

■ There is no fixed amount of space allocated to the recycle bin, and no guarantee
as to how long dropped objects remain in the recycle bin. Depending upon
system activity, a dropped object may remain in the recycle bin for seconds, or
for months.

■ While Oracle permits queries against objects stored in the recycle bin, you
cannot use DML or DDL statements on objects in the recycle bin.

■ You can perform Flashback Query on tables in the recycle bin, but you must use
the recycle bin name. You cannot use the original name of the table.

■ A table and all of its dependent objects (indexes, LOB segments, nested tables,
triggers, constraints and so on) go into the recycle bin together, when you drop
the table. Likewise, when you perform Flashback Drop, the objects are generally
all retrieved together.

It is possible, however, that some dependent objects such as indexes may have
been reclaimed due to space pressure. In such cases, the reclaimed dependent
objects are not retrieved from the recycle bin.

■ Due to security concerns, tables which have Fine-Grained Auditing (FGA) and
Virtual Private Database (VPD) policies defined over them are not protected by
the recycle bin.

■ Partitioned index-organized tables are not protected by the recycle bin.

■ The recycle bin does not preserve referential constraints on a table (though
other constraints will be preserved if possible). If a table had referential
constraints before it was dropped (that is, placed in the recycle bin), then you
may re-create any referential constraints after you perform Flashback Drop to
retrieve the table from the recycle bin.

Oracle Flashback Database: Alternative to Point-In-Time Recovery
Oracle Flashback Database, accessible from both RMAN (by means of the
FLASHBACK DATABASE command) and SQL*Plus (by means of the FLASHBACK
DATABASE statement), lets you quickly recover the entire database from logical data
corruptions or user errors.

Oracle Flashback Database: Alternative to Point-In-Time Recovery

9-16 Backup and Recovery Advanced User’s Guide

It is similar to conventional point in time recovery in its effects, allowing you to
return a database to its state at a time in the recent past. Flashback Database is,
however, much faster than point-in-time recovery, because it does not require
restoring datafiles from backup and it requires applying fewer changes from the
archived redo logs.

To enable Flashback Database, you set up a flash recovery area, and set a flashback
retention target, to specify how far back into the past you want to be able to restore
your database with Flashback Database.

From that time on, at regular intervals, the database copies images of each altered
block in every datafile into flashback logs stored in the flash recovery area. These
block images can later be re-used to reconstruct the datafile contents as of any
moment at which logs were captured.

To restore a database to its state at some past target time using Flashback Database,
each block is restored to its contents as of the flashback logging time most
immediately prior to the desired target time, and then changes from the redo logs
are applied to fill in changes between the time captured by the flashback logs and
the target time. Redo logs must be available for the entire time period spanned by
the flashback logs, whether on tape or on disk. In practice, however, redo logs are
often kept much longer than flashback logs, so this requirement is not a real
limitation.

The time required to perform Flashback Database is largely a function of how far
back the target time is and the number of blocks changed, rather than the volume of
individual updates to the database.

Limitations of Flashback Database
Because Flashback Database works by undoing changes to the datafiles that exist at
the moment that you run the command, it has the following limitations:

■ Flashback Database cannot by itself recover from media failure, that is, the
corruption or deletion of a datafile. The datafile to be reverted to a past state
with flashback database must be present and must not be corrupted due to
media failure. However, you can combine Flashback Database and
point-in-time recovery in some situations for more efficient recovery.
Tablespaces affected by the deletion of a datafile must be restored from backup
and recovered to a point in time before the deletion. Tablespaces not affected by
the deletion, however, can be reverted to that same point in time using
Flashback Database.

Oracle Flashback Database: Alternative to Point-In-Time Recovery

Flashback Technology: Recovering from Logical Corruptions 9-1717

■ You cannot use Flashback Database if the database’s control file has been
restored from backup or re-created after Flashback Database was turned on.

■ You cannot use Flashback Database to undo a shrink datafile operation.

■ You cannot use Flashback Database to return the database to an SCN prior to
the earliest SCN available in the flashback logs that currently exist in the flash
recovery area. Because flashback logs can be deleted from the flash recovery
area when space is needed, it is important to size your flash recovery area
appropriately.

Finally, it is important to note that the flashback retention target is a target, not an
absolute guarantee that Flashback Database will be available. If your flash recovery
area is not large enough to hold both required files such as archived redo logs and
other backups, flashback logs may be deleted to make room in the flash recovery
area for these required files. If you discover that Oracle has discarded flashback logs
required to reach your desired target time for Flashback Database, you can always
use traditional point-in-time recovery instead to achieve a similar result.

Requirements for Flashback Database
The requirements for enabling Flashback Database are:

■ Your database must be running in ARCHIVELOG mode, because archived logs
are used in the Flashback Database operation.

■ You must have a flash recovery area enabled, because flashback logs can only
be stored in the flash recovery area.

■ For Real Application Clusters databases, the flash recovery area must be stored
in a clustered file system or in ASM.

Enabling Flashback Database
To enable Flashback Database, set the DB_FLASHBACK_RETENTION_TARGET
initialization parameter and issue the ALTER DATABASE FLASHBACK ON
statement. Follow the process outlined here.

1. Start SQL*Plus and ensure that the database is mounted, but not open. For
example:

SQL> SELECT STATUS FROM V$INSTANCE;

2. By default the flashback retention target is set to one day (1440 minutes). If you
wish, you can change the retention target. For example, if you want to retain

Oracle Flashback Database: Alternative to Point-In-Time Recovery

9-18 Backup and Recovery Advanced User’s Guide

enough flashback logs to be able to perform a 72 hour flashback, set the
retention target to 4320 minutes (3 days x 24 hours/day x 60 minutes/hour):

SQL> ALTER SYSTEM SET DB_FLASHBACK_RETENTION_TARGET=4320;

3. Enable the Flashback Database feature for the whole database:

SQL> ALTER DATABASE FLASHBACK ON;

By default, flashback logs are generated for all permanent tablespaces. If you wish,
you can reduce overhead by disabling flashback logging specific tablespaces:

SQL> ALTER TABLESPACE test1 FLASHBACK OFF;

You can re-enable flashback logging for a tablespace later with this command:

SQL> ALTER TABLESPACE test1 FLASHBACK ON;

Note that if you disable Flashback Database for a tablespace, then you must take its
datafiles offline before running FLASHBACK DATABASE.

You can disable flashback logging for the entire database with this command:

SQL> ALTER DATABASE FLASHBACK OFF;

You can enable Flashback Database not only on a primary database, but also on a
standby database. Enabling Flashback Database on a standby database allows one
to perform Flashback Database on the standby database. Flashback Database of
standby databases has a number of applications in the Data Guard environment.
See Oracle Data Guard Concepts and Administration for details.

Sizing the Flash Recovery Area for Flashback Logs
The setting of the DB_FLASHBACK_RETENTION_TARGET initialization parameter
determines, indirectly, how much flashback log data the database should keep. This
limit is contingent upon sufficient space existing in the flash recovery area. The size
of flashback logs can vary considerably, however, depending on the locality of
database changes during a given flashback logging interval.

Estimating Flashback Database Storage Requirements
The V$FLASHBACK_DATABASE_LOG view can help you decide how much space to
add to your flash recovery area for flashback logs. After you have enabled the
Flashback Database feature and allowed the database to generate some flashback
logs, run the following query:

Oracle Flashback Database: Alternative to Point-In-Time Recovery

Flashback Technology: Recovering from Logical Corruptions 9-1919

SQL> SELECT ESTIMATED_FLASHBACK_SIZE FROM V$FLASHBACK_DATABASE_LOG;

An estimate of disk space needed to meet the current flashback retention target is
calculated, based on the database workload since Flashback Database was enabled.
Add the amount of disk space specified in $FLASHBACK_DATABASE_
LOG.ESTIMATED_FLASHBACK_SIZE to your flash recovery area size, to hold the
dataabase flashback logs.

Space usage in the flash recovery area is always balanced among backups and
archived logs which must be kept according to the retention policy, and other files
like flashback logs and backups already moved to tape but still cached on disk. If
you have not allocated enough space in your flash recovery area to store your
flashback logs and still meet your other backup retention requirements, flashback
logs may be deleted from the recovery area to make room for other required files. In
such situations you will still be able to use point-in-time recovery to revert your
database to a previous state.

Determining the Current Flashback Database Window
At any given time, the earliest point in time to which you can actually rewind your
database by using Flashback Database can be determined by querying the
V$FLASHBACK_DATABASE_LOG view as shown in this example:

SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
 FROM V$FLASHBACK_DATABASE_LOG;

If the results of this query indicate that you cannot reach your intended flashback
retention target, increase the size of your flash recovery area to accomodate more
flashback logs than value indicated by V$FLASHBACK_DATABASE_
LOG.ESTIMATED_FLASHBACK_SIZE. Also, when you are deciding whether to use
Flashback Database instead of point-in-time recovery, this value will tell you
whether you can reach your desired target time before you start the Flashback
Database operation.

Performance Tuning for Flashback Database
Maintaining flashback logs imposes comparatively limited overhead on an Oracle
database instance. Changed blocks are written from memory to the flashback logs at
relatively infrequent, regular intervals, to limit processing and I/O overhead.

To achieve good performance for large production databases with Flashback
Database enabled, Oracle Corporation recommends the following:

Oracle Flashback Database: Alternative to Point-In-Time Recovery

9-20 Backup and Recovery Advanced User’s Guide

■ Use a fast file system for your flash recovery area, preferably without operating
system file caching. Files the database creates in the flash recovery area,
including flashback logs, are typically large. Operating system file caching is
typically not effective for these files, and may actually add CPU overhead for
reading from and writing to these files. Thus, it is recommended to use a file
system that avoids operating system file caching, such as ASM, or the Solaris
2.8 file system with direct I/O.

■ Configure enough disk spindles for the file system that will hold the flash
recovery area. For large production databases, multiple disk spindles may be
needed to support the required disk throughput for the database to write the
flashback logs effectively.

■ If the storage system used to hold the flash recovery area does not have
non-volatile RAM, try to configure the file system on top of striped storage
volumes, with a relatively small stripe size such as 128K. This will allow each
write to the flashback logs to be spread across multiple spindles, improving
performance

■ For large, production databases, set the init.ora parameter LOG_BUFFER to be at
least 8MB. This makes sure the database allocates maximum memory (typically
16MB) for writing flashback database logs.

The overhead of turning on logging for Flashback Database depends on the
read-write mix of the database workload. The more write-intensive the workload,
the higher the overhead caused by turning on logging for Flashback Database.
(Queries do not change data and thus do not contribute to logging activity for
Flashback Database.)

Monitoring Flashback Database
The best way to monitor system usage due to flashback logging is to take
performance statistics using the Oracle Statspack. For example, if you see
"flashback buf free by RVWR" as the top wait event, it indicates that Oracle
cannot write flashback logs very quickly. In such a case, you may want to tune the
file system and storage used by the flash recovery area, possibly using one of the
methods described in "Performance Tuning for Flashback Database" on page 9-19.

The V$FLASHBACK_DATABASE_STAT view (described in Oracle Database Reference)
shows the bytes of flashback data logged by the database. Each row in the view
shows the statistics accumulated (typically over the course of an hour). The
FLASHBACK_DATA and REDO_DATA columns describe bytes of flashback data and
redo data written respectively during the time interval, while the DB_DATA column
describe bytes of data blocks read and written. Note that FLASHBACK_DATA and

Oracle Flashback Database: Alternative to Point-In-Time Recovery

Flashback Technology: Recovering from Logical Corruptions 9-2121

REDO_DATA correspond to sequential writes, while DB_DATA corresponds to
random reads and writes.

Because of the difference between sequential I/O and random I/O, a better
indication of I/O overhead is the number of I/O operations issued for flashback
logs. The following statistics in V$SYSSTAT can tell you the number of I/O
operations your instance has issued for various purposes:

See Oracle Database Reference for more details on columns in the V$SYSSTAT view.

Running the FLASHBACK DATABASE Command from RMAN
1. Query the target database to determine the range of possible Flashback

Database SCNs. The following queries show you the the latest and earliest SCN
in the flashback window:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;

SQL> SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
 FROM V$FLASHBACK_DATABASE_LOG;

2. Start RMAN and connect to the target database. For example:

rman TARGET /

3. Run the FLASHBACK DATABASE command to return the database to a prior
TIME, SCN, or archived log SEQUENCE number. If you configured sbt channels,
RMAN automatically restores archived logs from tape as needed during the
Flashback Database operation. For example:

RMAN> FLASHBACK DATABASE TO SCN 46963;

Column Name Column Meaning

Physical write I/O
request

The number of write operations issued for writing data
blocks

physical read I/O
request

The number of read operations issued for reading data
blocks

redo writes The number of write operations issued for writing to the
redo log.

flashback log writes The number of write operations issued for writing to
flashback logs.

Oracle Flashback Database: Alternative to Point-In-Time Recovery

9-22 Backup and Recovery Advanced User’s Guide

RMAN> FLASHBACK DATABASE TO SEQUENCE 5304;

RMAN> FLASHBACK DATABASE TO TIME (SYSDATE-1/24);

RMAN> FLASHBACK DATABASE TO TIME timestamp('2002-11-05 14:00:00');

RMAN> FLASHBACK DATABASE
 TO TIME to_timestamp('2002-11-11 16:00:00', 'YYYY-MM-DD HH24:MI:SS');

When the Flashback Database operation completes, you can evaluate the results by
opening the database read-only and run some queries to check whether your
Flashback Database has returned the database to the desired state.

RMAN> SQL ’ALTER DATABASE OPEN READ ONLY’;

At this point you have several options:

■ If you are content with the results, you can make the database available by
performing an ALTER DATABASE OPEN RESETLOGS.

RMAN> ALTER DATABASE OPEN RESETLOGS

■ If you discover that you have chosen the wrong target time for your Flashback
Database operation, you can use RECOVER DATABASE UNTIL to bring the
database forward, or perform FLASHBACK DATABASE again with an SCN
further in the past. You can completely undo the effects of your flashback
operation by performing complete recovery of the database:

RMAN> RECOVER DATABASE;

■ If you only want to retrieve some lost data from the past time, you can open the
database read-only, then perform a logical export of the data using an Oracle
export utility (Data Pump Export or Original Export), then run RECOVER
DATABASE to return the database to the present time and re-import the data
using the Oracle import utility that corresponds to the export utility you used.

Note that, as with point-in-time recovery, you lose all updates to the database after
the target SCN for the Flashback Database operation.

Running the FLASHBACK DATABASE Command from SQL*Plus
The FLASHBACK DATABASE command in SQL*Plus takes essentially the same
options and performs essentially the same behavior as FLASHBACK DATABASE as
performed in RMAN. The chief difference is that RMAN, being aware of backups of
your database files, can restore from backup automatically any needed archived

Using Oracle Flashback Features Together in Data Recovery: Scenario

Flashback Technology: Recovering from Logical Corruptions 9-2323

logs required for the Flashback Database process. When using FLASHBACK
DATABASE in SQL*Plus, all files required to complete the operation must already be
present on disk.

Using Oracle Flashback Features Together in Data Recovery: Scenario
The following scenario shows how one might use the various flashback features of
Oracle (Oracle Flashback Query, Oracle Flashback Transaction Query, Oracle
Flashback Table, and Oracle Flashback Database) to recover from a data loss due to
a user or application error.

At 17:00 an HR administrator discovers that an employee "JOHN" is missing from
the EMPLOYEE table. This employee was present in the table at 14:00, when she
last checked. This means that someone accidentally deleted "JOHN" from the table
between 14:00 and 17:00. The HR administrator re-inserts the missing employee row
into the EMPLOYEE table with the following use of Flashback Query:

INSERT INTO employee
 SELECT * FROM employee AS OF TIMESTAMP
 TO_TIMESTAMP('2003-04-04 14:00:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE name = 'JOHN';

She can find out more information about when "JOHN" was deleted, the transaction
which deleted "JOHN", and the user who deleted "JOHN" by using Flashback
Version Query and Flashback Transaction Query as follows:

SELECT commit_timestamp , logon_user FROM FLASHBACK_TRANSACTION_QUERY
 WHERE xid IN
 (SELECT versions_xid FROM employee VERSIONS BETWEEN
 TIMESTAMP TO_TIMESTAMP('2003-04-04 14:00:00', 'YYYY-MM-DD HH:MI:SS')
 and TO_TIMESTAMP('2003-04-04 17:00:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE name = 'JOHN');

If at this time she discovers many other logical data errors in the EMPLOYEE table,
she can recover the whole table to the state at 14:00 by using Flashback Table:

FLASHBACK TABLE employee TO TIMESTAMP TO_TIMESTAMP('2003-04-04 14:00:00',
'YYYY-MM-DD HH:MI:SS');

Finally, if many other tables also contain errors due to transactions during the same
interval, flashback database can return the entire database to its state before the
errors:

Using Oracle Flashback Features Together in Data Recovery: Scenario

9-24 Backup and Recovery Advanced User’s Guide

FLASHBACK DATABASE
 TO TIME to_timestamp('2003-04-04 14:00:00', 'YYYY-MM-DD HH:MI:SS');

For more examples of using flashback features to recover from user errors, see
Oracle High Availability Architecture and Best Practices.

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-1

10
RMAN Tablespace Point-in-Time Recovery

(TSPITR)

Recovery Manager (RMAN) automatic tablespace point-in-time recovery
(commonly abbreviated TSPITR) enables you to quickly recover one or more
tablespaces in an Oracle database to an earlier time, without affecting the state of
the rest of the tablespaces and other objects in the database.

This chapter explains when you can and cannot use TSPITR, what RMAN actually
does to your database during TSPITR, how to prepare a database for TSPITR, how
to run TSPITR, and options for controlling the TSPITR process.

This chapter contains the following sections:

■ Understanding RMAN TSPITR

■ Planning and Preparing for TSPITR

■ Performing Basic RMAN TSPITR

■ Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary
Instance

■ Performing RMAN TSPITR Using Your Own Auxiliary Instance

■ Troubleshooting RMAN TSPITR

Understanding RMAN TSPITR
In order to use TSPITR effectively, you need to understand what problems it can
solve for you, what the major elements used in TSPITR are, what RMAN does
during TSPITR, and limitations on when and how it can be applied.

Understanding RMAN TSPITR

10-2 Backup and Recovery Advanced User’s Guide

RMAN TSPITR Concepts
Figure 10–1 illustrates the context within which TSPITR takes place, and a general
outline of the process.

Figure 10–1 Tablespace Point-in-Time Recovery (TSPITR) Architecture

The figure contains the following entities:

■ The target instance, containing the tablespace to be recovered

■ The Recovery Manager client

Recovery Manager

Oracle
Recovery
Catalog

Recovery
catalog

Archived
redo logs

Backup
sets

Oracle
Recovery
Catalog

Target
database

Oracle
Recovery
CatalogAuxiliary

instance

1
2

restore

recover

Recovery Manager

Oracle
Recovery
Catalog

Recovery
catalog

Target
database

Auxiliary
instance

Control
file

export
metadata

point to
recovered
tablespaces

import metadata

34

5

recovered
tablespace

recovered
tablespace

export
file

Understanding RMAN TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-3

■ The control file and (optional) recovery catalog, used for the RMAN repository
records of backup activity

■ Archived redo logs and backup sets from the target database, which are the
source of the reconstructed tablespace.

■ The auxiliary instance, an Oracle database instance used in the recovery
process to perform the actual work of recovery.

There are four other important terms related to TSPITR, which will be used in the
rest of this discussion:

■ The target time, the point in time or SCN that the tablespace will be left at after
TSPITR

■ The recovery set, which consists of the datafiles containing the tablespaces to be
recovered;

■ The auxiliary set, which includes datafiles required for TSPITR of the recovery
set which are not themselves part of the recovery set. The auxiliary set typically
includes:

■ A copy of the SYSTEM tablespace

■ Datafiles containing rollback or undo segments from the target instance

■ In some cases, a temporary tablespace, used during the export of database
objects from the auxiliary instance

The auxiliary instance has other files associated with it, such as a control file,
parameter file, and online logs , but they are not part of the auxiliary set.

■ The auxiliary destination, an optional location on disk which can be used to
store any of the auxiliary set datafiles, control files and online logs of the
auxiliary instance during TSPITR. Files stored here can be deleted after TSPITR
is complete.

All of these terms will be referenced throughout the remainder of this chapter.

How TSPITR Works With an RMAN-Managed Auxiliary Instance
To perform TSPITR of the recovery set using RMAN and an automated auxiliary
instance, you carry out the preparations for TSPITR described in "Planning and
Preparing for TSPITR" on page 10-6, and then issue the RECOVER TABLESPACE
command, specifying, at a minimum, the tablespaces of the recovery set and the
target time for the point-in-time recovery, and, if desired, an auxiliary destination as
well.

Understanding RMAN TSPITR

10-4 Backup and Recovery Advanced User’s Guide

RMAN then carries out the following steps:

1. If there is no connection to an auxiliary instance, RMAN creates the auxiliary
instance, starts it up and connects to it.

2. Takes the tablespaces to be recovered offline in the target database

3. Restores a backup controlfile from a point in time before the target time to the
auxiliary instance

4. Restores the datafiles from the recovery set and the auxiliary set to the auxiliary
instance. Files are restored either in locations you specify for each file, or the
original location of the file (for recovery set files) or in the auxiliary destination
(for auxiliary set files, if you used the AUXILIARY DESTINATION argument of
RECOVER TABLESPACE)

5. Recovers the restored datafiles in the auxiliary instance to the specified time

6. Opens the auxiliary database with the RESETLOGS option

7. Exports the dictionary metadata about objects in the recovered tablespaces to
the target database

8. Shuts down the auxiliary instance

9. Issues SWITCH commands on the target instance, so that the target database
control file now points to the datafiles in the recovery set that were just
recovered at the auxiliary instance.

10. Imports the dictionary metadata from the auxiliary instance to the target
instance, allowing the recovered objects to be accessed.

11. Deletes all auxiliary set files.

At that point the TSPITR process is complete. The recovery set datafiles are returned
to their contents at the specified point in time, and belong to the target database.

Deciding When to Use TSPITR
Like a table import, RMAN TSPITR enables you to recover a consistent data set;
however, the data set recovered includes an entire tablespace rather than one object.

RMAN TSPITR is most useful for situations such as these:

■ Recovering data lost after an erroneous TRUNCATE TABLE statement;

■ Recovering from logical corruption of a table;

Understanding RMAN TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-5

■ Undoing the effects of an incorrect batch job or other DML statement that has
affected only a subset of the database;

■ Recovering a logical schema to a point different from the rest of the physical
database, when multiple schemas exist in separate tablespaces of one physical
database.

Note that, as with database point-in-time recovery (DBPITR), you cannot perform
TSPITR if you do not have your archived redo logs. For databases running in
NOARCHIVELOG mode, you cannot perform TSPITR.

Limitations of TSPITR
There are a number of situations which you cannot resolve by using TSPITR.

■ You cannot recover dropped tablespaces.

■ You cannot recover a renamed tablespace to a point in time before it was
renamed. If you try to perform a TSPITR to an SCN earlier than the rename
operation, RMAN cannot find the new tablespace name in the repository as of
that earlier SCN (because the tablespace did not have that name at that SCN).

In this situation, you must recover the entire database to a point in time before
the tablespace was renamed. The tablespace will be found under the name it
had at that earlier time.

■ You cannot recover tables without their associated constraints, or constraints
without the associated tables.

■ You cannot use TSPITR to recover any of the following:

– Replicated master tables

– Partial tables (for example, if you perform RMAN TSPITR on partitioned
tables and spread partitions across multiple tablespaces, then you must
recover all tablespaces which include partitions of the table.)

– Tables with VARRAY columns, nested tables, or external files

– Snapshot logs and snapshot tables

– Tablespaces containing undo or rollback segments

– Tablespaces that contain objects owned by SYS, including rollback
segments

TSPITR has some other limitations:

Planning and Preparing for TSPITR

10-6 Backup and Recovery Advanced User’s Guide

■ If a datafile was added after the point to which RMAN is recovering, an empty
datafile by the same name will be included in the tablespace after RMAN
TSPITR.

■ TSPITR will not recover query optimizer statistics for recovered objects. You
must gather new statistics after the TSPITR.

■ Assume that you run TSPITR on a tablespace, and then bring the tablespace
online at time t. Backups of the tablespace created before time t are no longer
usable for recovery with a current control file. You cannot run TSPITR again on
this tablespace to recover it to any time less than or equal to time t, nor can you
use the current control file to recover the database to any time less than or equal
to t. Therefore, you must back up the tablespace as soon as TSPITR is complete.

Limitations of TSPITR Without a Recovery Catalog If you do not use a recovery catalog
when performing TSPITR, then note the following special restrictions:

■ The undo segments at the time of the TSPITR must be part of the auxiliary set.
Because RMAN has no historical record of the undo in the control file, RMAN
assumes that the current rollback or undo segments were the same segments
present at the time to which recovery is performed. If the undo segments have
changed since that time, then TSPITR will fail.

■ TSPITR to a time that is too old may not succeed if Oracle has reused the control
file records for needed backups. (In planning your database, set the CONTROL_
FILE_RECORD_KEEP_TIME initialization parameter to a value large enough to
ensure that control file records needed for TSPITR are kept.)

■ When not using a recovery catalog, the current control file has no record of the
older incarnation of the recovered tablespace. Thus, recovery with a current
control file that involves this tablespace can no longer use a backup taken prior
to time t. You can, however, perform incomplete recovery of the whole database
to any time less than or equal to t, if you can restore a backup control file from
before time t.

Planning and Preparing for TSPITR
There are several steps to be carried out in preparing for TSPITR:

■ Choosing the Right Target Time for TSPITR

■ Determining the Recovery Set: Analyzing Data Relationships

■ Identifying and Preserving Objects That Will Be Lost After TSPITR

Planning and Preparing for TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-7

Choosing the Right Target Time for TSPITR
It is extremely important that you choose the right target time or SCN for your
TSPITR. As noted already, once you bring a tablespace online after TSPITR, you
cannot use any backup from a time earlier than the moment you brought the
tablespace online. In practice, this means that you cannot make a second attempt at
TSPITR if you choose the wrong target time the first time, unless you are using a
recovery catalog. (If you have a recovery catalog, however, you can perform
repeated TSPITRs to different target times.)

For example, assume that you run TSPITR on a tablespace, and then bring the
tablespace online at 5PM on Friday. Backups of the tablespace created before 5PM
Friday are no longer usable for recovery with a current control file. You cannot run
TSPITR again on this tablespace with a target time earlier than 5PM Friday, nor can
you use the current control file to recover the database to any time earlier than 5PM
Friday. Your only option will be point-in-time recovery of your entire database
using a restored control file.

To investigate past states of your data to identify the target time for TSPITR, you
can use features of Oracle such as Oracle Flashback Query, Oracle Transaction
Query and Oracle Flashback Version Query to find the point in time when
unwanted database changes occurred. See "Oracle Flashback Query: Recovering at
the Row Level" on page 9-3 for more details on Flashback Query, and Oracle
Database Application Developer's Guide - Fundamentals for more information on
Flashback Transaction Query and Flashback Version Query.

Determining the Recovery Set: Analyzing Data Relationships
Your recovery set starts out including the datafiles for the tablespaces you wish to
recover. If, however, objects in the tablespaces you need have relationships (such as
constraints) to objects in other tablespaces, you will have to account for this
relationship before you can perform TSPITR. You have three choices when faced
with such a relationship:

■ Add the tablespace including the related objects to your recovery set

■ Remove the relationship

■ Suspend the relationship for the duration of TSPITR

Identifying and Resolving Dependencies on the Primary Database
The TS_PITR_CHECK view lets you identify relationships between objects that span
the recovery set boundaries. If this view returns rows when queried, then

Planning and Preparing for TSPITR

10-8 Backup and Recovery Advanced User’s Guide

investigate and correct the problem. Proceed with TSPITR only when TS_PITR_
CHECK view returns no rows for the tablespaces not in the recovery set. Record all
actions performed during this step so that you can re-create any suspended or
removed relationships after completing TSPITR.

The following query illustrates how to use the TS_PITR_CHECK view. For an
example with an initial recovery set consisting of tools and users, the SELECT
statement against TS_PITR_CHECK would be as follows:

SELECT *
FROM SYS.TS_PITR_CHECK
WHERE (
 TS1_NAME IN ('USERS','TOOLS')
 AND TS2_NAME NOT IN ('USERS','TOOLS')
)
OR (
 TS1_NAME NOT IN ('USERS','TOOLS')
 AND TS2_NAME IN ('USERS','TOOLS')
);

To run a complete TSPITR check on all the tablespaces in the database (not just the
tablespaces in the recovery set), you can run the following query:

SELECT *
FROM SYS.TS_PITR_CHECK
WHERE (
 'SYSTEM' IN (TS1_NAME, TS2_NAME)
 AND TS1_NAME <> TS2_NAME
 AND TS2_NAME <> '-1'
)
OR (
 TS1_NAME <> 'SYSTEM'
 AND TS2_NAME = '-1'
);

Because of the number and width of the columns in the TS_PITR_CHECK view, you
may want to format the columns as follows when running the query:

SET LINESIZE 120
COLUMN OBJ1_OWNER HEADING "own1"
COLUMN OBJ1_OWNER FORMAT a6
COLUMN OBJ1_NAME HEADING "name1"
COLUMN OBJ1_NAME FORMAT a5
COLUMN OBJ1_SUBNAME HEADING "subname1"
COLUMN OBJ1_SUBNAME FORMAT a8
COLUMN OBJ1_TYPE HEADING "obj1type"

Planning and Preparing for TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-9

COLUMN OBJ1_TYPE FORMAT a8 word_wrapped
COLUMN TS1_NAME HEADING "ts1_name"
COLUMN TS1_NAME FORMAT a6
COLUMN OBJ2_NAME HEADING "name2"
COLUMN OBJ2_NAME FORMAT a5
COLUMN OBJ2_SUBNAME HEADING "subname2"
COLUMN OBJ2_SUBNAME FORMAT a8
COLUMN OBJ2_TYPE HEADING "obj2type"
COLUMN OBJ2_TYPE FORMAT a8 word_wrapped
COLUMN OBJ2_OWNER HEADING "own2"
COLUMN OBJ2_OWNER FORMAT a6
COLUMN TS2_NAME HEADING "ts2_name"
COLUMN TS2_NAME FORMAT a6
COLUMN CONSTRAINT_NAME HEADING "cname"
COLUMN CONSTRAINT_NAME FORMAT a5
COLUMN REASON HEADING "reason"
COLUMN REASON FORMAT a25 word_wrapped

Assume a case in which the partitioned table tp has two partitions, p1 and p2, that
exist in tablespaces users and tools respectively. Also assume that a partitioned
index called tpind is defined on tp, and that the index has two partitions id1 and
id2 (that exist in tablespaces id1 and id2 respectively). In this case, you would get
the following output when TS_PITR_CHECK is queried against tablespaces users
and tools (assuming appropriate formatting):

own1 name1 subname1 obj1type ts1_name name2 subname2 obj2type own2 ts2_name cname reason
--- ---- ----- ------ ------- ---- ------ -------- --- -------- --- ------
SYSTEM TP P1 TABLE USER TPIND IP1 INDEX PARTITION PARTITION SYS ID1 Partitioned
Objects not fully contained in the recovery set
SYSTEM TP P2 TABLE TOOLS TPIND IP2 INDEX PARTITION PARTITION SYS ID2 Partitioned
Objects not fully contained in the recovery set

The table SYSTEM.tp has a partitioned index tpind that consists of two partitions,
ip1 in tablespace id1 and ip2 in tablespace id2. To perform TSPITR, you must
either drop tpind or include id1 and id2 in the recovery set.

Identifying and Preserving Objects That Will Be Lost After TSPITR
When RMAN TSPITR is performed on a tablespace, any objects created after the
target recovery time are lost. You can preserve such objects, once they are identified,
by exporting them before TSPITR using an Oracle export utility (Data Pump Export

See Also: Oracle Database Reference for more information about the
TS_PITR_CHECK view

Performing Basic RMAN TSPITR

10-10 Backup and Recovery Advanced User’s Guide

or Original Export) and re-importing them afterwards using the corresponding
import utility.

To see which objects will be lost in TSPITR, query the TS_PITR_OBJECTS_TO_BE_
DROPPED view on the primary database. The contents of the view are described in
Table 10–1.

Filter the view for objects whose CREATION_TIME is after the target time for
TSPITR. For example, with a recovery set consisting of users and tools, and a
recovery point in time of November 2, 2002, 7:03:11 AM, issue the following
statement:

SELECT OWNER, NAME, TABLESPACE_NAME,
 TO_CHAR(CREATION_TIME, 'YYYY-MM-DD:HH24:MI:SS')
 FROM TS_PITR_OBJECTS_TO_BE_DROPPED
WHERE TABLESPACE_NAME IN ('USERS','TOOLS')
AND CREATION_TIME > TO_DATE('02-NOV-02:07:03:11','YY-MON-DD:HH24:MI:SS')
ORDER BY TABLESPACE_NAME, CREATION_TIME;

(The TO_CHAR and TO_DATE functions are used to avoid issues with different
national date formats. You can, of course, use local date formats in your own work.)

Performing Basic RMAN TSPITR
Having selected your tablespaces to recover and your target time, you are now
ready to perform RMAN TSPITR. You have a few different options available to you:

■ Fully automated TSPITR--in which you specify an auxiliary destination and let
RMAN manage all aspects of the TSPITR. This is the simplest way to perform
TSPITR, and is recommended unless you specifically need more control over

Table 10–1 TS_PITR_OBJECTS_TO_BE_DROPPED View

Column Name Meaning

OWNER Owner of the object to be dropped.

NAME The name of the object that will be lost as a result of
undergoing TSPITR

CREATION_TIME Creation timestamp for the object.

TABLESPACE_NAME Name of the tablespace containing the object.

See Also: Oracle Database Reference for more information about the
TS_PITR_OBJECTS_TO_BE_DROPPED view

Performing Basic RMAN TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-11

the location of recovery set files after TSPITR or auxiliary set files during
TSPITR, or control over the channel configurations or some other aspect of your
auxiliary instance.

■ Customized TSPITR with an automatic auxiliary instance--in which you base
your TSPITR on the behavior of fully automated TSPITR, possibly still using an
auxiliary destination, but customize one or more aspects of the behavior, such
as the location of auxiliary set or recovery set files, or specifying initialization
parameters or channel configurations for the auxiliary instance created and
managed by RMAN.

■ TSPITR with your own auxiliary instance--in which you take responsibility for
setting up, starting, stopping and cleaning up the auxiliary instance used in
TSPITR, and possibly also manage the TSPITR process using some of the
methods available in customized TSPITR with an automatic auxiliary instance.

Fully Automated RMAN TSPITR
When performing fully automated TSPITR, letting RMAN manage the entire
process, there are only two requirements beyond the preparations in "Planning and
Preparing for TSPITR" on page 10-6:

■ You must specify the auxiliary destination for RMAN to use for the auxiliary set
datafiles and other files for the auxiliary instance.

■ You must configure any channels required for the TSPITR on the target
instance. (The auxiliary instance will use the same channel configuration as the
target instance when performing the TSPITR.)

RMAN bases as much of the configuration for TSPITR as possible on your target
database. During TSPITR, the recovery set datafiles are written in their current
locations on the target database. The same channel configurations in effect on the
target database are used on the auxiliary instance when restoring files from backup.
Auxiliary set datafiles and other auxiliary instance files, however, are stored in the
auxiliary destination.

Using an Auxiliary Destination
Oracle Corporation recommends that you use an auxiliary destination with your
auxiliary instance. Even if you use other methods to rename some or all of the
auxiliary set datafiles, specifying an AUXILIARY DESTINATION parameter
provides a default location for auxiliary set datafiles for which names are not
specified. This way, TSPITR will not fail if you inadvertently do not provide names
for all auxiliary set datafiles.

Performing Basic RMAN TSPITR

10-12 Backup and Recovery Advanced User’s Guide

To specify an auxiliary destination, find a location on disk where there is enough
space to hold your auxiliary set datafiles. Then, use the AUXILIARY DESTINATION
parameter in your RECOVER TABLESPACE command to specify the auxiliary
destination location, as shown in the next section.

Performing Fully Automated RMAN TSPITR
To actually peform automated RMAN TSPITR, start the RMAN client, connecting to
the target database and, if applicable, a recovery catalog. This example shows
connecting in NOCATALOG mode, using operating system authentication:

% rman TARGET /

If you have configured channels that RMAN can use to restore from backup on the
primary instance, then you are ready to perform TSPITR now, by running the
RECOVER TABLESPACE... UNTIL... command.

This example returns the users and tools tablespaces to the end of log sequence
number 1300, and stores the auxiliary instance files (including auxiliary set
datafiles) in the destination /disk1/auxdest:

RMAN> RECOVER TABLESPACE users, tools
 UNTIL LOGSEQ 1300 THREAD 1
 AUXILIARY DESTINATION ’/disk1/auxdest’;

Assuming the TSPITR process completes without error, the tablespaces are taken
offline by RMAN, restored from backup and recovered to the desired point in time
on the auxiliary instance, and then re-imported to the target database. The
tablespaces are left offline at the end of the process. All auxiliary set datafiles and
other auxiliary instance files are cleaned up from the auxiliary destination.

Tasks to Perform After Successful TSPITR
If TSPITR completes successfully, you must back up the recovered tablespaces, and
then you can bring them online.

Note: Do not connect to an auxiliary instance when starting the
RMAN client for automated TSPITR. If there is no connected
auxiliary instance, RMAN constructs the automatic auxiliary
instance for you when carrying out the RECOVER TABLESPACE
command. (If there is a connected auxiliary instance, RMAN will
assume that you are trying to manage your own auxiliary instance,
and try to use the connected auxiliary for TSPITR.)

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-13

Backing Up Recovered Tablespaces After TSPITR It is very important that you backup
recovered tablespaces immediately after TSPITR is completed.

After you perform TSPITR on a tablespace, you cannot use backups of that
tablespace from before the TSPITR was completed and the tablespace put back on
line. If you start using the recovered tablespaces without taking a backup, you are
running your database without a usable backup of those tablespaces. For this
example, the users and tools tablespaces must be backed up, as follows:

RMAN> BACKUP TABLESPACE users, tools;

You can then safely bring the tablespaces online, as follows:

RMAN> SQL "ALTER TABLESPACE users, tools ONLINE";

Your recovered tablespaces are now ready for use.

Handling Errors in Automated TSPITR
In the event of an error during automated TSPITR, you should refer to
"Troubleshooting RMAN TSPITR" on page 10-29. The auxiliary set datafiles and
other auxiliary instance files will be left in place in the auxililary destination as an
aid to troubleshooting. The state of the recovery set files is determined by the type
of failure. Once you resolve the problem, you can try your TSPITR operation again.

Performing Customized RMAN TSPITR with an RMAN-Managed
Auxiliary Instance

There are several aspects of RMAN TSPITR which you can customize while still
mostly following the basic procedure described in "Fully Automated RMAN
TSPITR" on page 10-11:

■ Renaming or relocating your recovery set datafiles, so that the datafiles making
up the recovered tablespaces are not stored in the original locations after
TSPITR

■ Specifying a location other than the auxiliary destination for some or all
auxiliary set datafiles (or not using an auxiliary destination at all)

■ Setting up image copy backups of your datafiles in advance, to speed up
TSPITR by avoiding restores from backup

■ Using a different channel configuration for the auxiliary instance

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

10-14 Backup and Recovery Advanced User’s Guide

■ Specifying different initialization parameters for your RMAN-managed
auxiliary instance

Renaming TSPITR Recovery Set Datafiles with SET NEWNAME
You may not want the recovery set datafiles restored and recovered in their original
locations. The SET NEWNAME command, used in a RUN block, lets you specify a
new destination for the restore from backup and recovery of a datafile.

Create a RUN block and use SET NEWNAME commands within it to specify new
recovery set filenames, as shown here:

RUN {
...
 SET NEWNAME FOR DATAFILE ’ORACLE_HOME/oradata/trgt/users01.dbf’
 TO ’/newfs/users01.dbf’;
 ...other setup commands...
 RECOVER TABLESPACE users, tools UNTIL SEQUENCE 1300 THREAD 1;
}

RMAN restores the specified datafile from backup to the new location during
TSPITR and recovers it in the new location, and updates the control file so that the
newly recovered datafile replaces the old one in the control file. Any existing image
copy backup of a datafile found at the new specified location is overwritten.

If the name specified with SET NEWNAME conflicts with the name of a valid datafile
in the target database, then RMAN reports an error while executing the RECOVER
command. The valid datafile is not overwritten.

Note that RMAN does not detect conflicts between names set with SET NEWNAME
and current datafile names on the target database until the actual RECOVER
TABLESPACE... UNTIL operation. At that point, the conflict is detected, TSPITR
fails and RMAN reports an error. If you rename your recovery set datafiles, be sure

Note: CONFIGURE AUXNAME can be used to rename recovery set
datafiles as well, but the effects of doing so are quite different and
the two commands cannot be used interchangeably. (They do
interact, in that if you use SET NEWNAME to rename a file, this takes
precedence over any renaming performed with CONFIGURE
AUXNAME.) Refer to the discussion of "Using Image Copies for
Faster TSPITR Performance" on page 10-18 for details.

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-15

to assign them names that do not conflict with each other, or with the names of your
current datafiles.

Renaming TSPITR Auxiliary Set Datafiles
Unlike the recovery set datafiles, which can be and usually are stored in their
original locations, the auxiliary set datafiles must not overwrite the corresponding
original files in the target database. If you do not specify a location for an auxiliary
set file that is different from its original location, then TSPITR will fail when RMAN
attempts to overwrite the corresponding file in the original database and discover
that the file is in use.

The simplest way to provide locations for your auxiliary set datafiles is to specify an
auxiliary destination for TSPITR. However, RMAN supports two other methods of
controlling the location of your auxiliary set datafiles: specifying new names for
individual files with SET NEWNAME, and using DB_FILE_NAME_CONVERT to
provide rules for converting datafile names in the target database to datafile names
for the auxiliary database.

Even if you intend to use either of these methods to provide locations for specific
files, it is still suggested that you provide an AUXILIARY DESTINATION argument
to RECOVER TABLESPACE. This will ensure that, if you overlook renaming some
auxiliary set datafiles, your TSPITR will still succeed. Any files not otherwise
renamed will be placed in the auxiliary destination.

Renaming TSPITR Auxiliary Set Datafiles with SET NEWNAME
To use the SET NEWNAME command to specify a new name for an auxiliary set
datafile, enclose your RECOVER TABLESPACE command in a RUN block, and use a
SET NEWNAME command within the RUN block to rename the file. For example:

RMAN> RUN
{
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system01.f'
 TO '/disk1/auxdest/system01.f'
 RECOVER TABLESPACE users, tools
 UNTIL LOGSEQ 1300 THREAD 1
 AUXILIARY DESTINATION ’/disk1/auxdest’;
}

The resulting behavior depends upon whether there is a file at
/disk1/auxdest/system01.f when the RECOVER TABLESPACE command is
executed. If there is an image copy backup of the file ?/oradata/system01.f at
the specified location, created at an SCN prior to the target time for TSPITR, then

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

10-16 Backup and Recovery Advanced User’s Guide

the behavior is as described in "SET NEWNAME and CONFIGURE AUXNAME
With Auxiliary Set Image Copies" on page 10-19. Otherwise, the auxiliary set
datafile will be restored to the NEWNAME specified instead of the default location.
If your intention is only to control where the auxiliary set datafiles are stored, you
should make sure that there is no file stored at the location specified by SET
NEWNAME before performing your TSPITR.

Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles
If you do not want to use an auxiliary destination for all of your auxiliary set
datafiles, but you also do not want to name every file individually, you can include
a DB_FILE_NAME_CONVERT initialization parameter in the initialization parameter
file used by your auxiliary instance. You can only use this method in two
circumstances:

■ If you are creating your own initialization parameter file for RMAN’s
automatically managed auxiliary instance, as described in "Customizing
Initialization Parameters for the Automatic Auxiliary Instance" on page 10-21;

■ If you are creating your own auxiliary instance, as described in "Performing
RMAN TSPITR Using Your Own Auxiliary Instance" on page 10-22.

Refer to the appropriate discussion for your circumstance, to see how to add a
parameter to your initialization parameter file.

The DB_FILE_NAME_CONVERT parameter in the auxiliary instance specifies how to
derive names for files in the auxiliary instance from the original names of the
corresponding files in the target instance.

For example, assume that the target instance contains the following files:

■ ?/oradata/trgt/system01.dbf of the SYSTEM tablespace

■ ?/oradata/trgt/undotbs01.dbf of the undotbs tablespace

and you need to locate the corresponding files in the auxiliary instance in
'/bigtmp', then you would add the following line to the auxiliary instance
parameter file:

DB_FILE_NAME_CONVERT=('?/oradata/trgt', '/bigtmp')

The most important thing to remember is that DB_FILE_NAME_CONVERT needs to
be present in the auxiliary instance parameter file.

If the auxiliary instance was manually created, add DB_FILE_NAME_CONVERT to
the auxiliary instance parameter file (wherever it resides).

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-17

Note that you can still rename individual auxiliary set datafiles using SET
NEWNAME or CONFIGURE AUXNAME. Also, files that do not match the patterns
provided in DB_FILE_NAME_CONVERT will not be renamed. You may wish to use
the AUXILIARY DESTINATION parameter of RECOVER TABLESPACE to ensure
that all auxiliary set datafiles are sent to some destination. If a file is not renamed at
all, TSPITR will fail.

Order of Precedence Among File Renaming Methods
The different methods of renaming files follow an order of precedence, as follows:

■ SET NEWNAME

■ CONFIGURE AUXNAME

■ DB_FILE_NAME_CONVERT

■ AUXILIARY DESTINATION argument to RECOVER TABLESPACE

Settings higher on the list override settings lower on the list, in situations where
both have been applied (by, for example, running RECOVER TABLESPACE...
AUXILIARY DESTINATION on a target database where some auxiliary set datafiles
also have auxnames configured with CONFIGURE AUXNAME).

Specifying Auxiliary Instance Control File Location
You can specify your own location for the control file of your auxiliary instance, if
you use a client-side initialization parameter file. Set the CONTROL_FILES
initialization parameter to specify any location you wish for the control files.

If you do not explicitly specify a location for the control file, RMAN will locate it in
the auxiliary destination if you use the AUXILIARY DESTINATION parameter
when performing TSPITR. If you do not use an AUXILIARY DESTINATION
parameter, the auxiliary instance control files are stored in an operating
system-specific location. (on Unix, ORACLE_HOME/rdbms/admin/params_
auxinit.ora).

No matter where you store your auxiliary instance control file, it is removed at the
end of a successful TSPITR operation. Because control files are relatively small, it is
rare that RMAN will encounter a problem creating an auxiliary control file, but if
there is not enough space to create the control file, TSPITR will fail.

Specifying Auxiliary Instance Online Log Location
If you specify the LOG_FILE_NAME_CONVERT initialization parameter in your
auxiliary instance parameter file, this parameter will determine the online redo log

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

10-18 Backup and Recovery Advanced User’s Guide

location. Otherwise, if RMAN is using an auxiliary destination and managing the
auxiliary instance for you, it creates the online redo log in the auxiliary destination.

Using Image Copies for Faster TSPITR Performance
TSPITR performance can be greatly enhanced by redirecting RMAN to use existing
image copies of the recovery set and auxiliary set datafiles on disk in TSPITR, rather
than restoring them from backup. You can use the CONFIGURE AUXNAME command
with image copies of recovery set datafiles or auxiliary set datafiles, or the SET
NEWNAME command with image copies of auxiliary set datafiles, to tell RMAN
about the possible existence of an image copy of a datafile.

While exact details vary depending on the command used and whether the file is an
auxiliary set or recovery set file, in general, if a suitable image copy is available in
the specified location, then during TSPITR, RMAN uncatalogs the image copy from
the RMAN repository of the target instance, and catalogs it in the control file of the
auxiliary instance. The auxiliary instance then performs point-in-time recovery
using the image copy.

Details of using image copies with each type of file are explained in the following
sections.

Using CONFIGURE AUXNAME With Recovery Set Image Copies
During TSPITR, RMAN looks in the specified AUXNAME location for the datafile, to
see whether the file there is an image copy backup of the datafile, with a checkpoint
SCN early enough that it can be recovered to the target time for TSPITR. If such an
image copy is found, it is used in TSPITR. Otherwise, the datafile is restored and
recovered in its original location, and any file in the location specified by the
AUXNAME is not changed or deleted.

RMAN> CONFIGURE AUXNAME FOR DATAFILE ’ORACLE_HOME/oradata/trgt/users01.dbf’
 TO ’/newfs/users1.dbf’;
...other RMAN commands, if any...
RMAN> RECOVER TABLESPACE users, tools UNTIL SEQUENCE 1300 THREAD 1;

Note: If you do not specify a location for the online redo logs
using LOG_FILE_NAME_CONVERT or AUXILIARY DESTINATION,
your TSPITR will fail trying to create the online redo logs. Even if
DB_FILE_CREATE_DEST or LOG_FILE_CREATE_DEST are
specified in the initialization parameter file, in TSPITR they do not
control the creation of the online redo logs of the auxiliary instance.

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-19

CONFIGURE AUXNAME is meant to be used as the basis of a strategy to make
TSPITR faster by eliminating restore times. If you have tablespaces on which you
anticipate performing TSPITR, you can maintain a set of image copies of the
affected datafiles, updated periodically to the earliest point to which you expect to
perform TSPITR. The expected usage model is:

■ Configure the AUXNAME for the file once

■ Perform "BACKUP AS COPY DATAFILE n FORMAT auxname" regularly to
maintain the updated image copy, or use an incrementally updated backups
strategy as described in Oracle Database Backup and Recovery Basics to keep the
image copies up to date without performing full backups of the datafiles

■ When TSPITR is needed, specify a target time since the last update of the image
copy.

In planning for TSPITR with image copies, remember that you may not know know
which tablespaces will require image copies in advance. As discussed in
"Determining the Recovery Set: Analyzing Data Relationships" on page 10-7,
relationships between the tablespaces you wish to TSPITR and other tablespaces
may require that you add tablespaces to your final recovery set, and still other
tablespaces may wind up in the auxiliary set. You should configure an AUXNAME
for each datafile that is likely to be required, and update image copies of all
datafiles often. However, TSPITR will still work if only a subset of datafiles are
prepared in advance using this strategy. The process will just take longer, and
recover recovery set datafiles for which there are no image copies in their original
locations.

Note thatthe order of precedence of naming methods is still respected when you use
CONFIGURE AUXNAME to rename a recovery set file. A SET NEWNAME for a
recovery set file will override the effect of the CONFIGURE AUXNAME command for
the same file. Behavior in this instance will be as described in "Renaming TSPITR
Recovery Set Datafiles with SET NEWNAME" on page 10-14. SET NEWNAME used
with a recovery set file never refers to an image copy file.

SET NEWNAME and CONFIGURE AUXNAME With Auxiliary Set Image Copies
As with recovery set datafiles, CONFIGURE AUXNAME sets a persistent alternative
location for an auxiliary set datafile image copy, and SET NEWNAME sets an
alternative location for the duration of a RUN block. However, RMAN handles
values for auxiliary set datafiles differently from recovery set datafiles.

If SET NEWNAME is used to specify a new location for an auxiliary set datafile, and
there is an image copy at that location with an SCN such that it can be used in

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

10-20 Backup and Recovery Advanced User’s Guide

TSPITR, then the image copy will be used. If there is no usable image copy at that
location, however, RMAN will restore a usable copy from backup. (If an image copy
is present but the SCN is after the target time for TSPITR, then the datafile is
overwritten by the restored file.)

If CONFIGURE AUXNAME is used to specify a new location for an auxiliary set
datafile, and there is an image copy at that location with an SCN such that it can be
used in TSPITR, then the image copy will be used. If there is no usable copy at the
specified location, the file is restored to this location from bcakup.

As with all auxiliary set files, the file is deleted after successful TSPITR, or left for
use in troubleshooting if TSPITR fails, regardless of whether it was an image copy
created before TSPITR or restored by RMAN from backup during TSPITR.

TSPITR With CONFIGURE AUXNAME and Image Copies: Scenario
You have enough disk space to save image copies of your entire database for use in
TSPITR. In preparation for the possibility that you need perform TSPITR, you
perform the following tasks:

■ Configure an AUXNAME for each datafile in your database using:

CONFIGURE AUXNAME FOR DATAFILE n TO auxname_n;

■ Every week on Sunday night you take an image copy of the database which is
placed in the files referenced by the configured AUXNAMEs:

BACKUP AS COPY DATAFILE n FORMAT auxname_n

Note that if the image copies are all in the same location on disk and named
similarly to the original datafiles, it is possible to use FORMAT or DB_FILE_
NAME_CONVERT options of the BACKUP command and use BACKUP AS COPY
DATABASE instead of performing individual backups of every datafile. For
example if the configured auxnames are a simple translation of the location
'maindisk' to 'auxdisk', you could use the following backup command:

BACKUP AS COPY DATABASE DB_FILE_NAME_CONVERT=(maindisk, auxdisk);

You are then prepared for TSPITR without restoring from backup. If, for example,
an erroneous batch job started at November 15 2003, 19:00:00 updates incorrectly
the tables in the tablespace PARTS. You could use the following command to
perform TSPITR on tablespace PARTS:

RECOVER TABLESPACE parts UNTIL TIME 'November 15 2003, 19:00:00';

Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-21

Because AUXNAMES are configured and refer to datafile copies from an SCN
before the TSPITR target time, the auxiliary set and recovery set datafiles are not
restored from backup. Instead the datafile copies are directly used in recovery,
eliminating the restore overhead.

Note that at the end of the TSPITR, the tablespace PARTS will not be located in the
original datafile locations, but in the auxname locations. If only the auxnames for
the auxiliary set should be used (so that the recovery set is left in its original
locations), then CONFIGURE AUXNAME ... CLEAR should be used before TSPITR is
started. In such a case, though, note that the datafiles will have to be restored.

Customizing Initialization Parameters for the Automatic Auxiliary Instance
The automatic auxiliary instance looks for parameters in a file that is operating
system dependent (for Unix this location is ?/rdbms/admin/params_
auxint.ora, where '?' stands for ORACLE_HOME, and the file is located on the
node running the RMAN client, not necessarily the same node as the one running
the database instances) This default parameter file for the automatic auxiliary
instance is always searched when TSPITR is performed. If the file is not found
RMAN does not generate an error.

Another way to specify parameters for the automatic auxiliary instance is to place
the initializations parameter in a file, and then provide the location of these file with
the SET AUXILIARY INSTANCE PARAMETER command before executing TSPITR.
(Note that the path specified when using SET AUXILIARY INSTANCE
PARAMETER is a path on the system running the RMAN client, not the target or
auxiliary instances.)

RMAN defines the following basic parameters for the automatic auxiliary instance:

■ DB_NAME - Same as db_name of the target database

■ DB_UNIQUE_NAME - Generated, based on the DB_NAME, to be unique

■ DB_BLOCK_SIZE - Same as the DB_BLOCK_SIZE of the target database

■ COMPATIBLE - Same as the compatible setting of the target database

If AUXILIARY DESTINATION is used, RMAN also defines:

■ DB_CREATE_FILE_DEST - Set to the auxiliary destination

■ CONTROL_FILES - Generated filename in the auxiliary destination

When an auxiliary destination is specified, RMAN uses these two parameters in
creating the auxiliary instance online logs and control files in the auxiliary
destination.

Performing RMAN TSPITR Using Your Own Auxiliary Instance

10-22 Backup and Recovery Advanced User’s Guide

If AUXILIARY DESTINATION is not used, then you must use LOG_FILE_NAME_
CONVERT in an auxiliary instance parameter file to specify the online log file names.
Otherwise, TSPITR fails when attempting to create the online logs for the automatic
instance.

If AUXILIARY DESTINATION is not used and you do not use CONTROL_FILES in
an auxiliary instance parameter file, the auxiliary instance will create one controlfile
with an operating system-dependent name in an operating system dependent
location. (In Unix, it defaults to ?/dbs/cntrl_@.dbf, where '?' stands for
ORACLE_HOME and '@' stands for ORACLE_SID. For an automatic auxiliary instance,
ORACLE_SID is randomly generated by RMAN).

It is rarely necessary, however, to alter the parameter file, especially if you provide
an AUXILIARY DESTINATION argument to RECOVER TABLESPACE. If one of the
six basic initialization parameters is overridden in the auxiliary instance parameter
file, it might cause TSPITR to fail. However, other parameters besides these basic
parameters can be added if needed. For example you can use DB_FILE_NAME_
CONVERT to specify the names of the datafiles in the auxiliary set.

Performing RMAN TSPITR Using Your Own Auxiliary Instance
Oracle Corporation recommends that you allow RMAN to manage the creation and
destruction of the auxiliary instance used during RMAN TSPITR. However, creating
and using your own auxiliary instance is also supported. One reason you might
want to do this is to exercise control of channels used in TSPITR. RMAN’s
automatic auxiliary instance uses the configured channels of the target database as
the basis for the channels to configure on the auxiliary instance and use during
backup. If you need different channel settings, and you do not want to use
CONFIGURE to change the settings on the target database, you can operate your
own auxiliary instance.

Preparing Your Own Auxiliary Instance for RMAN TSPITR
Creating an Oracle instance suitable for use as an auxiliary instance requires that
you carry out all of the following steps:

■ Step 1: Create an Oracle Password File for the Auxiliary Instance

■ Step 2: Create an Initialization Parameter File for the Auxiliary Instance

■ Step 3: Check Oracle Net Connectivity to the Auxiliary Instance

■ Step 1: Start the Auxiliary Instance in NOMOUNT Mode

Performing RMAN TSPITR Using Your Own Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-23

Step 1: Create an Oracle Password File for the Auxiliary Instance
For instructions on how to create and maintain Oracle password files, refer to the
Oracle Database Administrator's Guide.

Step 2: Create an Initialization Parameter File for the Auxiliary Instance
Create a client-side initialization parameter file for the auxiliary instance on the
machine where you will be running SQL*Plus to contorl the auxiliary instance. For
this example, we will assume your parameter file is placed at /tmp/initAux.ora.
Set the parameters described in the following table, making sure that paths in
parameters like DB_FILE_NAME_CONVERT, LOG_FILE_NAME_CONVERT and
CONTROL_FILES are all server-side paths, not client-side.

Table 10–2 Initialization Parameters in the Auxiliary Instance

Parameter Mandatory? Value

DB_NAME YES The same name as the target database.

DB_UNIQUE_NAME YES A value different from any database in the same
Oracle home. For simplicity, specify _dbname.
For example, if the target database name is
trgt, then specify _trgt.

LOG_FILE_NAME_
CONVERT

YES Patterns to generate filenames for the online
redo logs of the auxiliary database based on the
online redo log names of the target database.
Query V$LOGFILE.MEMBER, to obtain target
instance online log names, and ensure that the
conversion pattern matches the format of the
filename displayed in the view.

This parameter is the only way to name the
online redo logs for the auxiliary instance.
Without it, TSPITR will fail when trying to open
the auxiliary instance because the online logs
cannot be created.

Note: Some platforms do not support ending
patterns in a forward or backward slash (\ or
/).

REMOTE_LOGIN_
PASSWORDFILE

YES Set to EXCLUSIVE when connecting to the
auxiliary instance by means of a password file.
Otherwise, set to NONE.

COMPATIBLE YES The same value as the parameter in the target
database.

Performing RMAN TSPITR Using Your Own Auxiliary Instance

10-24 Backup and Recovery Advanced User’s Guide

Set other parameters as needed, including the parameters that allow you to connect
as SYSDBA through Oracle Net.

Following are examples of the initialization parameter settings for the auxiliary
instance:

DB_NAME=trgt
DB_UNIQUE_NAME=_trgt
CONTROL_FILES=/tmp/control01.ctl
DB_FILE_NAME_CONVERT=('/oracle/oradata/trgt/','/tmp/')
LOG_FILE_NAME_CONVERT=('/oracle/oradata/trgt/redo','/tmp/redo')
REMOTE_LOGIN_PASSWORDFILE=exclusive
COMPATIBLE =10.1.0
DB_BLOCK_SIZE=8192

DB_BLOCK_SIZE YES If this initialization parameter is set in the target
database, then it must be set to the same value
in the auxiliary instance.

DB_FILE_NAME_
CONVERT

NO Patterns to convert filenames for the datafiles of
the auxiliary database. You can use this
parameter to generate filenames for those files
that you did not name with SET NEWNAME or
CONFIGURE AUXNAME. Obtain the datafile
filenames by querying V$DATAFILE.NAME,
and ensure that the conversion pattern matches
the format of the filename displayed in the
view. You can also specify this parameter on the
RECOVER command itself.

Note: Some platforms do not support ending
patterns in a forward or backward slash (\ or
/).

See Also: "Using DB_FILE_NAME_CONVERT
to Name Auxiliary Set Datafiles" on page 10-16

CONTROL_FILES NO Filenames that do not conflict with the control
file names of the target instance (or any other
existing file).

Note: After setting these initialization parameters, ensure that you
do not overwrite the initialization settings for the production files
at the target database.

Table 10–2 Initialization Parameters in the Auxiliary Instance

Parameter Mandatory? Value

Performing RMAN TSPITR Using Your Own Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-25

Step 3: Check Oracle Net Connectivity to the Auxiliary Instance
The auxiliary instance must have a valid net service name. Before proceeding, use
SQL*Plus to ensure that you can establish a connection to the auxiliary instance.

Preparing RMAN Commands for TSPITR with Your Own Auxiliary Instance
If you are running your own auxiliary instance, then you may find that the
sequence of commands required for TSPITR is quite long, if you allocate a complex
channel configuration for restoring from backup, or if you are not using DB_FILE_
NAME_CONVERT to control file naming.

You may wish to store the sequence of commands for TSPITR in a command file, a
text file under the host operating system. This command file can be read into
RMAN using the @ command (or the CMDFILE command line argument when
starting RMAN) to execute the series of commands in the command file.

See "Using RMAN with Command Files" on page 1-4 for more details.

Planning Channels for TSPITR with Your Own Auxiliary Instance
When you run your own auxiliary instance, the default behavior is to use the
automatic channel configuration of the target instance. However, if you decide to
allocate your own channel configuration, you can do so by including the ALLOCATE
AUXILIARY CHANNEL commands in a RUN block along with the RECOVER
TABLESPACE command for TSPITR. Plan out these commands, if necessary, and
add them to the sequence of commands you will run to perform your TSPITR.

See the example in "Executing TSPITR With Your Own Auxiliary Instance: Scenario"
on page 10-27 for details of how to include channel allocation in your TSPITR script.

Planning Datafile Names with Your Own Auxiliary Instance: SET NEWNAME
You may wish to use SET NEWNAME commands, either to refer to existing image
copies of auxiliary set files to improve TSPITR performance, or to assign new
names to the recovery set files for after TSPITR. Plan out these commands, if
necessary, and add them to the sequence of commands you will run to perform
your TSPITR.

See Also: Oracle Net Services Administrator's Guide for more
information about Oracle Net

Performing RMAN TSPITR Using Your Own Auxiliary Instance

10-26 Backup and Recovery Advanced User’s Guide

Executing TSPITR with Your Own Auxiliary Instance
With the preparations complete and your TSPITR commands completely planned,
you are now ready to carry out your TSPITR. The following steps are required:

■ Step 1: Start the Auxiliary Instance in NOMOUNT Mode

■ Step 2: Connect the RMAN Client to Target and Auxiliary Instances

■ Step 3: Execute the RECOVER TABLESPACE Command

Step 1: Start the Auxiliary Instance in NOMOUNT Mode
Before beginning RMAN TSPITR, use SQL*Plus to connect to the auxiliary instance
and start it in NOMOUNT mode, specifying a parameter file if necessary. For example:

SQL> CONNECT SYS/oracle@aux AS SYSDBA
SQL> STARTUP NOMOUNT PFILE='/tmp/initAux.ora'

Remember that the path for the PFILE will be a client-side path, on the machine
from which you run SQL*Plus, not a server-side path.

Because the auxiliary instance does not yet have a control file, you can only start the
instance in NOMOUNT mode. Do not create a control file or try to mount or open the
auxiliary instance for TSPITR.

Step 2: Connect the RMAN Client to Target and Auxiliary Instances
Start RMAN connecting to the target and the manually created auxiliary instance:

% rman target / auxiliary sysuser/syspwd@auxiliary_service_name

Step 3: Execute the RECOVER TABLESPACE Command
Now you are ready to run your TSPITR commands. In the simplest case, just
execute the RECOVER TABLESPACE... UNTIL command at the RMAN prompt:

RMAN> RECOVER TABLESPACE ts1, ts2... UNTIL TIME ’time’

If you want to use ALLOCATE CHANNEL or SET NEWNAME then create a RUN
block which includes those commands before the RECOVER TABLESPACE
command.

RUN {
 ALLOCATE CHANNEL c1 DEVICE TYPE DISK;
 ALLOCATE CHANNEL c2 DEVICE TYPE SBT;
 # and so on...
 RECOVER TABLESPACE ts1, ts2 UNTIL TIME ’time’;

Performing RMAN TSPITR Using Your Own Auxiliary Instance

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-27

}

Using a Command File for TSPITR Entering a lengthy series of commands in a RUN
block can be error-prone. To avoid making mistakes entering the sequence of
commands, create a command file (called, for example, /tmp/tspitr.rman) to
store the whole sequence of commands for your TSPITR. Review it carefully to
catch any errors. Then run the command file at the RMAN prompt, using this
command:

RMAN> @/tmp/tspitr.rman ;

The results will be the same as in the previous example.

Executing TSPITR With Your Own Auxiliary Instance: Scenario
The following example shows the execution of a RECOVER TABLESPACE...
UNTIL operation using the following features of RMAN TSPITR:

■ Managing your own auxiliary instance

■ Configuring channels for restore of backups from disk and sbt

■ Using recoverable image copies for some auxiliary set datafiles using SET
NEWNAME

■ Specifying new names for recovery set datafiles using SET NEWNAME

The process used is as follows:

1. Prepare the auxiliary instance as described in "Preparing Your Own Auxiliary
Instance for RMAN TSPITR" on page 10-22. Specify "tspitr" as the password
for the auxiliary instance in the password file, and set up the auxiliary instance
parameter file /bigtmp/init_tspitr_prod.ora with the following
settings:

db_name=PROD
db_unique_name=tspitr_PROD
control_files=/bigtmp/tspitr_cntrl.f'
db_file_name_convert=('?/oradata/prod', '/bigtmp')
log_file_name_convert=('?/oradata/prod', '/bigtmp')
compatible=10.1.0
block_size=8192
remote_login_password=exclusive

Performing RMAN TSPITR Using Your Own Auxiliary Instance

10-28 Backup and Recovery Advanced User’s Guide

2. Create service name pitprod for the auxiliary instance, and check for
connectivity.

3. Start the auxiliary instance in NOMOUNT state, as shown:

$ sqlplus
SQL> connect sys/tspitr@pit_prod as sysdba
SQL> startup nomount pfile=/bigtmp/init_tspitr_prod.ora

4. Start up RMAN, connecting to the auxiliary instance:

% rman target / auxiliary sys/tspitr@pit_prod

5. Enter the following commands, in a RUN block, to set up and execute the
TSPITR:

run {
Specify NEWNAMES for recovery set datafiles
 SET NEWNAME FOR DATAFILE '?/oradata/prod/clients01.f'
 TO '?/oradata/prod/clients01_rec.f';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/clients02.f'
 TO '?/oradata/prod/clients02_rec.f';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/clients03.f'
 TO '?/oradata/prod/clients03_rec.f';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/clients04.f'
 TO '?/oradata/prod/clients04_rec.f';

Specified newnames for some of the auxiliary set
datafiles that have a valid image copy to avoid restores:
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system01.f'
 TO '/backups/prod/system01_monday_noon.f';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system02.f'
 TO '/backups/prod/system02_monday_noon.f';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/undo01.f'
 TO '/backups/prod/undo01_monday_noon.f';

Specified the disk and SBT channels to use
 allocate auxiliary channel c1 device type disk;
 allocate auxiliary channel c2 device type disk;
 allocate auxiliary channel t1 device type sbt;
 allocate auxiliary channel t2 device type sbt;

Recovered the clients tablespace to 24 hours ago:
 RECOVER TABLESPACE clients UNTIL TIME 'sysdate-1';
 }

Troubleshooting RMAN TSPITR

RMAN Tablespace Point-in-Time Recovery (TSPITR) 10-29

If the TSPITR operation is successful, then the results are:

■ The recovery set datafiles are registered in the target database control file under
the names specified with SET NEWNAME, with their contents as of the time
specified time for the TSPITR.

■ The auxiliary files are removed by RMAN, including the control files, online
logs and auxiliary set datafiles of the auxiliary instance

■ The auxiliary instance is shut down

If the TSPITR operation fails, the auxiliary files are left on disk for troubleshooting
purposes. If RMAN created the auxiliary instance, it is shut down; otherwise it is
left in whatever state it was in when the TSPITR operation failed.

Troubleshooting RMAN TSPITR
A variety of problems can cause TSPITR to fail before the process is complete.

■ There can be name conflicts between files already in the target database,
filenames assigned by the SET NEWNAME or CONFIGURE AUXNAME
commands, and filenames generated by the effect of the DB_FILE_NAME_
CONVERT parameter.

■ When RMAN exports the metadata about recovered objects from the auxiliary
instance, it uses space in the temporary tablespace for sorting. If there is
insufficient space in the temporary tablespace for the sorting operation, you
need to increase the amount of sort space available.

Troubleshooting TSPITR Example: Filename Conflicts
If your uses of SET NEWNAME, CONFIGURE AUXNAME and DB_FILE_NAME_
CONVERT cause multiple files in the auxiliary or recovery sets to have the same
name, RMAN will report an error during TSPITR. To correct the problem, use
different values for these parameters to eliminate the duplicate name.

Troubleshooting TSPITR Example: Insufficient Sort Space during Export
In this case, you need to edit the recover.bsq file, wherever it resides on your
host platform. For instance, on UNIX, it is located in $ORACLE_
HOME/rdbms/admin. This file contains the following:

#
tspitr_7: do the incomplete recovery and resetlogs. This member is used once.
#

Troubleshooting RMAN TSPITR

10-30 Backup and Recovery Advanced User’s Guide

define tspitr_7
<<<
make the control file point at the restored datafiles, then recover them
RECOVER CLONE DATABASE TABLESPACE &1&;
ALTER CLONE DATABASE OPEN RESETLOGS;
PLUG HERE the creation of a temporary tablespace if export fails due to lack
of temporary space.
For example in Unix these two lines would do that:
sql clone "create tablespace aux_tspitr_tmp
datafile ''/tmp/aux_tspitr_tmp.dbf'' size 500K";
}
>>>

Remove the '#' symbols from the last two lines of comments and modify the
statement to create a temporary tablespace. Retry the TSPITR operation, increasing
the size of the tablespace until the export operation succeeds.

Troubleshooting: Restarting Manual Auxiliary Instance After TSPITR Failure
If you are managing your own auxiliary instance and there is a failure in TSPITR,
then before you can try TSPITR again, you must shut down the auxiliary instance,
correct the problem which interfered with TSPITR, and then bring the auxiliary
instance back to NOMOUNT before trying TSPITR again.

Duplicating a Database with Recovery Manager 11-1

11
Duplicating a Database with Recovery

Manager

This chapter describes how to use the DUPLICATE command to create a duplicate
database for testing purposes. This chapter contains these topics:

■ Creating a Duplicate Database: Overview

■ Generating Files for the Duplicate Database

■ Preparing the Auxiliary Instance for Duplication: Basic Steps

■ Creating a Duplicate Database on a Local or Remote Host

■ Database Duplication Examples

See Also: Oracle Data Guard Concepts and Administration to learn
how to create a standby database with the DUPLICATE command

Creating a Duplicate Database: Overview

11-2 Backup and Recovery Advanced User’s Guide

Creating a Duplicate Database: Overview
You can use the RMAN DUPLICATE command to create a duplicate database from
target database backups while still retaining the original target database. The
duplicate database can be identical to the original database or contain only a subset
of the original tablespaces.

A duplicate database is a copy of a target database that you can run independently
for a variety of purposes. For example, you can use it to:

■ Test backup and recovery procedures

■ Export data such as a table that was inadvertently dropped from the production
database, and then import it back into the production database

For example, you can duplicate the production database on host1 to host2, and
then use the duplicate database on host2 to practice restore and recovery scenarios
while the production database on host1 continues as usual.

A duplicate database is distinct from a standby database, although both types of
databases are created with the DUPLICATE command. A standby database is a copy
of the primary database that you can update continually or periodically with
archived logs from the primary database. If the primary database is damaged or
destroyed, then you can perform failover to the standby database and effectively
transform it into the new primary database. A duplicate database, on the other
hand, cannot be used in this way: it is not intended for failover scenarios and does
not support the various standby recovery and failover options.

How Recovery Manager Duplicates a Database
To prepare for database duplication, you must first create an auxiliary instance as
described in "Preparing the Auxiliary Instance for Duplication: Basic Steps" on
page 11-9. For the duplication to work, you must connect RMAN to both the target
(primary) database and an auxiliary instance started in NOMOUNT mode.

You must have at least one auxiliary channel allocated on the auxiliary instance. The
principal work of the duplication is performed by the auxiliary channel, which
starts a server session on the duplicate host. This channel then restores the
necessary backups of the primary database, uses them to create the duplicate
database, and initiates recovery.

See Also: Oracle Data Guard Concepts and Administration to learn
how to create a standby database with the DUPLICATE command

Creating a Duplicate Database: Overview

Duplicating a Database with Recovery Manager 11-3

So long as RMAN is able to connect to the primary and auxiliary instances, the
RMAN client can run on any machine. However, all backups and archived logs
used for creating and recovering the duplicate database must be accessible by the
server session on the duplicate host. If the duplicate host is not the same as the
primary host, then you must make backups on disk on the primary host available to
the duplicate host with the same full path name as in the primary database. When
using disk backups, you can accomplish this goal in any of the following ways:

■ Manually transfer the backups from the primary host to the remote host to an
identical path.

■ Manually transfer the backups from the primary host to the remote host to a
new path, and then run the CATALOG command to add these copies to the
RMAN repository.

■ Use NFS or shared disks and make sure that the same path is accessible in the
remote host.

When using tape backups, you must make the tapes containing the backups
accessible to the remote node, either by physically moving the tape to the remote
host or by means of a network tape server.

 As part of the duplicating operation, RMAN automates the following steps:

■ Creates a control file for the duplicate database

■ Restores the target datafiles to the duplicate database and performs incomplete
recovery by using all available incremental backups and archived logs

■ Shuts down and starts the auxiliary instance (refer to "Task 4: Start the Auxiliary
Instance" on page 11-11 for issues relating to client-side versus server-side
initialization parameter files)

■ Opens the duplicate database with the RESETLOGS option after incomplete
recovery to create the online redo logs (except when running DUPLICATE ...
FOR STANDBY, in which case RMAN does not open the database)

■ Generates a new, unique DBID for the duplicate database (except when you
create a standby database with DUPLICATE ... FOR STANDBY, in which case
RMAN does not create a unique DBID)

During duplication, RMAN must perform incomplete recovery because the online
redo logs in the target are not backed up and cannot be applied to the duplicate
database. The farthest that RMAN can go in recovery of the duplicate database is
the most recent redo log archived by the target database.

Creating a Duplicate Database: Overview

11-4 Backup and Recovery Advanced User’s Guide

Database Duplication Options
When duplicating a database, you have the following options:

■ You can run the DUPLICATE command with or without a recovery catalog

■ You can skip read-only tablespaces with the SKIP READONLY clause. Read-only
tablespaces are included by default. If you omit them, then you can add them
later.

■ You can exclude tablespaces from the duplicate database with the SKIP
TABLESPACE clause. You can exclude any tablespace except the SYSTEM
tablespace or tablespaces containing rollback or undo segments.

■ You can create the duplicate database in a new host. If the directory structure is
the same on the new host, then you can specify the NOFILENAMECHECK option
and reuse the target datafile filenames for the duplicate datafiles.

■ You can duplicate a target database on a traditional file system to an ASM or
Oracle Managed Files location.

■ You can recover the duplicate database to a past point in time, using use the
SET UNTIL command or DUPLICATE ... UNTIL command. By default, the
DUPLICATE command creates the duplicate database by using the most recent
backups of the target database and then performs recovery to the most recent
consistent point contained in the incremental backups and archived logs.

■ You can register the duplicate database in the same recovery catalog as the
target database. This option is possible because RMAN gives the duplicate
database a new, unique DBID during duplication.

■ In some cases, you can set the duplicate database DB_NAME differently from the
target database DB_NAME. More specifically, if the duplicate database exists in
the same Oracle home as the target, then the DB_NAME initialization parameter

See Also: Oracle Data Guard Concepts and Administration to learn
how to create a standby database with RMAN

Note: If you copy the target database by means of operating
system utilities, then the DBID of the copied database remains the
same as the original database. To register the copy database in the
same recovery catalog with the original, you must change the DBID
with the DBNEWID utility (refer to Oracle Database Utilities).

Generating Files for the Duplicate Database

Duplicating a Database with Recovery Manager 11-5

must be different. If the duplicate database is in a different Oracle home from
the target database, then the DB_NAME setting for the duplicate database must
be unique among databases in its Oracle home. This is true whether or not the
duplicate database is on the same host as the target.

Duplicating a Database: Prerequisites and Restrictions
RMAN duplication involves a number of prerequisites, restrictions, and caveats.
Review the restrictions section of the DUPLICATE command in the Oracle Database
Recovery Manager Reference for a complete list.

Generating Files for the Duplicate Database
When duplicating a database, RMAN creates the required database files. This
section describes these stages of file creation:

■ Creating the Duplicate Control Files

■ Creating the Duplicate Online Redo Logs

■ Renaming Datafiles When Duplicating a Database

Creating the Duplicate Control Files
The DUPLICATE command creates the control files by using the names listed in the
initialization parameter file of the auxiliary instance. When choosing names for the
duplicate database control files, make sure that you set the initialization parameter
settings correctly so that you do not overwrite the production files at the target
database.

Creating the Duplicate Online Redo Logs
Table 11–1 lists the options for creating the names of the duplicate online redo logs.
The options appear in the order of precedence.

Table 11–1 Order of Precedence for Online Redo Log Filename Creation

Order Method Result

1 Specify the LOGFILE clause of
DUPLICATE command.

Creates online redo logs as specified.

Generating Files for the Duplicate Database

11-6 Backup and Recovery Advanced User’s Guide

The order of precedence determines how RMAN renames the online redo logs. For
example, if you specify both the LOGFILE clause and the LOG_FILE_NAME_
CONVERT parameter, then RMAN uses the LOGFILE clause. If you specify neither of
the first two options, then RMAN uses the original target redo log filenames for the
duplicate database files.

Renaming Datafiles When Duplicating a Database
There are several methods of specifying new names to be used for the datafiles of
your duplicate database. Listed in order of precedence, they are:

■ Use the SET NEWNAME command, within a RUN block enclosing both the SET
NEWNAME commands and the DUPLICATE command.

■ Use the CONFIGURE AUXNAME command to specify new names for existing
datafiles, before using the DUPLICATE command.

■ Specify the DB_FILE_NAME_CONVERT parameter to the DUPLICATE command,
to specify a rule for converting filenames for any datafiles not renamed using
SET NEWNAME or CONFIGURE AUXNAME. Note that you can specify multiple
conversion pairs, and use ASM disk groups.

2 Set LOG_FILE_NAME_CONVERT
initialization parameter.

Transforms target filenames, for example,
from log_* to duplog_*. Note that you
can specify multiple conversion pairs.

This parameter allows the redo log to exist as
long as the size matches, because it uses the
REUSE parameter when creating the logs.

3 Do none of the preceding steps. Makes the duplicate filenames the same as the
target filenames. You must specify the
NOFILENAMECHECK option when using this
method and the duplicate database should be
in a different host.

Caution: If the target and duplicate databases are in the same
host, then do not use the name of an online redo log currently in
use by the target database. Also, do not use the name of an online
log currently in use by the target database if the duplicate database
is in a different host and NOFILENAMECHECK is not used.

Table 11–1 Order of Precedence for Online Redo Log Filename Creation

Order Method Result

Generating Files for the Duplicate Database

Duplicating a Database with Recovery Manager 11-7

■ Set the DB_FILE_NAME_CONVERT initialization parameter, subject to the same
semantics and limitations as the DB_FILE_NAME_CONVERT parameter to the
DUPLICATE command.

If yo do not use any of these options, then the duplicate database will reuse the
original datafile filenames from the target database.

Preventing Filename Checking
It is possible for CONFIGURE AUXNAME, SET NEWNAME, or DB_FILE_NAME_
CONVERT to generate a name that is already in use in the target database. In this
case, specify NOFILENAMECHECK to avoid an error message. For example, assume
that the host A database has two files: datafile 1 is named
/oracle/data/file1.f and datafile 2 is named /oracle/data/file2.f.
When duplicating to host B, you use a configured channel to duplicate as follows:

RUN
{
 SET NEWNAME FOR DATAFILE 1 TO /oracle/data/file2.f; # rename df 1 as file2.f
 SET NEWNAME FOR DATAFILE 2 TO /oracle/data/file1.f; # rename df 2 as file1.f
 DUPLICATE TARGET DATABASE TO newdb;
}

Even though you issued SET NEWNAME commands for all the datafiles, the
DUPLICATE command fails because the duplicate filenames are still in use in the
target database. Although datafile 1 in the target is not using
/oracle/data/file2.f, and datafile 2 in the target is not using
/oracle/data/file1.f, the target filename is used by one of the duplicate
datafiles and so you must specify NOFILENAMECHECK to avoid an error.

Skipping Read-Only Tablespaces When Duplicating a Database
When you specify SKIP READONLY, RMAN does not duplicate the datafiles of
read-only tablespaces. After duplication is complete, you can query the views in the
duplicate database described in Table 11–2 and Table 11–3 to determine which
datafiles were skipped. The STATUS and ENABLED columns are the key to
determining the current status of the duplicate datafile.

Table 11–2 Read-Only Tablespaces in V$DATAFILE View on Duplicate Database

In the column ... The value is ...

STATUS OFFLINE

ENABLED READ ONLY

Generating Files for the Duplicate Database

11-8 Backup and Recovery Advanced User’s Guide

Skipping OFFLINE NORMAL Tablespaces When Duplicating a Database
When tablespaces are taken offline with the OFFLINE NORMAL option before a
DUPLICATE operation, RMAN does not duplicate the datafiles of these tablespaces.
After duplication, you can manually add or drop these tablespaces. Query the
views in the duplicate database described in Table 11–4 and Table 11–5 to determine
which datafiles are offline, based on the STATUS and ENABLED columns.

When you take a tablespace offline with the IMMEDIATE option, RMAN duplicates
rather than skips the tablespace because this tablespace requires recovery. As with
online tablespaces, RMAN requires a valid backup for duplication.

NAME MISSINGxxx

Table 11–3 Read-Only Tablespaces in Data Dictionary Views on Duplicate Database

View In the column ... The value is ...

DBA_DATA_FILES STATUS AVAILABLE

DBA_TABLESPACES STATUS READ ONLY

Table 11–4 Offline Tablespaces in V$ Views on Duplicate Database

In the column ... The value is ...

STATUS OFFLINE

ENABLED DISABLED

NAME MISSINGxxx

Table 11–5 Offline Tablespaces in Data Dictionary Views on Duplicate Database

View In the column ... The value is ...

DBA_DATA_FILES STATUS AVAILABLE

DBA_TABLESPACES STATUS OFFLINE

Table 11–2 Read-Only Tablespaces in V$DATAFILE View on Duplicate Database

In the column ... The value is ...

Preparing the Auxiliary Instance for Duplication: Basic Steps

Duplicating a Database with Recovery Manager 11-9

Preparing the Auxiliary Instance for Duplication: Basic Steps
Perform these tasks before performing RMAN duplication:

■ Task 1: Create an Oracle Password File for the Auxiliary Instance

■ Task 2: Ensure Oracle Net Connectivity to the Auxiliary Instance

■ Task 3: Create an Initialization Parameter File for the Auxiliary Instance

■ Task 4: Start the Auxiliary Instance

■ Task 5: Mount or Open the Target Database

■ Task 6: Make Sure You Have the Necessary Backups and Archived Redo Logs

■ Task 7: Allocate Auxiliary Channels if Automatic Channels Are Not Configured

Task 1: Create an Oracle Password File for the Auxiliary Instance
For instructions on how to create and maintain Oracle password files, refer to Oracle
Database Administrator's Guide.

Task 2: Ensure Oracle Net Connectivity to the Auxiliary Instance
The auxiliary instance must be accessible through Oracle Net. Before proceeding,
start SQL*Plus to ensure that you can establish a connection to the auxiliary
instance. Note that you must connect to the auxiliary instance with SYSDBA
privileges, so a password file must exist.

Task 3: Create an Initialization Parameter File for the Auxiliary Instance
Create a client-side initialization parameter file for the auxiliary instance, and set at
least the parameters described in the following table.

Parameter You must specify:

DB_NAME The same name used in the DUPLICATE command.
You must set the DB_NAME parameter in the duplicate
parameter file to the same database name specified in
the DUPLICATE command. You cannot use the same
database name for the target and duplicate when the
duplicate is in the same Oracle home as the target. If
the duplicate is in a different Oracle home from the
target, then its DB_NAME just has to differ from other
database names in the same Oracle home.

Preparing the Auxiliary Instance for Duplication: Basic Steps

11-10 Backup and Recovery Advanced User’s Guide

You can also set the initialization parameters described in the following table.

Set other initialization parameters, including the parameters that allow you to
connect as SYSDBA through Oracle Net, as needed. When duplicating to the same
host or to a new host with a different file system, pay attention to all initialization
parameters specifying path names. Verify that all paths are accessible on the host
where the database is being duplicated.

Following are examples of the initialization parameter settings for the duplicate
database:

DB_NAME=newdb
CONTROL_FILES=(/dup/oracle/oradata/trgt/control01.ctl,
 /dup/oracle/oradata/trgt/control02.ctl)
note that the following two initialization parameters have equivalents
on the DUPLICATE command itself
DB_FILE_NAME_CONVERT=(/oracle/oradata/trgt/,/dup/oracle/oradata/trgt/)
LOG_FILE_NAME_CONVERT=(/oracle/oradata/trgt/redo,/dup/oracle/oradata/trgt/redo)

After you create the client-side initialization parameter file, you can run the CREATE
SPFILE command from SQL*Plus to create a server-side initialization parameter
file. You can run this command before or after instance startup. For example, you
can create a server-side parameter file in the default location as follows, specifying
the filename of the client-side initialization parameter file in the FROM clause:

CREATE SPFILE FROM PFILE='/tmp/initDUPDB.ora';

A server-side parameter file in the default location is an advantage when
duplicating a database because you do not need to specify the PFILE parameter on
the DUPLICATE command. Because RMAN shuts down and restarts the auxiliary

CONTROL_FILES Refer to "Creating the Duplicate Control Files" on
page 11-5.

Initialization Parameter You must specify:

DB_FILE_NAME_CONVERT Refer to "Renaming Datafiles When Duplicating a
Database" on page 11-6. You can also specify this
parameter on the DUPLICATE command itself.

LOG_FILE_NAME_CONVERT Refer to "Creating the Duplicate Online Redo Logs" on
page 11-5.

Parameter You must specify:

Preparing the Auxiliary Instance for Duplication: Basic Steps

Duplicating a Database with Recovery Manager 11-11

instance as part of the duplication process, you must tell RMAN which client-side
file to use if you use a client-side parameter file. It is highly recommended that you
create a server-side parameter file for use in database duplication.

Task 4: Start the Auxiliary Instance
Before beginning RMAN duplication, use SQL*Plus to connect to the auxiliary
instance and start it in NOMOUNT mode (specifying a client-side parameter file if
necessary). In this example, oracle is the password for the user with SYSDBA
authority and aux is the net service name for the auxiliary instance:

CONNECT SYS/oracle@aux AS SYSDBA
-- start instance with the server parameter file
STARTUP FORCE NOMOUNT

Because the auxiliary instance does not yet have a control file, you can only start the
instance in NOMOUNT mode. Do not create a control file or try to mount or open the
auxiliary instance.

RMAN shuts down and restarts the auxiliary instance as part of the duplication.
Hence, it is a good idea to create a server-side initialization parameter file for the
auxiliary instance in the default location.

If you do not have a server-side initialization parameter file for the auxiliary
instance in the default location, then you must specify the client-side initialization
parameter file with the PFILE parameter on the DUPLICATE command. The
client-side parameter file for the auxiliary instance must reside on the same host as
the RMAN client used to perform the duplication.

Task 5: Mount or Open the Target Database
Before beginning RMAN duplication, connect SQL*Plus to the target database and
mount or open it if it is not already mounted or open. For example, enter:

-- connect to target database
CONNECT SYS/oracle@trgt
-- mount or open target database
STARTUP

If necessary, you can use a client-side initialization file to start up the target
instance.

Preparing the Auxiliary Instance for Duplication: Basic Steps

11-12 Backup and Recovery Advanced User’s Guide

Task 6: Make Sure You Have the Necessary Backups and Archived Redo Logs
Make sure backups all target datafiles are accessible on the duplicate host. If you do
not have backups of everything, then the duplicate operation fails. The database
backup does not have to be a whole database backup: you can use a mix of full and
incremental backups of individual datafiles.

Archived redo logs required to recover the duplicate database to the desired point
in time must be accessible by the node where the duplicate database is to be created,
either as backups (for instance, on a media manager) or as image copies (or the
actual archived redo logs), either copied to the local disk of the node that contains
the duplicate database, or possibly mounted across a network by some means such
as NFS.

Task 7: Allocate Auxiliary Channels if Automatic Channels Are Not Configured
Start RMAN with a connection to the target database, the auxiliary instance, and, if
applicable, the recovery catalog database. You can start the RMAN client on any
host so long as it can connect to all the instances. If the auxiliary instance requires a
client-side initialization parameter file, then this file must exist on the same host
that runs the RMAN client.

In this example, a connection is established to three instances, all through the use of
net service names:

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb AUXILIARY SYS/oracle@aux

If you do not have automatic channels configured, then before issuing the
DUPLICATE command, manually allocate at least one auxiliary channel within the
same RUN command. The channel type (DISK or sbt) must match the media where
the backups of the target database are located. If the backups reside on disk, then
the more channels you allocate, the faster the duplication will be. For tape backups,
limit the number of channels to the number of devices available.

RUN
{
 # to manually allocate a channel of type sbt issue:
 ALLOCATE AUXILIARY CHANNEL ch1 DEVICE TYPE sbt;

 # to manually allocate three auxiliary channels for disk issue (specifying
 # whatever channel id that you want):
 ALLOCATE AUXILIARY CHANNEL aux1 DEVICE TYPE DISK;
 ALLOCATE AUXILIARY CHANNEL aux2 DEVICE TYPE DISK;
 ALLOCATE AUXILIARY CHANNEL aux3 DEVICE TYPE DISK;
 .

Creating a Duplicate Database on a Local or Remote Host

Duplicating a Database with Recovery Manager 11-13

 .
 .
 DUPLICATE ...
}

Creating a Duplicate Database on a Local or Remote Host
The proceture to create a duplicate database depends on your configuration.

Duplicating a Database on a Remote Host with the Same Directory Structure
The simplest case is to duplicate the database to a different host and to use the same
directory structure. In this case, you do not need to change the initialization
parameter file or set new filenames for the duplicate datafiles.

1. Follow the steps in "Preparing the Auxiliary Instance for Duplication: Basic
Steps" on page 11-9.

2. Run the DUPLICATE command, making sure to do the following:

■ If automatic channels are not configured, then allocate at least one auxiliary
channel.

■ Specify the NOFILENAMECHECK parameter on the DUPLICATE command.

■ Specify the PFILE parameter if starting the auxiliary instance with a
client-side parameter file. The client-side parameter file must exist on the
same host as the RMAN client used to perform the duplication.

The following example assumes that the RMAN client is running on the
duplicate host. It duplicates the database with an automatic channel, specifies a
client-side initialization parameter file, and specifies the NOFILENAMECHECK
option:

DUPLICATE TARGET DATABASE TO dupdb
 # specify client-side parameter file (on same host as RMAN client) for
 # auxiliary instance if necessary

Note: If you configure automatic channels, then RMAN can use
configured channels for duplication even if they do not specify the
AUXILIARY option. Nevertheless, if the auxiliary channels need
some special parameters (for example, to point to a different media
management subsystem), then you can configure an automatic
channel with the AUXILIARY option.

Creating a Duplicate Database on a Local or Remote Host

11-14 Backup and Recovery Advanced User’s Guide

 PFILE = /dup/oracle/dbs/initDUPDB.ora
 NOFILENAMECHECK;

RMAN automatically allocates the configured channels, then uses all incremental
backups, archived redo log backups, and archived redo logs to perform incomplete
recovery. Finally, RMAN opens the database with the RESETLOGS option to create
the online redo logs.

Duplicating a Database on a Remote Host with a Different Directory Structure
If you create the duplicate database on a host with a different directory structure,
then you must change several initialization parameters, in order to generate new
filenames for the duplicate database datafiles on the new directory structure. The
different methods available for doing so are described in "Renaming Datafiles When
Duplicating a Database" on page 11-6.

Converting Filenames with Only Initialization Parameters
This procedure assumes that you use only initialization parameters to rename the
duplicate datafiles and log files.

1. Follow the steps in "Preparing the Auxiliary Instance for Duplication: Basic
Steps" on page 11-9. You can either create a client-side parameter file, or copy
the parameter file from its location in the target host directory structure to the
same location in the duplicate host directory structure using operating system
utilities. Verify that you have done all of the following:

■ Set all initialization parameters that end in _DEST or _PATH and specify a
path name.

■ Set DB_FILE_NAME_CONVERT so that it captures all the target datafiles and
converts them appropriately, for example, from /oracle/oradata/ to
/dup/oracle/oradata/.

■ Set LOG_FILE_NAME_CONVERT so that it captures all the online redo logs
and converts them appropriately, for example, /oracle/oradata/redo
to /dup/oracle/oradata/redo.

Creating a Duplicate Database on a Local or Remote Host

Duplicating a Database with Recovery Manager 11-15

2. Perform the following operations when running the duplication:

■ If automatic channels are not configured, then allocate at least one auxiliary
channel.

■ If using a client-side parameter file to start the auxiliary instance, specify
the PFILE parameter.

The following example assumes that the duplicate host can access the same
media manager as the primary database host. The example duplicates the
database with an automatic sbt channel and uses a server-side parameter file
located on the duplicate host to restart the auxiliary instance:

DUPLICATE
 TARGET DATABASE TO dupdb
 DEVICE TYPE sbt # restores from tape backups;
DUPLICATE DEVICE TYPE sbt works only if the sbt device is configured
by CONFIGURE CHANNEL, CONFIGURE DEVICE TYPE, or CONFIGURE DEFAULT DEVICE.

RMAN uses all incremental backups, archived redo log backups, and archived
redo logs to perform incomplete recovery. RMAN then shuts down, starts, and
opens the database with the RESETLOGS option to create the online redo logs.

Converting Filenames with Only DUPLICATE Parameters
This procedure assumes that you use the DB_FILE_NAME_CONVERT parameter of
the DUPLICATE command to rename the duplicate datafiles, and the LOGFILE
clause to specify names and sizes for the online redo logs.

Perform the following operations when running the duplication:

■ If automatic auxiliary channels are not configured, then allocate at least one
auxiliary channel.

Note: You can set multiple conversion pairs in DB_FILE_NAME_
CONVERT and LOG_FILE_NAME_CONVERT. For example, you can
specify that DB_FILE_NAME_CONVERT changes /disk1/dbs to
/dup1/dbs and /disk2/dbs to /dub2/dbs. Also, while this
example focuses on using DB_FILE_NAME_CONVERT, remember
that you can use the CONFIGURE AUXNAME or SET NEWNAME
commands to rename individual datafiles if you cannot easily
generate all of your desired filenames using DB_FILE_NAME_
CONVERT commands.

Creating a Duplicate Database on a Local or Remote Host

11-16 Backup and Recovery Advanced User’s Guide

■ Specify the names and sizes for the duplicate database redo logs in the
LOGFILE clause.

■ Specify new filenames for the duplicate database datafiles with the DB_
FILE_NAME_CONVERT parameter.

■ If using a client-side parameter file to start the auxiliary instance, specify
the PFILE parameter.

The following example duplicates the database with an automatic channel and
specifies an initialization parameter file:

DUPLICATE TARGET DATABASE TO dupdb
 # specify client-side parameter file for auxiliary instance if necessary
 PFILE = /dup/oracle/dbs/initDUPDB.ora
 DB_FILE_NAME_CONVERT=(/oracle/oradata/trgt/,/dup/oracle/oradata/trgt/)
 LOGFILE
 '/dup/oracle/oradata/trgt/redo01.log' SIZE 200K,
 '/dup/oracle/oradata/trgt/redo02.log' SIZE 200K,
 '/dup/oracle/oradata/trgt/redo03.log' SIZE 200K;

Converting Filenames with SET NEWNAME
This procedure assumes that you use the SET NEWNAME command to rename the
duplicate datafiles.

1. Follow the steps in "Preparing the Auxiliary Instance for Duplication: Basic
Steps" on page 11-9, making sure to use an operating system utility to copy the
parameter file from its location in the target host directory structure to the same
location in the duplicate host. Set all initialization parameters that end in _DEST
or _PATH and specify a path name.

2. Perform the following operations when running the duplication:

■ If automatic auxiliary channels are not configured, then allocate at least one
auxiliary channel.

■ If desired, specify the same number of redo log members and groups that
are used in the target database.

■ Specify new filenames for the duplicate database datafiles.

■ If you use a client-side parameter file to start the auxiliary instance, then
specify the PFILE parameter.

The following example uses automatic channels and a default server-side
initialization parameter file for the database duplication, and uses the LOGFILE
clause to specify names and sizes for the online redo logs:

Creating a Duplicate Database on a Local or Remote Host

Duplicating a Database with Recovery Manager 11-17

RUN
{
 # set new filenames for the datafiles
 SET NEWNAME FOR DATAFILE 1 TO '/dup/oracle/oradata/trgt/system01.dbf';
 SET NEWNAME FOR DATAFILE 2 TO '/dup/oracle/oradata/trgt/undotbs01.dbf';
 . . .
 # issue the duplicate command
 DUPLICATE TARGET DATABASE TO dupdb
 # create at least two online redo log groups
 LOGFILE
 GROUP1
 (
 '/dup/oracle/oradata/trgt/redo01a.log',
 '/dup/oracle/oradata/trgt/redo01b.log',
 '/dup/oracle/oradata/trgt/redo01c.log';
) SIZE 200K,
 GROUP2
 (
 '/dup/oracle/oradata/trgt/redo02a.log',
 '/dup/oracle/oradata/trgt/redo02b.log',
 '/dup/oracle/oradata/trgt/redo02c.log';
) SIZE 200K,
 GROUP3
 (
 '/dup/oracle/oradata/trgt/redo03a.log',
 '/dup/oracle/oradata/trgt/redo03b.log',
 '/dup/oracle/oradata/trgt/redo03c.log';
) SIZE 200K;

RMAN uses all incremental backups, archived redo log backups, and archived redo
logs to perform incomplete recovery. RMAN shuts down, starts up, and then opens
the database with the RESETLOGS option to create the online logs.

Converting Filenames with CONFIGURE AUXNAME
This procedure assumes that you use the CONFIGURE AUXNAME command to
rename the duplicate datafiles.

1. Follow the steps in "Preparing the Auxiliary Instance for Duplication: Basic
Steps" on page 11-9, making sure to use an operating system utility to copy the
parameter file from its location in the target host directory structure to the same
location in the duplicate host directory structure. Set all initialization
parameters that end in _DEST or _PATH and specify a path name.

Creating a Duplicate Database on a Local or Remote Host

11-18 Backup and Recovery Advanced User’s Guide

2. Add the following features when creating the RMAN commands to perform the
duplication:

■ Prepare CONFIGURE AUXNAME commands for all datafiles, to be executed
before database duplication.

■ If automatic auxiliary channels are not allocated, then allocate at least one
auxiliary channel.

■ Use a LOGFILE clause to specify redo log groups and members for the
duplicate database. (You do not have to use the same number of redo log
groups or redo log group members in the duplicate database as you did in
the target database.)

■ If you start the auxiliary instance with a client-side parameter file, then
specify the PFILE parameter. The client-side parameter file must reside on
the same host as the RMAN client used to perform the duplication.

The following example uses CONFIGURE AUXNAME to set new datafile names, uses
automatic channels and a client-side initialization parameter file for the database
duplication, and uses the LOGFILE clause to specify names and sizes for the online
redo logs.

configure the new desired filenames
 CONFIGURE AUXNAME FOR DATAFILE 1
 TO '/dup/oracle/oradata/trgt/system01.dbf';
 CONFIGURE AUXNAME FOR DATAFILE 2
 TO '/dup/oracle/oradata/trgt/undotbs01.dbf';
... add more CONFIGURE AUXNAME commands as needed

run the DUPLICATE command
DUPLICATE TARGET DATABASE TO dupdb
specify client-side parameter file for auxiliary instance if necessary
PFILE = /dup/oracle/dbs/initDUPDB.ora
.
.
.
create at least two online redo log groups
 LOGFILE
 GROUP1
 (
 '/dup/oracle/oradata/trgt/redo01a.log',
 '/dup/oracle/oradata/trgt/redo01b.log',
 '/dup/oracle/oradata/trgt/redo01c.log';
) SIZE 200K,
 GROUP2

Creating a Duplicate Database on a Local or Remote Host

Duplicating a Database with Recovery Manager 11-19

 (
 '/dup/oracle/oradata/trgt/redo02a.log',
 '/dup/oracle/oradata/trgt/redo02b.log',
 '/dup/oracle/oradata/trgt/redo02c.log';
) SIZE 200K,
 GROUP3
 (
 '/dup/oracle/oradata/trgt/redo03a.log',
 '/dup/oracle/oradata/trgt/redo03b.log',
 '/dup/oracle/oradata/trgt/redo03c.log';
) SIZE 200K;

RMAN uses all incremental backups, archived redo log backups, and archived redo
logs to perform incomplete recovery and then opens the database with the
RESETLOGS option to create the online redo logs.

After the duplication is complete, clear the configured auxiliary names for the
datafiles in the duplicate database, so that they are not overwritten by mistake. For
example, enter the following:

un-specify auxiliary names for the datafiles
CONFIGURE AUXNAME FOR DATAFILE 1 CLEAR;
CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR;
.
.
.
and so on.

Creating a Duplicate Database on the Local Host
When creating a duplicate database on the same host as the target database, follow
the same procedure as for duplicating to a remote host with a different directory
structure as described in "Duplicating a Database on a Remote Host with a Different
Directory Structure" on page 11-14.

You can duplicate the database to the same Oracle home as the target database, but
you must use a different database name from the target database, and convert the
filenames by means of the same methods used for conversion on a separate host.

Caution: Do not use the NOFILENAMECHECK option when
duplicating to the same Oracle home as the primary database. If
you do, then the DUPLICATE command may overwrite the datafiles
of the target database.

Database Duplication Examples

11-20 Backup and Recovery Advanced User’s Guide

Duplicating a Database to an Automatic Storage Management Environment
The process for creating a duplicate database to an Automatic Storage Management
or Oracle Managed Files location is similar to the procedure described in
"Duplicating a Database on a Remote Host with a Different Directory Structure" on
page 11-14. However, you must edit the initialization parameter file in the auxiliary
instance to set the DB_CREATE_FILE_DEST parameter to refer to an ASM disk
group, and eliminate parameters such as DB_FILE_NAME_CONVERT and LOG_
FILE_NAME_CONVERT which are used to control the naming of any files in the
duplicate database which will be created in ASM during the duplication process.

For example, edit the file as follows to create the database files in the disk group
named disk1:

*.DB_CREATE_FILE_DEST = '+disk1'

Database Duplication Examples
Here are some common variations on the process of duplicating a database.

Duplicating When the Datafiles Use Inconsistent Paths: Example
This example assumes the following:

■ You are using recovery catalog database catdb.

■ The target database trgt is on host1 and contains eight datafiles, which are
spread out over multiple directories.

■ You want to duplicate the target to database dupdb on remote host host2.

■ host1 and host2 use different file systems.

■ You want to store the datafiles in host2 in the /oradata1, /oradata2 ...
through /oradata7 subdirectories.

■ You want to exclude tablespace tools from the duplicate database, but keep all
of the other tablespaces.

■ You have used an operating system utility to copy the initialization parameter
file from host1 to an appropriate location in host2.

■ You have reset all initialization parameters that end in _DEST or _PATH and
specify a path name.

■ You want two online redo logs groups, each with two members of size 200 KB,
which on the duplicate system will be stored in the directory "/duplogs".

Database Duplication Examples

Duplicating a Database with Recovery Manager 11-21

■ You have disk copies or backup sets stored on disk for all the datafiles and
archived redo logs in the target database, and you have manually moved them
to host2 by means of an operating system utility.

■ You have configured the default device to sbt. The media management device
is accessible by host2.

■ The auxiliary instance uses a server-side initialization parameter file in the
default location (so the PFILE parameter is not necessary on the DUPLICATE
command).

CONNECT TARGET /;
CONNECT CATALOG rman/cat@catdb;
CONNECT AUXILIARY SYS/oracle@dupdb;

note that a RUN command is necessary because you can only execute SET NEWNAME
within a RUN command
RUN
{
 # The DUPLICATE command uses an automatic sbt channel.
 # Because the target datafiles are spread across multiple directories,
 # run SET NEWNAME rather than DB_FILE_NAME_CONVERT
 SET NEWNAME FOR DATAFILE 1 TO '/oradata1/system01.dbf';
 SET NEWNAME FOR DATAFILE 2 TO '/oradata2/undotbs01.dbf';
 SET NEWNAME FOR DATAFILE 3 TO '/oradata3/cwmlite01.dbf';
 SET NEWNAME FOR DATAFILE 4 TO '/oradata4/drsys01';
 SET NEWNAME FOR DATAFILE 5 TO '/oradata5/example01.dbf';
 SET NEWNAME FOR DATAFILE 6 TO '/oradata6/indx01.dbf';
 # Do not set a newname for datafile 7, because it is in the tools tablespace,
 # and you are excluding tools from the duplicate database.
 SET NEWNAME FOR DATAFILE 8 TO '/oradata7/users01.dbf';
 DUPLICATE TARGET DATABASE TO dupdb
 SKIP TABLESPACE tools
 LOGFILE
 GROUP 1 ('/duplogs/redo01a.log',
 '/duplogs/redo01b.log') SIZE 200K REUSE,
 GROUP 2 ('/duplogs/redo02a.log',
 '/duplogs/redo02b.log') SIZE 200K REUSE;
}

Resynchronizing the Duplicate Database with the Target Database: Example
This example makes the same assumptions as in "Duplicating When the Datafiles
Use Inconsistent Paths: Example" on page 11-20.

Database Duplication Examples

11-22 Backup and Recovery Advanced User’s Guide

In this case, the assumption is that you want to update the duplicate database daily
so that it stays current with the target database. Therefore the CONFIGURE
command is used to set persistent new names for the datafiles, to use in the daily
duplication process.

This script performs the onetime setup of the names for the data files, and should be
run once.

start RMAN and then connect to the databases
CONNECT TARGET /;
CONNECT CATALOG rman/cat@catdb;
CONNECT AUXILIARY SYS/oracle@dupdb;

configure auxiliary names for the datafiles only once
CONFIGURE AUXNAME FOR DATAFILE 1 TO '/oradata1/system01.dbf';
CONFIGURE AUXNAME FOR DATAFILE 2 TO '/oradata2/undotbs01.dbf';
CONFIGURE AUXNAME FOR DATAFILE 3 TO '/oradata3/cwmlite01.dbf';
CONFIGURE AUXNAME FOR DATAFILE 4 TO '/oradata4/drsys01';
CONFIGURE AUXNAME FOR DATAFILE 5 TO '/oradata5/example01.dbf';
CONFIGURE AUXNAME FOR DATAFILE 6 TO '/oradata6/indx01.dbf';
Do not set a newname for datafile 7, because it is in the tools tablespace,
and you are excluding tools from the duplicate database.
CONFIGURE AUXNAME FOR DATAFILE 8 TO '/oradata7/users01.dbf';

This script is run daily to peform the duplication:

start RMAN and then connect to the databases
CONNECT TARGET /;
CONNECT CATALOG rman/cat@catdb;
CONNECT AUXILIARY SYS/oracle@dupdb;

Create the duplicate database. Issue the same command daily
to re-create the database, thereby keeping the duplicate
in sync with the target.
DUPLICATE TARGET DATABASE TO dupdb
SKIP TABLESPACE tools
 LOGFILE
 GROUP 1 ('/duplogs/redo01a.log',
 '/duplogs/redo01b.log') SIZE 200K REUSE,
 GROUP 2 ('/duplogs/redo02a.log',
 '/duplogs/redo02b.log') SIZE 200K REUSE;

Database Duplication Examples

Duplicating a Database with Recovery Manager 11-23

Creating Duplicate of the Database at a Past Point in Time: Example
This duplication example assumes the following:

■ The target database trgt and duplicate database dupdb are on different hosts
but have exactly the same directory structure.

■ You want to name the duplicate database files the same as the target files.

■ You are not using a recovery catalog.

■ You are using automatic channels for disk and sbt, which are already
configured.

■ You want to recover the duplicate database to one week ago in order to view
the data in prod1 as it appeared at that time.

CONNECT TARGET SYS/oracle@trgt
CONNECT AUXILIARY SYS/oracle@dupdb

DUPLICATE TARGET DATABASE TO dupdb
 NOFILENAMECHECK UNTIL TIME 'SYSDATE-7';

Duplicating with a Client-Side Parameter File: Example
If you use a client-side initialization parameter file to start the auxiliary instance,
then it must reside on the same host as the RMAN client used to perform the
duplication. Assume the following scenario:

■ The target host is host_tar and the duplicate host is host_dup

■ The client-side initialization parameter file on host_dup is named
/orahome/dbs/initTEST.ora.

■ The hosts host_dup and host_tar are linked by a network.

In this scenario, you can run the RMAN client (that is, run the DUPLICATE
command in an RMAN session) either on host_tar or host_dup.

Running RMAN from host_dup
If you run the executable on host_dup, you can duplicate the database as follows:

DUPLICATE
 TARGET DATABASE TO dupdb
 DEVICE TYPE sbt
 PFILE='/orahome/dbs/initTEST.ora';

Database Duplication Examples

11-24 Backup and Recovery Advanced User’s Guide

Because the initialization parameter file used by the auxiliary instance resides on
the same node as the RMAN client, you can reference the local filename of the
parameter file.

Running RMAN from host_tar
In this scenario, you run RMAN on the same host as the target database rather than
on the host with the duplicate database. Hence, the client-side initialization
parameter file needed by the DUPLICATE command is not located on the same node
as the RMAN client. You must transfer the parameter file from host_dup to host_
tar, or remotely mount the directory containing the parameter file by some means
such as NFS, so that it can be accessed from the target host.

Copying the Parameter File from host_dup to host_tar In this scenario, you manually
copy the file from one host to another. In Unix systems you could use the cp
command:

% cp /net/host_dup/orahome/dbs/initTEST.ora /net/host_tar/tmp

Then, you can start RMAN on host_tar and perform the duplication with the
following command:

% rman TARGET SYS/oracle@trgt AUXILIARY SYS/oracle@dupdb
RMAN> DUPLICATE TARGET DATABASE TO dupdb
 DEVICE TYPE sbt PFILE='/net/host_tar/tmp/initTEST.ora';
RMAN> EXIT

Mounting the host_dup File System on host_tar In this scenario, you mount the host_
dup file system on the host_tar file system by using /net/host_dup as the
mount point. The /net/host_dup/initTEST.ora filename on host_tar points
to the /orahome/dbs/initTEST.ora file residing on host_dup. Then, you can
run the duplication as follows:

DUPLICATE
 TARGET DATABASE TO dupdb
 DEVICE TYPE sbt
 PFILE='/net/host_dup/initTEST.ora';

Migrating Databases To and From ASM with Recovery Manager 12-1

12
Migrating Databases To and From ASM with

Recovery Manager

This chapter describes how to migrate a database into and out of an ASM disk
group using Recovery Manager. It covers the following topics:

■ Migrating a Database into ASM

■ Migrating the Flash Recovery Area to ASM

■ Migrating a Database from ASM to Non-ASM Storage

■ PL/SQL Scripts Used in Migrating to ASM Storage

Migrating a Database into ASM

12-2 Backup and Recovery Advanced User’s Guide

Migrating a Database into ASM
To take advantage of Automatic Storage Management with an existing database you
must migrate that database into ASM. This migration is performed using Recovery
Manager (RMAN) even if you are not using RMAN for your primary backup and
recovery strategy.

A database can be moved from non-ASM disk storage directly into ASM, or you can
back the database up to tape and then from tape backups move it into ASM.
Moving the database to tape backup and then into ASM is recommended if your
database is so large that you cannot have copies of the database on non-ASM disk
storage and ASM disk storage simultaneously. You can back the database up to
tape, convert your non-ASM disk storage into an ASM disk group, and then restore
from tape to the ASM disk group.

Limitation on ASM Migration with Transportable Tablespaces
The procedure described here does not work for transportable (foreign) tablespaces.
Such tablespaces needs to be made read-write and imported into the database,
before they can be migrated into ASM using this procedure.

Preparing to Migrate a Database to ASM
There are several steps required to prepare your database for migration and collect
useful information you will need later, before you start the actual migration process.

Determine Your DBID
If you are not using a recovery catalog, you may need to know your DBID. You
must restore your control file from autobackup during the migration process, and
you will need to set your DBID before you restore the control file.

Your DBID should be part of the permanent records you keep about your database.
If you do not have it in your records, the easiest way to find out your DBID is to
connect the RMAN client to the database to be migrated. RMAN displays the DBID
whenever it starts up. For example:

% rman TARGET /
Recovery Manager: Release 10.1.0.2.0 - Production

Copyright (c) 1995, 2003, Oracle. All rights reserved.

connected to target database: RDBMS (DBID=774627068)

Migrating a Database into ASM

Migrating Databases To and From ASM with Recovery Manager 12-3

RMAN> exit

Make a note of this value.

Determine Names of Database Files
Obtain the filenames of the control files, datafiles, and online redo logs for your
database. This information will useful if you decide to migrate back to old
(non-ASM) storage later. Information about datafiles is available by querying
V$DATAFILE, and the control file names can be found in the CONTROL_FILES
initialization parameter.

Generate RMAN Command File to Undo ASM Migration
If you need to migrate your database back to non-ASM storage later, this process
will be simplified if you generate an RMAN command file now with the necessary
commands to perform this migration. Even if you make changes to your database
later, such as adding datafiles, the command file you create now will serve as a
useful starting point.

There is a PL/SQL script described in "Generating ASM-to-Non-ASM Storage
Migration Script" on page 12-14 which will generate the necessary RMAN
commands for you. Run this script and save the output as part of the permanent
records you keep for your database.

Disk-Based Migration of a Database to ASM
If you have enough disk space that you can have both your entire non-ASM
database and your ASM disk group on disk at the same time, you can do the
migration directly without using tapes.

Once you have completed the preparations in "Preparing to Migrate a Database to
ASM" on page 12-2, begin the migration procedure.

The procedure differs slightly between primary and standby databases. A number
of the steps described in this procedure apply only in one or the other case. There
are also a few steps where the procedure is different depending upon whether you
are using a recovery catalog. The steps that vary are identified as necessary in the
description of the process.

To perform the migration, carry out the following steps:

1. Disable change tracking.

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;

Migrating a Database into ASM

12-4 Backup and Recovery Advanced User’s Guide

2. If this is standby database, stop managed recovery mode.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3. Shut down the database consistently. For example:

SQL> SHUTDOWN IMMEDIATE

4. Modify the initialization parameter file of the target database as follows:

■ Set DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n (where
n=1-4) to refer to the desired ASM disk groups.

■ If the database uses a server parameter file (SPFILE), then remove the
CONTROL_FILES parameter that specifies locations of the control file. The
control file will be moved to the DB_CREATE_* destination and the server
parameter file will be automatically updated. If you are using a client-side
parameter file (PFILE), then set the CONTROL_FILES parameter to the ASM
alias for the control file name (for example, CONTROL_FILES=+disk_
group/cf1).

5. Startup the database in nomount mode:

RMAN> STARTUP NOMOUNT;

6. Restore the control file into new locations from location specified in the old
SPFILE or PFILE:

RMAN> RESTORE CONTROLFILE FROM 'filename_of_old_control_file';

7. Mount the database. For example:

RMAN> ALTER DATABASE MOUNT;

8. Copy the database into the ASM disk group using the following command:

RMAN> BACKUP AS COPY DATABASE FORMAT '+disk_group';

You may be able to speed up the copy process by increasing RMAN parallelism.
For example:

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 4;
RMAN> BACKUP AS COPY DATABASE FORMAT ’+disk_group’;

9. Switch all datafiles into new ASM disk group

 RMAN> SWITCH DATABASE TO COPY;

Migrating a Database into ASM

Migrating Databases To and From ASM with Recovery Manager 12-5

All datafiles are now in ASM.

If this database a standby database, then do not open the database or start
managed recovery at this time.

If this is a primary database (that is, not a standby database), then you can open
the database.

RMAN> ALTER DATABASE OPEN;

Note that there is no need to perform an OPEN RESETLOGS.

10. If you are migrating a primary database, then move your online logs into ASM
at this time. For each online redo log, create a new one in ASM, archive the
current redo log, and then delete the old non-ASM log. For a PL/SQL script that
can perform this task for you, see "Migrating Online Redo Logs to ASM
Storage" on page 12-15.

If this is a standby database, then online logs do not exist (only standby online
logs exist) and therefore cannot be renamed at this point. However, you must
delete any online log files that might have been created if the database was used
as a primary database in the past. Delete these files using the operating system
delete command.

When the standby database is activated, online logs will automatically be
added as ASM files. For each standby online redo log file, create a new one in
ASM, and delete an old one from the non-ASM storage. For a PL/SQL script
that can perform this task for you, see "Migrating Standby Online Redo Log
Files to ASM Storage" on page 12-14.

At this point the migration is complete. The original datafiles, still in non-ASM
storage, are cataloged as datafile copies in the RMAN repository. You can use them
as backups, or reclaim the disk space by deleting them.

If you were using change tracking for incremental backups, you can re-enable it
now. For example:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING;

If you decide to migrate back to old storage, you can switch back to the original
datafiles, using the script created in "Preparing to Migrate a Database to ASM" on
page 12-2. If you have not yet deleted your original datafiles, you can also use the
SWITCH DATABASE TO COPY command to switch back rather than going through
the whole migration process.

Migrating a Database into ASM

12-6 Backup and Recovery Advanced User’s Guide

Cleanup of Non-ASM Files After ASM Migration
You can delete the old database files to free disk space. The RMAN repository has
records of the old datafiles, so you can delete these with an RMAN command. The
old control files and online redo logs, however, are not in the repository and must
be deleted with host operating system commands. This example shows how to
perform this under Unix, using the rm command for the online redo logs and
control files:

delete datafiles
RMAN> DELETE COPY OF DATABASE;
RMAN> HOST 'rm old_online_redo_logs';
RMAN> HOST 'rm old_control_files';

Using Tape Backups to Migrate a Database to ASM
This alternative procedure is useful when you do not have enough disk space to
hold both the non-ASM version of your database and the ASM disk group that will
hold your database after the migration. The database is backed up from non-ASM
storage to tape using RMAN, then restored from tape into ASM storage.

Once you have completed the preparations in "Preparing to Migrate a Database to
ASM" on page 12-2, begin the migration procedure.

Performing Migration of a Database to ASM Storage using RMAN Tape Backup
To migrate your non-ASM database into ASM storage using a tape backup, use the
following procedure:

1. Backup the whole database to tape using RMAN. For example:

 RMAN> BACKUP DEVICE TYPE SBT DATABASE;

After backup is done, disable change tracking. For example:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;

If this is standby database, stop managed recovery mode.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Shut down the database consistently. For example:

SQL> SHUTDOWN IMMEDIATE

At this point you can delete the old database files and create your ASM disk groups.

Migrating a Database into ASM

Migrating Databases To and From ASM with Recovery Manager 12-7

2. Modify the initialization parameter file of the target database as follows:

■ Set DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n (where
n=1-4) to refer to the desired ASM disk groups.

■ If the database uses a server parameter file (SPFILE), then remove the
CONTROL_FILES parameter that specifies locations of the control file. The
control file will be moved to the DB_CREATE_* destination and the server
parameter file will be automatically updated.

If you are using a client-side parameter file (PFILE), then set the CONTROL_
FILES parameter to the ASM alias for the control file name (for example,
CONTROL_FILES=+disk_group/cf1).

3. Startup the database in nomount mode. For example:

 RMAN> STARTUP NOMOUNT;

4. Restore the control file from backup into its new locations. If you are using a
reovery catalog, then issue this command:

 RMAN> RESTORE CONTROLFILE;

If you are not using a recovery catalog, then you will need to set your DBID and
allocate channels to perform the restore of your control file. For example:

 RMAN> RESTORE CONTROLFILE FROM AUTOBACKUP;

5. Mount the database. For example:

 RMAN> ALTER DATABASE MOUNT;

6. Now restore database into new location, using RMAN commands. You can
enter these manually, as shown in this example:

 RMAN> RUN {
 2> SET NEWNAME FOR DATAFILE 1 TO NEW;
 3> SET NEWNAME FOR DATAFILE 2 TO NEW;
 4> ...add one line for each datafile
 5> RESTORE DATABASE;
 6> SWITCH ALL;
 6> }

Be sure to include a SET NEWNAME FOR DATAFILE filenumber TO NEW
statement for each datafile in the database.

Migrating a Database into ASM

12-8 Backup and Recovery Advanced User’s Guide

The RESTORE DATABASE command instructs RMAN to restore into location
DB_CREATE_FILE_DEST, which has now been updated to refer to the ASM
disk group. New names are generated for each datafile automatically.

If the database has a large number of datafiles, it is more convenient to use the
following PL/SQL script to generate the required RMAN commands for the
RESTORE operation:

 set serveroutput on;
 declare
 cursor df is select file# from v$datafile;
 begin
 dbms_output.put_line('run');
 dbms_output.put_line('{');
 for dfrec in df loop
 dbms_output.put_line('set newname for datafile ' ||
 dfrec.file# || ' to new;');
 end loop;
 dbms_output.put_line('restore database;');
 dbms_output.put_line('switch all;');
 dbms_output.put_line('}');
 end;

Running this PL/SQL code causes the SQL*Plus client to display an RMAN script
which you can save to a file and run as a command file in the RMAN client.

After this operation all datafiles are in ASM.

Now you must create new tempfiles for the temporary tablespaces. For each
temporary tablespace, execute the following command:

RMAN> SQL "ALTER TABLESPACE tablespacename ADD TEMPFILE;"

If this a primary database, then recover the database and perform an OPEN
RESETLOGS on the database.

RMAN> RECOVER DATABASE;
RMAN> ALTER DATABASE OPEN RESETLOGS;

Note that you must use the RESETLOGS option because the control file is restored
from backup.

If you were using change tracking for incremental backups, you can re-enable it
now. For example:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING;

Migrating the Flash Recovery Area to ASM

Migrating Databases To and From ASM with Recovery Manager 12-9

If you are migrating a standby database, do not open the database at this time. If
your standby database has standby online logs stored in the flash recovery area,
then you must move standby online log files into ASM storage. For each standby
online redo log file, you must create a new one in ASM, and delete an old one from
the non-ASM storage. For a PL/SQL script that can perform this task for you, see
"PL/SQL Scripts Used in Migrating to ASM Storage" on page 12-14.

Migrating the Flash Recovery Area to ASM
The following procedure assumes that you have a flash recovery area in non-ASM
disk storage and you need to move it to an ASM disk group, possibly preserving its
contents.

1. If logging for Flashback Database is enabled, then disable it. This is needed
because the logs for Flashback Database are located in the flash recovery area.
For example:

SQL> ALTER DATABASE FLASHBACK OFF;

2. If this database is a primary database and your online logs, control file or
archived redo logs are in the flash recovery area, then perform a consistent
shutdown of your database. For example:

SQL> SHUTDOWN IMMEDIATE

If this database is a standby database and your standby online logs, controlfile,
or archive logs are in recovery area, then stop managed recovery mode and
shutdown database.

3. Modify the initialization parameter file of the target database as follows:

■ Set DB_RECOVERY_FILE_DEST to the desired ASM disk group.

■ Modify DB_RECOVERY_FILE_DEST_SIZE if you need to change the size of
the flash recovery area.

4. If you shut down the database in step 2, then bring the database to a
NOMOUNT state. For example:

RMAN> STARTUP NOMOUNT

If the old recovery area has copy of the current controlfile, then restore
controlfile from the old DB_RECOVERY_FILE_DEST and mount the database
again.

RMAN> RESTORE CONTROLFILE FROM 'filename_of_old_control_file';

Migrating the Flash Recovery Area to ASM

12-10 Backup and Recovery Advanced User’s Guide

RMAN> ALTER DATABASE MOUNT;

5. If you are using tape backups, then you should back up the entire flash recovery
area to tape at this time. For example:

RMAN> BACKUP RECOVERY AREA;

You can also use the DELETE INPUT option when backing up the flash
recovery area to tape, if you want to immediately free the non-ASM space
previously used to store flash recovery area files:

RMAN> BACKUP RECOVERY AREA DELETE INPUT;

Note: If you do not have tape, you should not delete the flash recovery area
storage.

6. If you were using flashback logging before to support flashback database, you
can re-enable it now. For example:

SQL> ALTER DATABASE FLASHBACK ON;

Now, optionally, you can move your backups from old recovery area to the new
location. To move the existing backupsets and archived redo log files, use these
two commands:

RMAN> BACKUP AS COPY ARCHIVELOG ALL DELETE INPUT;
RMAN> BACKUP DEVICE TYPE DISK BACKUPSET ALL DELETE INPUT;

Then you must move your datafile copies. For each datafile copy in the old
recovery area, use this command:

RMAN> BACKUP AS COPY DATAFILECOPY "name" DELETE INPUT;

where name is the path to the datafile copy in the old recovery area location.

If the old recovery area location contains a large number of files, you can use
the following PL/SQL script to generate the RMAN commands required to
relocate the files:

set serveroutput on;
declare
 cursor dfc is select name from v$datafile_copy
 where status = 'A'
 and is_recovery_dest_file = 'YES';
begin
 dbms_output.put_line('run');
 dbms_output.put_line('{');

Migrating a Database from ASM to Non-ASM Storage

Migrating Databases To and From ASM with Recovery Manager 12-11

 dbms_output.put_line('backup as copy archivelog all delete input;');
 dbms_output.put_line('backup device type disk backupset all delete
input;');
 for dfcrec in dfc loop
 dbms_output.put_line('backup as copy datafilecopy ''' ||
 dfcrec.name || '''delete input;');
 end loop;
 dbms_output.put_line('}');
end;

7. If this database is a standby database, then do not open the database at this
point. If this database is a physical standby database, then restart managed
recovery mode.

If this is a primary database (that is, not a standby database), then open the
database:

RMAN> alter database open;

8. If this is a standby database, then the online logs cannot be renamed at this
point. You must delete the files containing the online redo logs at the operating
system level. When the standby database is activated, new online logs will
automatically be added as ASM files.

If this is a primary database and you had online redo log files in the flash
recovery area, then you should set up your database to store the online redo
logs in the ASM disk group. For each online redo log group, you must create a
new online redo log in the ASM disk group, archive the current logs, and delete
the old log member. For a PL/SQL script that can perform this task for you, see
"Migrating Online Redo Logs to ASM Storage" on page 12-15.

9. If this is a standby database and you had standby online logs in the recovery
area, you should move standby online logs into ASM. For a PL/SQL script that
can perform this task for you, see "Migrating Standby Online Redo Log Files to
ASM Storage" on page 12-16.

At this point the migration of the flash recovery area is complete.

Migrating a Database from ASM to Non-ASM Storage
Migrating a database back from ASM storage to non-ASM storage is similar to the
original migration to ASM. The process described here assumes that you can
perform the migration through tape. It is very similar to the process described in
"Using Tape Backups to Migrate a Database to ASM" on page 12-6. You can also

Migrating a Database from ASM to Non-ASM Storage

12-12 Backup and Recovery Advanced User’s Guide

migrate from ASM to non-ASM storage using only disk, using a process similar to
the one used to migrate into ASM storage using only disk.

1. If you are not using a recovery catalog, then determine your DBID, as described
in "Determine Your DBID" on page 12-2. Write it down, because you will use it
in restoring your control file into non-ASM storage.

2. Backup the database to tape. For example:

RMAN> BACKUP DEVICE TYPE SBT DATABASE;

3. After backup is done, disable change tracking. For example:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;

4. If this is a standby database, stop managed recovery mode.

5. Perform a consistent shutdown of the database. For example:

SQL> SHUTDOWN IMMEDIATE

6. Delete the ASM disk groups.

7. Modify the initialization parameter file of the database as follows:

■ Remove DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_
n parameters.

■ Add the CONTROL_FILES parameter that specifies locations of the control
file.

8. Startup the database in NOMOUNT mode. For example:

RMAN> STARTUP NOMOUNT;

9. Restore the control file into new locations from backup.

If you are not using a recovery catalog, then you must use a control file
autobackup. Set your DBID and restore the control file, as follows:

RMAN> SET DBID 320066378;
RMAN> RUN {
 ALLOCATE CHANNEL ctape DEVICE TYPE SBT
 PARMS='...';
 ALLOCATE CHANNEL cdisk DEVICE TYPE DISK;
 RESTORE CONTROLFILE FROM AUTOBACKUP;
}

Migrating a Database from ASM to Non-ASM Storage

Migrating Databases To and From ASM with Recovery Manager 12-13

If you use a recovery catalog, then you do not need to use a control file
autobackup, because the recovery catalog contains a record of the control file
backup location. Restore the control file, as follows:

RMAN> RUN {
 ALLOCATE CHANNEL ctape DEVICE TYPE SBT
 PARMS='...';
 ALLOCATE CHANNEL cdisk DEVICE TYPE DISK;
 RESTORE CONTROLFILE;
}

10. Mount the database. For example:

RMAN> ALTER DATABASE MOUNT;

11. Now restore database into new location. Use the RMAN script generated by the
procedure described in "Generating ASM-to-Non-ASM Storage Migration
Script" on page 12-14. As noted in that section, you may need to alter the script
if you have made structural changes to your database since you first migrated
to ASM, or if you want to the location where you wish to store the datafiles.
After this operation all datafiles will be in the locations specified in the file.

12. Now you must create new tempfiles for the temporary tablespaces. For each
temporary tablespace, execute the following command:

RMAN> SQL "ALTER TABLESPACE tablespacename ADD TEMPFILE tempfilename;"

13. If this a standby database, then do not open the database at this time.

If this is a primary database, then recover and open the database. Note that you
must perform an OPEN RESETLOGS because the control file is restored from
backup.

RMAN> RECOVER DATABASE;
RMAN> ALTER DATABASE OPEN RESETLOGS;

14. If this is a primary database, then move your online logs back into old location.
For each online redo log group, carry out the following steps in SQL*Plus:

 ALTER DATABASE ADD LOGFILE SIZE BYTES FILENAME new_name;
 ALTER DATABASE ARCHIVE LOG CURRENT;
 ALTER DATABASE DROP LOGFILE old_name;

If this is a standby database, then you should move standby online logs back to
the old location. For each standby online log, execute the following commands
in SQL*Plus:

PL/SQL Scripts Used in Migrating to ASM Storage

12-14 Backup and Recovery Advanced User’s Guide

ALTER DATABASE ADD STANDBY LOGFILE SIZE BYTES FILENAME new_name;
ALTER DATABASE DROP STANDBY LOGFILE old_name;

15. If this is a standby database, then start managed recovery mode at this time.

At this point, the migration from ASM to non-ASM storage is complete. You may
want to enable change tracking for incremental backups, if you were using it before
the migration. For example:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING;

PL/SQL Scripts Used in Migrating to ASM Storage
The following PL/SQL scripts perform tasks which arise in more than one of the
migration scenarios described in this chapter.

Generating ASM-to-Non-ASM Storage Migration Script
You can use the following PL/SQL script to generate a series of RMAN commands
that you can use to migrate your database back from ASM to non-ASM disk
storage.

set serveroutput on;
declare
 cursor df is select file#, name from v$datafile;
begin
 dbms_output.put_line('run');
 dbms_output.put_line('{');
 for dfrec in df loop
 dbms_output.put_line('set newname for datafile ' ||
 dfrec.file# || ' to ''' || dfrec.name ||''' ;');
 end loop;
 dbms_output.put_line('restore database;');
 dbms_output.put_line('switch all;');
 dbms_output.put_line('}');
end;

Running this PL/SQL code causes the SQL*Plus client to display an RMAN script
which you can save to a file and later run as a command file in the RMAN client to
migrate your datafiles back out of ASM storage.

The script queries V$DATAFILE to find out the filenames for your datafiles before
they are moved to ASM. Running this script later will restore the same set of
datafiles to their pre-ASM locations. If you decide to store the files in a different

PL/SQL Scripts Used in Migrating to ASM Storage

Migrating Databases To and From ASM with Recovery Manager 12-15

disk location when moving them out of ASM, update the generated RMAN
commands to use different destination filenames. If you add datafiles to your
database, edit the script to include SET NEWNAME commands to specify locations
for the new datafiles. If you delete datafiles, remove the corresponding commands
from the migration script.

Migrating Online Redo Logs to ASM Storage
The following PL/SQL script can be used to migrate your online redo log groups
into ASM, as part of migrating a database or a flash recovery area into ASM. For
each online redo log group, the script adds a log file stored in ASM, archives the
current redo logs, and then drops the non-ASM log file.

Save this script into a file and run it from within SQL*Plus to migrate the online
logs.

declare
 cursor orlc is select lf.member, l.bytes
 from v$log l, v$logfile lf
 where l.group# = lf.group#
 and lf.type = 'ONLINE'
 order by l.thread#, l.sequence#;
 type numTab_t is table of number index by binary_integer;
 type charTab_t is table of varchar2(1024) index by binary_integer;
 byteslist numTab_t;
 namelist charTab_t;
 procedure migrateorlfile(name IN varchar2, bytes IN number) is
 retry number;
 stmt varchar2(1024);
 als varchar2(1024) := 'alter system switch logfile';
 begin
 select count(*) into retry from v$logfile;
 stmt := 'alter database add logfile size ' || bytes;
 execute immediate stmt;
 stmt := 'alter database drop logfile ''' || name || '''';
 for i in 1..retry loop
 begin
 execute immediate stmt;
 exit;
 exception
 when others then
 if i > retry then
 raise;
 end if;

PL/SQL Scripts Used in Migrating to ASM Storage

12-16 Backup and Recovery Advanced User’s Guide

 execute immediate als;
 end;
 end loop;
 end;
begin
 open orlc;
 fetch orlc bulk collect into namelist, byteslist;
 close orlc;
 for i in 1..namelist.count loop
 migrateorlfile(namelist(i), byteslist(i));
 end loop;
end;

Migrating Standby Online Redo Log Files to ASM Storage
The following PL/SQL script can be used to migrate your standby online redo log
files into ASM, as part of migrating your whole database into ASM.

Save this script into a file and run it from within SQL*Plus to migrate the standby
online logs.

declare
 cursor srlc is select lf.member, l.bytes
 from v$standby_log l, v$logfile lf
 where l.group# = lf.group#
 and lf.type = 'STANDBY';
 type numTab_t is table of number index by binary_integer;
 type charTab_t is table of varchar2(1024) index by binary_integer;
 byteslist numTab_t;
 namelist charTab_t;
 procedure migratesrl(name IN varchar2, bytes IN number) is
 stmt varchar2(1024);
 begin
 stmt := 'alter database add standby logfile size ' || bytes;
 execute immediate stmt;
 stmt := 'alter database drop standby logfile ''' || name || '''';
 execute immediate stmt;
 end;
begin
 open srlc;
 fetch srlc bulk collect into namelist, byteslist;
 close srlc;
 for i in 1..namelist.count loop
 migratesrl(namelist(i), byteslist(i));
 end loop;

PL/SQL Scripts Used in Migrating to ASM Storage

Migrating Databases To and From ASM with Recovery Manager 12-17

end;

PL/SQL Scripts Used in Migrating to ASM Storage

12-18 Backup and Recovery Advanced User’s Guide

Managing the Recovery Catalog 13-1

13
Managing the Recovery Catalog

This chapter describes how to manage an RMAN recovery catalog, which holds
RMAN repository data for one or more databases in a separate database schema, in
addition to using the control files of the databases.

This chapter contains these topics:

■ Creating a Recovery Catalog

■ Managing Target Database Records in the Recovery Catalog

■ Resynchronizing the Recovery Catalog

■ Working with RMAN Stored Scripts in the Recovery Catalog

■ Managing the Control File When You Use a Recovery Catalog

■ Backing Up and Recovering the Recovery Catalog

■ Exporting and Importing the Recovery Catalog

■ Increasing Availability of the Recovery Catalog

■ Querying the Recovery Catalog Views

■ Determining the Schema Version of the Recovery Catalog

■ Upgrading the Recovery Catalog

■ Dropping the Recovery Catalog

See Also: Oracle Database Backup and Recovery Basics to learn how
to manage the RMAN control file repository without a recovery
catalog

Creating a Recovery Catalog

13-2 Backup and Recovery Advanced User’s Guide

Creating a Recovery Catalog
Creating a recovery catalog is a three-step process: you must configure the database
that will contain the recovery catalog, create the recovery catalog owner, and then
create the recovery catalog itself.

Configuring the Recovery Catalog Database
When you use a recovery catalog, RMAN requires that you maintain a recovery
catalog schema. The recovery catalog is stored in the default tablespace of the
schema. Note that SYS cannot be the owner of the recovery catalog.

Decide which database you will use to install the recovery catalog schema, and also
how you will back up this database. You should not install the catalog in the target
database: this tactic defeats the purpose of the catalog. Also, decide whether to
operate the catalog database in ARCHIVELOG mode, which is recommended.

Planning the Size of the Recovery Catalog Schema
You must allocate space to be used by the catalog schema. The size of the recovery
catalog schema depends upon the number of databases monitored by the catalog,
and the number and size of RMAN scripts stored in the catalog. The schema also
grows as the number of archived redo log files and backups for each database
grows.

For an example, assume that the trgt database has 100 files, and you back up the
database once a day, producing 50 backup sets containing 1 backup piece each. If
you assume that each row in the backup piece table uses the maximum amount of
space, then one daily backup will consume less than 170 KB in the recovery catalog.
So, if you back up once a day for a year, then the total storage in this period is about
62 MB. Assume approximately the same amount for archived logs. Hence, the worst
case is about 120 MB for a year for metadata storage.

For a more typical case in which only a portion of the backup piece row space is
used, 15 MB for each year is a realistic estimate.

If you plan to register multiple databases in your recovery catalog, remember to
add up the space required for each one based on the previous calculation to arrive
at a total size for the default tablespace of the recovery catalog schema.

Allocating Disk Space for the Recovery Catalog Database
If you are creating your recovery catalog in an already-existing database, add
enough room to hold the default tablespace to the recovery catalog schema. If you

Creating a Recovery Catalog

Managing the Recovery Catalog 13-3

are creating a new database to hold your recovery catalog, then, in addition to the
space for the recovery catalog schema itself, you must allow space for other files in
the recovery catalog database:

■ SYSTEM tablespace

■ Temporary tablespaces

■ Rollback segment tablespaces

■ Online redo log files

Most of the space used in the recovery catalog database is devoted to supporting
tablespaces, for example, the SYSTEM, temporary, and rollback or undo tablespaces.
Table 13–1 describes typical space requirements.

Creating the Recovery Catalog Owner
After choosing the recovery catalog database and creating necessary space, you are
ready to create the owner of the recovery catalog and grant this user necessary
privileges.

Assume the following background information for the instructions in the following
sections:

Table 13–1 Typical Recovery Catalog Space Requirements for 1 Year

Type of Space Space Requirement

SYSTEM tablespace 90 MB

Temp tablespace 5 MB

Rollback or undo tablespace 5 MB

Recovery catalog tablespace 15 MB for each database registered in the recovery catalog

Online redo logs 1 MB each (3 groups, each with 2 members)

Caution: Ensure that the recovery catalog and target databases do
not reside on the same disk. If a disk containing both your recovery
catalog and your target databases failed, your recovery process
would be much more complicated. If possible, take other measures
as well to eliminate common points of failure between your
recovery catalog database and the databases you are backing up.

Creating a Recovery Catalog

13-4 Backup and Recovery Advanced User’s Guide

■ User SYS with password oracle has SYSDBA privileges on the recovery
catalog database catdb.

■ A tablespace called tools in the recovery catalog database catdb stores the
recovery catalog. Note that to use an RMAN reserved word as a tablespace
name, you must enclose it in quotes and put it in uppercase. (Refer to Oracle
Database Recovery Manager Reference for a list of RMAN reserved words.)

■ A tablespace called temp exists in the recovery catalog database.

■ The database is configured in the same way as all normal databases, for
example, catalog.sql and catproc.sql have successfully run.

To create the recovery catalog schema in the recovery catalog database:

1. Start SQL*Plus and then connect with administrator privileges to the database
containing the recovery catalog. For example, enter:

CONNECT SYS/oracle@catdb AS SYSDBA

2. Create a user and schema for the recovery catalog. For example, enter:

CREATE USER rman IDENTIFIED BY cat
 TEMPORARY TABLESPACE temp
 DEFAULT TABLESPACE tools
 QUOTA UNLIMITED ON tools;

3. Grant the RECOVERY_CATALOG_OWNER role to the schema owner. This role
provides the user with all privileges required to maintain and query the
recovery catalog.

SQL> GRANT RECOVERY_CATALOG_OWNER TO rman;

Creating the Recovery Catalog
After creating the catalog owner, create the catalog tables with the RMAN CREATE
CATALOG command. The command creates the catalog in the default tablespace of
the catalog owner.

To create the recovery catalog:

1. Connect to the database that will contain the catalog as the catalog owner. For
example, enter the following from the operating system command line:

% rman CATALOG rman/cat@catdb

Managing Target Database Records in the Recovery Catalog

Managing the Recovery Catalog 13-5

You can also connect from the RMAN prompt:

% rman
RMAN> CONNECT CATALOG rman/cat@catdb

2. Run the CREATE CATALOG command to create the catalog. The creation of the
catalog can take several minutes. If the catalog tablespace is this user’s default
tablespace, then you can run this command:

CREATE CATALOG;

If you specify the tablespace name in the CREATE CATALOG command, and if
the tablespace name is an RMAN reserved word, then it must be uppercase and
enclosed in quotes. For example:

CREATE CATALOG TABLESPACE ’CATALOG’;

3. Optionally, start SQL*Plus and query the recovery catalog to see which tables
were created:

SQL> SELECT TABLE_NAME FROM USER_TABLES;

Managing Target Database Records in the Recovery Catalog
This section describes how to register, unregister, and reset target database records
in the recovery catalog.

Registering a Database in the Recovery Catalog
The first step in using a recovery catalog with a target database is registering the
database in the recovery catalog. Use the following procedure:

1. After making sure the recovery catalog database is open, connect RMAN to the
target database and recovery catalog database. For example, issue the following
to connect to the catalog database catdb as user rman (who owns the catalog
schema):

% rman TARGET / CATALOG rman/cat@catdb

2. If the target database is not mounted, then mount or open it:

RMAN> STARTUP MOUNT;

See Also: Oracle Database SQL Reference for the SQL syntax for the
GRANT and CREATE USER statements, and Oracle Database Recovery
Manager Reference for CREATE CATALOG command syntax

Managing Target Database Records in the Recovery Catalog

13-6 Backup and Recovery Advanced User’s Guide

3. Register the target database in the connected recovery catalog:

RMAN> REGISTER DATABASE;

RMAN creates rows in the catalog tables to contain information about the target
database, then copies all pertinent data about the target database from the
control file into the catalog, synchronizing the catalog with the control file.

Verify that the registration was successful by running REPORT SCHEMA:

RMAN> REPORT SCHEMA;

Report of database schema
File K-bytes Tablespace RB segs Datafile Name
---- ---------- ---------------- ------- -------------------
1 307200 SYSTEM NO /oracle/oradata/trgt/system01.dbf
2 20480 UNDOTBS YES /oracle/oradata/trgt/undotbs01.dbf
3 10240 CWMLITE NO /oracle/oradata/trgt/cwmlite01.dbf
4 10240 DRSYS NO /oracle/oradata/trgt/drsys01.dbf
5 10240 EXAMPLE NO /oracle/oradata/trgt/example01.dbf
6 10240 INDX NO /oracle/oradata/trgt/indx01.dbf
7 10240 TOOLS NO /oracle/oradata/trgt/tools01.dbf
8 10240 USERS NO /oracle/oradata/trgt/users01.dbf

Cataloging Older Files in the Recovery Catalog
If you have datafile copies, backup pieces or archive logs on disk, you can catalog
them in the recovery catalog using the CATALOG command. When using a
recovery catalog, cataloging older backups that have aged out of the control file lets
RMAN use the older backups during restore operations. For example:

RMAN> CATALOG DATAFILECOPY '/disk1/old_datafiles/01_01_2003/users01.dbf';
RMAN> CATALOG ARCHIVELOG '/disk1/arch_logs/archive1_731.dbf',
 '/disk1/arch_logs/archive1_732.dbf';
RMAN> CATALOG BACKUPPIECE '/disk1/backups/backup_820.bkp';

You can also catalog multiple backup files in a directory at once, using the CATALOG
START WITH command, as shown in this example:

RMAN> CATALOG START WITH ’/disk1/backups/’;

RMAN lists the files to be added to the RMAN repository and prompts for
confirmation before adding the backups.

Managing Target Database Records in the Recovery Catalog

Managing the Recovery Catalog 13-7

Be careful when creating your prefix for CATALOG START WITH. RMAN scans all
paths for all files on disk which begin with your specified prefix. The wrong prefix
may include more files than you intend. For example, a group of directories
/disk1/backups , /disk1/backups-year2003, /disk1/backupsets, and
/disk1/backupsets/test and so on, all contain backup files. The command

RMAN> CATALOG START WITH ’/disk1/backups’;

catalogs all files in all of these directories, because /disk1/backups is a prefix for
the paths for all of these directories. In order to catalog only backups in the
/disk1/backups directory, the correct command would be:

RMAN> CATALOG START WITH ’/disk1/backups/’;

To determine whether log records have aged out of the control file, compare the
number of logs on disk with the number of records in V$ARCHIVED_LOG.

Cataloging Oracle7 Datafile Copies in the Recovery Catalog In general, only Oracle8 and
higher files can be cataloged. Datafile copies from Oracle7 databases can also be
cataloged, if they do not require the application of Oracle7 redo before they can be
opened. Datafile copies made in the following circumstances satisfy this
requirement:

■ Datafile copies made when the database was shut down consistently. The
database must not have been opened again before migration to a higher version
of Oracle.

■ Datafile copies made after a tablespace became offline normal or read-only. The
tablespaces must not have been brought online or made read/write again
before migration to a higher version of Oracle.

Registering Multiple Databases in a Recovery Catalog
You can register multiple target databases in a single recovery catalog, if they do not
have duplicate DBIDs. RMAN uses the DBID to distinguish one database from
another.

See Also:

■ Oracle Database Recovery Manager Reference for REGISTER
syntax

■ Oracle Database Upgrade Guide for issues relating to database
migration

Managing Target Database Records in the Recovery Catalog

13-8 Backup and Recovery Advanced User’s Guide

In general, if you use the DUPLICATE RMAN command or CREATE DATABASE
SQL statement, the database created is assigned a unique DBID. If you create a
database by some other means, such as a user-managed copy, then the new
database may have the same DBID as the one from which it was copied. You will
not be able to register both databases in the same recovery catalog until you change
the DBID of the copied database using the DBNEWID utility.

Note that you can register a single target databases in multiple recovery catalogs.

Unregistering a Target Database from the Recovery Catalog
RMAN can unregister a database as well as register it. The UNREGISTER
DATABASE command is used to unregister a database from the recover catalog.

Make sure this procedure is what you intend, because if you make a mistake, then
you must re-register the database. You will lose any RMAN repository records older
than the CONTROLFILE_RECORD_KEEP_TIME setting in the target database control
file.

To unregister a database:

1. Start RMAN and connect to the target database. For example, enter:

% rman TARGET / CATALOG rman/cat@catdb

connected to target database: RDBMS (DBID=1237603294)
connected to recovery catalog database

Make a note of the DBID as displayed by RMAN. If there is more than one
database registered in the recovery catalog, you will need the DBID to uniquely
identify the database.

It is not necessary to connect to the target database, but if you do not, then you
must specify the name of the target database in the UNREGISTER command. If
more than one database has the same name in the recovery catalog, then you

See Also:

■ Oracle Database Recovery Manager Reference for DUPLICATE
syntax

■ Oracle Database Utilities to learn how to use the DBNEWID utility
to change the DBID

■ Oracle Database Upgrade Guide for issues relating to database
migration

Managing Target Database Records in the Recovery Catalog

Managing the Recovery Catalog 13-9

must create a RUN block around the command and use SET DBID to set the
DBID for the database .

2. It may be useful to list all of the backups recorded in the recovery catalog using
LIST BACKUP SUMMARY and LIST COPY SUMMARY.

3. If your intention is to actually delete all backups of the database completely,
rather than just removing the database from the recovery catalog and relying on
the control file to store the RMAN repository for this database, then run
DELETE statements to delete all existing physical backupsets and image copies.
For example:

DELETE BACKUP DEVICE TYPE sbt;
DELETE BACKUP DEVICE TYPE DISK;
DELETE COPY;

RMAN will list the backups that it intends to delete and prompt for
confirmation before deleting them.

4. Run the UNREGISTER DATABASE command. For example:

UNREGISTER DATABASE;

Resetting a Database Incarnation in the Recovery Catalog
When you run either the RMAN command or the SQL statement ALTER DATABASE
OPEN RESETLOGS, you create a new incarnation of the database. You can access a
record of the new incarnation in the V$DATABASE_INCARNATION view of the
target database.

If you run the RMAN command or the SQL statement ALTER DATABASE OPEN
RESETLOGS, then a new database incarnation record is automatically created in the
recovery catalog. The database also implicitly and automatically issues a RESET
DATABASE command, which specifies that this new incarnation of the database is
the current incarnation. All subsequent backups and log archiving done by the
target database is associated with the new database incarnation.

In the rare situation in which you wish to restore backups of a prior incarnation of
the database, use the RESET DATABASE TO INCARNATION key command to change
the current incarnation to an older incarnation. For example, if you accidentally
drop a table immediately after the most recent RESETLOGS, then you may want to
recover the database to just before the time of the most recent RESETLOGS and then
open it with the RESETLOGS option, thereby creating a new incarnation.

To reset the recovery catalog to an older incarnation:

Managing Target Database Records in the Recovery Catalog

13-10 Backup and Recovery Advanced User’s Guide

1. Determine the incarnation key of the desired database incarnation. Obtain the
incarnation key value by issuing a LIST command:

LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-JUL-02
1 582 TRGT 1224038686 CURRENT 59727 10-JUL-02

The incarnation key is listed in the "Inc Key" column.

2. Reset the database to the old incarnation. For example, enter:

RESET DATABASE TO INCARNATION 2;

3. If the control file of the previous incarnation is available and mounted, then
skip to step 6 of this procedure. Otherwise, shut down the database and start it
without mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP NOMOUNT

4. Restore a control file from the old incarnation. If you have a control file tagged,
then specify the tag. Otherwise, you can run the SET UNTIL command, as in
this example:

RUN
{
 SET UNTIL 'SYSDATE-45';
 RESTORE CONTROLFILE; # only if current control file is not available
}

5. Mount the restored control file:

ALTER DATABASE MOUNT;

6. Run RESTORE and RECOVER commands to restore and recover the database
files from the prior incarnation, then open the database with the RESETLOGS
option. For example, enter:

RESTORE DATABASE;
RECOVER DATABASE;
ALTER DATABASE OPEN RESETLOGS;

Resynchronizing the Recovery Catalog

Managing the Recovery Catalog 13-11

Removing Recovery Catalog Records with Status DELETED
Use the prgrmanc.sql script to remove recovery catalog records with status
DELETED. In releases prior to Oracle9i, RMAN updated recovery catalog records to
DELETED status after deleting the physical files rather than removing the records.

In Oracle9i and later, RMAN always removes catalog records and never updates
them to status DELETED. However, records with status DELETED can appear in the
recovery catalog when you upgrade a recovery catalog created prior to Oracle9i to
the current release. For this special case, you can run the prgrmanc.sql script.

To remove all backup records with status DELETED:

1. Start a SQL*Plus session and connect to the recovery catalog. This example
connects to the database rcat as user rman:

% sqlplus rman/cat@catdb

2. Run the script prgrmanc.sql script, which is stored in an operating system
specific location ($ORACLE_HOME/rdbms/admin on UNIX):

SQL> @prgrmanc

The script removes all records with status DELETED from the recovery catalog.

Resynchronizing the Recovery Catalog
When RMAN performs a resynchronization, it compares the recovery catalog to
either the current control file of the target database or a backup control file and
updates the recovery catalog with information that is missing or changed. When
resynchronizing, RMAN does the following:

1. Creates a snapshot control file.

2. Compares the recovery catalog to the snapshot control file.

3. Updates the recovery catalog with missing or changed information.

RMAN performs resynchronizations automatically as needed when you execute
certain commands, including BACKUP. You can also manually perform a full
resynchronization using the RESYNC CATALOG command.

See Also: Oracle Database Recovery Manager Reference for RESET
DATABASE syntax, Oracle Database Recovery Manager Reference for
LIST syntax

Resynchronizing the Recovery Catalog

13-12 Backup and Recovery Advanced User’s Guide

Types of Records That Are Resynchronized
Table 13–2 describes the types of records that RMAN resynchronizes.

Full and Partial Resynchronization
Resynchronizations can be full or partial. In a partial resynchronization, RMAN
reads the current control file to update changed information about new backups,
new archived logs, and so forth. However, RMAN does not resynchronize metadata
about the database physical schema: datafiles, tablespaces, redo threads, rollback
segments (only if the database is open), and online redo logs. In a full

Table 13–2 Records Updated during a Resynchronization

Records Description

Log history Created when an online redo log switch occurs.

Archived redo logs Associated with archived logs that were created by archiving an
online log, copying an existing archived redo log, or restoring
an archived redo log backup set. RMAN tracks this information
so that it knows which archived logs it should expect to find.

Backup history Associated with backup sets, backup pieces, proxy copies, and
file copies. The RESYNC CATALOG command updates these
records when a BACKUP command is executed.

Incarnation history Associated with database incarnations.

Physical schema Associated with datafiles and tablespaces. If the target database
is open, then undo segment information is also updated.
Physical schema information in the recovery catalog is updated
only when the target has the current control file mounted.
If the target database has mounted a backup control file, a
freshly created control file, or a control file that is less current
than a control file that was seen previously, then physical
schema information in the recovery catalog is not updated.
Physical schema information is also not updated when you use
the RESYNC CATALOG FROM CONTROLFILECOPY command.

Resynchronizing the Recovery Catalog

Managing the Recovery Catalog 13-13

resynchronization, RMAN updates all changed records, including those for the
database schema.

When Should You Resynchronize?
RMAN automatically performs full or partial resynchronizations in most situations
in which they are needed. Most RMAN commands such as BACKUP, DELETE, and so
forth perform a full or partial resynchronization (depending on whether the schema
metadata has changed) automatically when the target database control file is
mounted and the recovery catalog database is available. Thus, you should not need
to manually run RESYNC CATALOG very often.

The following sections describe situations in which a manual resynchronization is
required.

Resynchronizing When the Recovery Catalog is Unavailable
If the recovery catalog is unavailable when you issue RMAN commands that cause
a partial resynchronization, then open the catalog database later and resynchronize
it manually with the RESYNC CATALOG command.

For example, the target database may be in New York while the recovery catalog
database is in Japan. You may not want to make daily backups of the target
database in CATALOG mode, to avoid depending on the availability of a
geographically distant database. In such a case you could connect to the catalog as
often as feasible (for example, once each week) and run the RESYNC CATALOG
command.

Note: Although RMAN performs partial resynchronizations when
using a backup control file, it does not perform full
resynchronizations. A backup control file may not have correct
information about the database physical schema, so a full
resynchronization could update the recovery catalog with incorrect
information.

Note: You can use Oracle Enterprise Manager to perform catalog
resynchronizations.

See Also: Oracle Database Recovery Manager Reference for more
information about the RESYNC command

Resynchronizing the Recovery Catalog

13-14 Backup and Recovery Advanced User’s Guide

Resynchronizing in ARCHIVELOG Mode When You Back Up Infrequently
Assume that you do the following:

■ Run the database in ARCHIVELOG mode

■ Back up the database infrequently (for example, hundreds of archive logs are
archived between database backups)

■ Generate a high number of log switches every day (for example, 1000 switches
between catalog resynchronizations)

In this case, you may want to manually resynchronize the recovery catalog
regularly because the recovery catalog is not updated automatically when a redo log
switch occurs or when a redo log is archived. The database stores information about
log switches and archived redo logs only in the control file. You must periodically
resynchronize in order to propagate this information into the recovery catalog.

How frequently you need to resynchronize the recovery catalog depends on the rate
at which the database archives redo logs. The cost of the operation is proportional to
the number of records in the control file that have been inserted or changed since
the previous resynchronization. If no records have been inserted or changed, then
the cost of resynchronization is very low; if many records have been inserted or
changed, then the resynchronization is more time-consuming.

Resynchronizing After Physical Database Changes
Resynchronize the recovery catalog after making any change to the physical
structure of the target database. As with redo log archive operations, the recovery
catalog is not updated automatically after physical schema change, including:

■ Adding or dropping a tablespace

■ Adding a new datafile to an existing tablespace

■ Adding or dropping a rollback segment

Forcing a Full Resynchronization of the Recovery Catalog
Use RESYNC CATALOG to force a full resynchronization of the recovery catalog.

1. Connect RMAN to the target and recovery catalog databases, and then mount
or open the target database if it is not already mounted or open:

STARTUP MOUNT;

2. Run the RESYNC CATALOG command at the RMAN prompt:

Working with RMAN Stored Scripts in the Recovery Catalog

Managing the Recovery Catalog 13-15

RESYNC CATALOG;

Resynchronizing the Recovery Catalog and CONTROLFILE_RECORD_KEEP_TIME
If you maintain a recovery catalog, then use the RMAN RESYNC CATALOG
command often enough to ensure that control file records are propagated to the
recovery catalog before they are reused.

Make sure that CONTROLFILE_RECORD_KEEP_TIME is longer than the interval
between backups or resynchronizations, or else control file records could be lost. An
extra week is a safe margin in most circumstances.

Working with RMAN Stored Scripts in the Recovery Catalog
Stored scripts offer an alternative to command files for managing frequently used
sequences of RMAN commands.

The chief advantage of a stored script over a command file is that a stored script is
always available to any RMAN client that can connect to the target database and
recovery catalog, whereas command files are only available if the RMAN client has
access to the file system on which they are stored.

Stored scripts can be global or local. A local stored script is associated with the
target database to which RMAN is connected when the script is created, and can
only be executed when you are connected to that target database. A global stored
script can be run against any database registered in the recovery catalog, if the
RMAN client is connected to the recovery catalog and a target database.

Note that to work with stored scripts, even global ones, you must be connected to
both a recovery catalog and a target instance.

See Also: Oracle Database Recovery Manager Reference for RESYNC
CATALOG command syntax

Caution: Never set CONTROL_FILE_RECORD_KEEP_TIME to 0. If
you do, then backup records may be overwritten in the control file
before RMAN is able to add them to the catalog.

See Also: Oracle Database Backup and Recovery Basics to learn how
to monitor the overwriting of control file records

Working with RMAN Stored Scripts in the Recovery Catalog

13-16 Backup and Recovery Advanced User’s Guide

Creating Stored Scripts: CREATE SCRIPT
Make sure RMAN is connected to the right target database and the recovery
catalog. Then run the CREATE SCRIPT command, as shown in this example:

CREATE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

Examine the output. If no errors are displayed, then the script was successfully
created and stored in the recovery catalog.

For a global script, the syntax is similar:

CREATE GLOBAL SCRIPT global_full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

You can also provide a COMMENT with descriptive information:

CREATE GLOBAL SCRIPT global_full_backup
COMMENT ’use only with ARCHIVELOG mode databases’
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

Finally, you can create a local or global script, reading its contents from a text file:

CREATE SCRIPT full_backup FROM FILE ’my_script_file.txt’;

The file must begin with a { character, contain a series of commands valid within a
RUN block, and end with a } character. Otherwise, a syntax error is signalled, just
as if the commands were entered at the keyboard.

Running Stored Scripts: EXECUTE SCRIPT
To run a stored script, connect to the target database and recovery catalog, and use
EXECUTE SCRIPT. EXECUTE SCRIPT requires a RUN block, as shown:

RUN { EXECUTE SCRIPT full_backup; }

Working with RMAN Stored Scripts in the Recovery Catalog

Managing the Recovery Catalog 13-17

This command invokes a local script if one is with the name specified. If no local
script is found, but there is a global script with the name specified, RMAN will
execute the global script. You can also use EXECUTE GLOBAL SCRIPT to control
which script is invoked if a local and a global script have the same name. Assuming
there is no local script called global_full_backup, the following two commands
have the same effect:

RUN { EXECUTE GLOBAL SCRIPT global_full_backup; }
RUN { EXECUTE SCRIPT global_full_backup; }

Executing a global script only affects the connected target database; to run a global
script across multiple databases, you must connect the RMAN client to each one
separately and execute the script.

Your script will use the automatic channels configured at the time you execute the
script. Use ALLOCATE CHANNEL commands in the script if you need to override the
configured channels. Note that, because of the RUN block, if an RMAN command
in the script fails, subsequent RMAN commands in the script will not execute.

Displaying a Stored Script: PRINT SCRIPT
The PRINT SCRIPT command displays a stored script or writes it out to a file. With
RMAN connected to the target database and recovery catalog, use the PRINT
SCRIPT command as shown here:

PRINT SCRIPT full_backup;

To send the contents of a script to a file, use this form of the command:

PRINT SCRIPT full_backup TO FILE ’my_script_file.txt’;

For global scripts, the analogous syntax would be:

PRINT GLOBAL SCRIPT global_full_backup;

and

PRINT GLOBAL SCRIPT global_full_backup TO FILE ’my_script_file.txt’;

See Also: Oracle Database Recovery Manager Reference for EXECUTE
SCRIPT command syntax

See Also: Oracle Database Recovery Manager Reference for PRINT
SCRIPT command syntax

Working with RMAN Stored Scripts in the Recovery Catalog

13-18 Backup and Recovery Advanced User’s Guide

Listing Stored Scripts: LIST SCRIPT NAMES
Use the LIST SCRIPT NAMES command to display the names of scripts defined in
the recovery catalog. This command displays the names of all stored scripts, both
global and local, that can be executed for the currently connected target database:

LIST SCRIPT NAMES;

If RMAN is not connected to a target database when the LIST SCRIPT NAMES
command is run, then RMAN will respond with an error.

To view only global script names, use this form of the command:

LIST GLOBAL SCRIPT NAMES;

To view the names of all scripts stored in the current recovery catalog, including
global scripts and local scripts for all target databases registered in the recovery
catalog, use this form of the command:

LIST ALL SCRIPT NAMES;

The output will indicate for each script listed which target database the script is
defined for (or whether a script is global).

Updating Stored Scripts: REPLACE SCRIPT
To update stored scripts, connect to the target database and recovery catalog and
use the REPLACE SCRIPT command. If the script does not already exist, then
RMAN creates it.

This command updates stored script script full_backup with new contents:

REPLACE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
}

Note: LIST GLOBAL SCRIPT NAMES and LIST ALL SCRIPT
NAMES are the only commands that work when RMAN is
connected to a recovery catalog without connecting to a target
instance.

See Also: Oracle Database Recovery Manager Reference for LIST
SCRIPT NAMES command syntax and output format.

Working with RMAN Stored Scripts in the Recovery Catalog

Managing the Recovery Catalog 13-19

Global scripts can be updated using the REPLACE GLOBAL SCRIPT command
when connected to a recovery catalog, as follows:

REPLACE GLOBAL SCRIPT global_full_backup
COMMENT ’A script for full backup to be used with any database’
{
 BACKUP AS BACKUPSET DATABASE PLUS ARCHIVELOG;
}

As with CREATE SCRIPT, you can update a local or global stored script from a text
file, with this form of the command:

REPLACE GLOBAL SCRIPT global_full_backup FROM FILE ’my_script_file.txt’;

Deleting Stored Scripts: DELETE SCRIPT
To delete a stored script from the recovery catalog, connect to the catalog and a
target database, and use the DELETE SCRIPT command:

DELETE SCRIPT 'full_backup';

To delete a global stored script, use DELETE GLOBAL SCRIPT:

DELETE GLOBAL SCRIPT 'global_full_backup';

If you use DELETE SCRIPT without GLOBAL, and there is no stored script for the
target database with the specified name, RMAN will look for a global stored script
by the specified name and delete the global script if it exists. So, if you were to enter
the command

DELETE SCRIPT 'global_full_backup';

RMAN would look for a script ’global_full_backup’ defined for the connected
target database, and if it did not find one, it would search the global scripts for a
script called ’global_full_backup’ and delete that script.

See Also: Oracle Database Recovery Manager Reference for REPLACE
SCRIPT command syntax

See Also: Oracle Database Recovery Manager Reference for DELETE
SCRIPT command syntax

Working with RMAN Stored Scripts in the Recovery Catalog

13-20 Backup and Recovery Advanced User’s Guide

Starting the RMAN Client and Running a Stored Script
To run the RMAN client and start a stored script in the recovery catalog on startup,
use the SCRIPT argument when starting the RMAN client.

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb SCRIPT ’full_backup’;

You must connect to a recovery catalog (which contains the stored script) and target
database (to which the script will apply) when starting the RMAN client.

Restrictions on Stored Script Names
There are some issues to be aware of about how RMAN resolves script names,
especially when a local and global script share the same name.

■ RMAN permits but generally does not require that you use quotes around the
name of a stored script. However, if the name begins with a digit or if the name
is an RMAN reserved word, you will have to put quotes around the name to
use it as a stored script name. Consider avoiding stored script names that begin
with characters other than A-Z or that are the same as RMAN reserved words.

■ When starting the RMAN client with a SCRIPT argument on the command line,
if local and global scripts are defined with the same name, then RMAN will
always execute the local script.

■ For the EXECUTE SCRIPT, DELETE SCRIPT and PRINT SCRIPT commands,
if the script name passed as an argument is not the name of a script defined for
the connected target instance, RMAN will look for a global script by the same
name to execute, delete or print. For example, if the a stored script global_
full_backup is in the recovery catalog as a global script, but no local stored
script global_full_backup is defined for the target database, the following
command will delete the global script:

DELETE SCRIPT global_full_backup;

Consider using some naming convetion to avoid mistakes due to confusion
between global stored scripts and local stored scripts.

See Also: Oracle Database Recovery Manager Reference for full
RMAN client command line syntax

See Also: Oracle Database Recovery Manager Reference

See Also: Oracle Database Recovery Manager Reference for the list of
RMAN reserved words.

Managing the Control File When You Use a Recovery Catalog

Managing the Recovery Catalog 13-21

Managing the Control File When You Use a Recovery Catalog
Your goal is to ensure that the metadata in the recovery catalog is current. Because
the recovery catalog obtains its metadata from the target control file, the currency of
the data in the catalog depends on the currency of the data in the control file. You
need to make sure that the backup metadata in the control file is recorded in the
catalog before it is overwritten with new records.

The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter determines the
minimum number of days that records are retained in the control file before they are
candidates for being overwritten. Hence, you must ensure that you resynchronize
the recovery catalog with the control file records before these records are erased. As
described in "Resynchronizing the Recovery Catalog and CONTROLFILE_
RECORD_KEEP_TIME" on page 13-15, you should perform either of the following
actions at intervals less than the CONTROL_FILE_RECORD_KEEP_TIME setting:

■ Make a backup, thereby performing an implicit resynchronization of the
recovery catalog

■ Manually resynchronize the recovery catalog with the RESYNC CATALOG
command

So, to ensure the currency of the information in the recovery catalog, the frequency
of resynchronizations should be related to the value for the CONTROL_FILE_
RECORD_KEEP_TIME initialization parameter.

One problem can arise if the control file becomes too large. The size of the target
database control file grows depending on the number of:

■ Backups that you perform

■ Archived redo logs that the database generates

■ Days that this information is stored in the control file

As explained in Oracle Database Backup and Recovery Basics, if the control file grows
so large that it can no longer expand because it has reached either the maximum
number of blocks or the maximum number of records, then the database may
overwrite the oldest records even if their age is less than the CONTROL_FILE_
RECORD_KEEP_TIME setting. In this case, the database writes a message to the alert
log. If you discover that this situation occurs frequently, then reducing the value of
CONTROL_FILE_RECORD_KEEP_TIME and increase the frequency of
resynchronizations.

Backing Up and Recovering the Recovery Catalog

13-22 Backup and Recovery Advanced User’s Guide

Backing Up and Recovering the Recovery Catalog
Include the recovery catalog database in your backup and recovery strategy. If you
do not back up the recovery catalog and a disk failure occurs that destroys the
recovery catalog database, then you may lose the metadata in the catalog.

Backing Up the Recovery Catalog
Here are some general guidelines you should follow when developing a strategy for
backing up the recovery catalog.

Back Up the Recovery Catalog Often
The recovery catalog database is a database like any other, and is also a key part of
your backup and recovery strategy. Protect the recovery catalog as you would
protect any other part of your database, by backing it up. The backup strategy for
your recovery catalog database should be part of your overall backup and recovery
strategy.

Back up the recovery catalog with the same frequency that you back up the target
database. For example, if you make a weekly whole database backup of the target
database, then back up the recovery catalog immediately after all target database
backups, in order to protect the record of the whole database backup. This backup
can help you in a disaster recovery scenario. Even if you have to restore the
recovery catalog database using a control file autobackup, you can then use the full
record of backups in your restored recovery catalog database to restore the target
database without using a control file autobackup for the target database.

Note: The maximum size of the control file is port-specific.
Typically, the maximum size is 20,000 Oracle blocks. Refer to your
operating system-specific Oracle documentation for more
information.

See Also:

■ Oracle Database Reference for more information about the
CONTROL_FILE_RECORD_KEEP_TIME parameter

■ Oracle Database Administrator's Guide for more detailed
information on all aspects of control file management

Backing Up and Recovering the Recovery Catalog

Managing the Recovery Catalog 13-23

Choosing the Appropriate Method for Physical Backups
When backing up the recovery catalog database, you can use RMAN to make the
backups. As illustrated in Figure 13–1, you should start RMAN with the
NOCATALOG option so that the repository for the recovery catalog is the control file
in the catalog database.

Follow these guidelines when developing an RMAN backup strategy for the
recovery catalog database:

■ Run the recovery catalog database in ARCHIVELOG mode so that you can do
point-in-time recovery if needed.

■ Set the retention policy to a REDUNDANCY value greater than 1.

■ Back up the database onto two separate media (for example, disk and tape).

■ Run BACKUP DATABASE PLUS ARCHIVELOG at regular intervals, to a media
manager if available, or just to disk.

■ Do not use another recovery catalog as the repository for the backups.

■ Configure the control file autobackup feature to ON.

With this strategy, the control file autobackup feature ensures that the recovery
catalog database can always be recovered, so long as the control file autobackup is
available.

Exporting the Recovery Catalog Data for Logical Backups

Logical backups of the RMAN recovery catalog created with one of Oracle’s export
utilities can be a useful supplement for physical backups. In the event of damage to
the recovery catalog database, you can quickly reimport the exported recovery
catalog data into another database and rebuild the catalog this way.

Backing Up and Recovering the Recovery Catalog

13-24 Backup and Recovery Advanced User’s Guide

Figure 13–1 Using the Control File as the Repository for Backups of the Catalog

Storing the Recovery Catalog in an Appropriate Place
Never store a recovery catalog containing the RMAN repository for a database in
the same database as the target database or on the same disks as the target database.
For example, do not store the catalog for database prod1 in prod1. A recovery
catalog for prod1 is only effective if it is separated from the data that it is designed
to protect.

If prod1 suffers a total media failure, and if the recovery catalog data for prod1 is
also stored in prod1, then you have no catalog to aid in recovery. You will probably
have to restore an autobackup of the control file for prod1 and use it to restore and
recover the database.

See Also: "Performing Disaster Recovery" on page 8-18 for more
information for recovery with a control file autobackup

Catalog
databaseTarget

database
Store metadata about
backups of target

catalog

Back up using
RMAN

Control
file

Control file
autobackup

Back up
using RMAN

Target
database Store metadata

about backups
of catalog

Backing Up and Recovering the Recovery Catalog

Managing the Recovery Catalog 13-25

Separating the target and catalog databases is especially important when you back
up a recovery catalog database. The following example shows what you should not
do. For example, consider the following:

■ Target database prod1 and catalog database catdb are on different hosts.

■ catdb contains the recovery catalog repository for target database prod1.

You decide to use a recovery catalog to back up catdb, but are not sure where to
create it. If you create the catalog containing the repository for catdb in database
catdb, then if you lose catdb due to a media failure, you will have difficulty
restoring catdb and will leave prod1 without a recovery catalog to use in a restore
scenario.

Restoring and Recovering the Recovery Catalog from Backup
Restoring and recovering the recovery catalog is much like restoring and recovering
any other database, if you backed it up with RMAN.

You can restore the control file and SPFILE for the recovery catalog database from
an autobackup, then restore and perform complete recovery on the rest of the
database. The processes required are all described in Oracle Database Backup and
Recovery Basics You can also use another recovery catalog to record metadata about
backups of this recovery catalog database, if you are in a situation where you are
using multiple recovery catalogs.

Re-Creating the Recovery Catalog
If the recovery catalog database is lost or damaged, and recovery of the recovery
catalog database through the normal Oracle recovery procedures is not possible,
then you must re-create the catalog. Examples of this worst-case scenario include:

■ A recovery catalog database that has never been backed up

■ A recovery catalog database that has been backed up, but cannot be recovered
because the datafile backups or archived logs are not available

You have these options for partially re-creating the contents of the missing recovery
catalog:

■ Issue CATALOG START WITH... commands to recatalog backups.

■ Use the RESYNC CATALOG command to extract metadata from a control file and
rebuild the recovery catalog. Note that you automatically lose any metadata
that was contained in old control file records that aged out of the control file.

Exporting and Importing the Recovery Catalog

13-26 Backup and Recovery Advanced User’s Guide

 Depending on the state of the target control file, you can:

– Resynchronize from the current control file

– Resynchronize from a control file copy

Exporting and Importing the Recovery Catalog
To move the recovery catalog from one database to another, export the catalog from
the old database, and import it into the new one. You can only import the catalog
into a supported version of the Oracle database server. In general, you can import
the catalog into a database of the same release or later.

Exports can also serve as logical backups of the RMAN recovery catalog. If the
recovery catalog database is damaged, you can quickly reimport the exported
recovery catalog data into another database and rebuild the catalog.

This section contains the following topics:

■ Considerations When Moving Catalog Data

■ Exporting the Recovery Catalog

■ Importing the Recovery Catalog

Considerations When Moving Catalog Data
You should only import the recover catalog into a schema that does not already
contain a recovery catalog schema. In other words, the user who will own the
imported recovery catalog schema should not already own a recovery catalog
schema. For example, if user rman owns the recovery catalog on database catdb,
and you want to export the recovery catalog on catdb and import it into database
catdb2, then rman should not already own a recovery catalog on catdb2. You
should either create a new recovery catalog owner on catdb2, or drop the current

See Also:

■ Oracle Database Recovery Manager Reference for information
about the CATALOG command

■ Oracle Database Recovery Manager Reference for information
about the CROSSCHECK command

■ "Managing the Control File When You Use a Recovery Catalog"
on page 13-21 to learn about how records age out of the control
file

Exporting and Importing the Recovery Catalog

Managing the Recovery Catalog 13-27

user rman on catdb2 and then re-create the user. You cannot merge a recovery
catalog into an existing recovery catalog.

The basic steps for exporting a recovery catalog from a primary database and
importing the catalog into a secondary database are as follows:

1. Use one of the Oracle Export utilities to export the catalog data from the
primary database. See "Exporting the Recovery Catalog" on page 13-27 for an
example.

2. Create a user on the secondary database as described in "Creating the Recovery
Catalog Owner" on page 13-3, and grant the user necessary privileges.

3. Use the import utility corresponding to the export utility in step 1 to import the
catalog data into the schema created in the previous step. See "Importing the
Recovery Catalog" on page 13-28 for an example.

You should not run the CREATE CATALOG command either before or after the
Import of the catalog into the secondary database. By importing the catalog data
into the new schema, you effectively create the catalog in the secondary database.

Exporting the Recovery Catalog
This example uses the Original Export utility described in Oracle Database Utilities
to create a logical export of the recovery catalog. Refer to Oracle Database Utilities for
concepts and procedures relating to the Data Pump Export utility.

The following procedure creates a logical export of the recovery catalog.

1. Execute the Oracle export utility at the operating system command line, making
sure to do the following:

a. Connect as the owner of the recovery catalog

b. Specify the OWNER option

c. Specify an output file

For example, if the owner of the catalog in database catdb is rman, you can
issue the following at the UNIX command line to export the catalog to file
cat.dmp:

% exp rman/cat@catdb FILE=cat.dmp OWNER=rman

Note: You cannot import data exported from two different
recovery catalogs to merge them into one catalog. It is not currently
possible to merge two or more recovery catalog schemas into one.

Increasing Availability of the Recovery Catalog

13-28 Backup and Recovery Advanced User’s Guide

2. Examine the output to make sure you were successful:

Export terminated successfully without warnings.

Importing the Recovery Catalog
This example uses the Original Import utility described in Oracle Database Utilities
to create a logical export of the recovery catalog. Refer to Oracle Database Utilities for
concepts and procedures relating to the Data Pump Import utility.

To make a logical import of the recovery catalog from the command line:

1. Create a new user in another database. For the recommended SQL syntax for
creating a new user in a recovery catalog database, see "Creating the Recovery
Catalog Owner" on page 13-3. Be sure to grant the new user the necessary
privileges.

2. Import the catalog data from the export file. Execute the import at the command
line, making sure to do the following:

a. Connect as the new owner of the recovery catalog.

b. Specify the old owner with the FROMUSER parameter.

c. Specify the new owner with the TOUSER parameter.

d. Specify the import file.

For example, assume the following:

■ The old owner of the catalog in database prod1 is rman.

■ The user in the new recovery catalog database catdb2 is rman2.

■ The file containing the export of the catalog is cat.dmp.

The command is then as follows:

% imp USERID=rman2/cat2@catdb2 FILE=cat.dmp FROMUSER=rman TOUSER=rman2

3. Use the imported catalog data for restore and recovery of your target database.

Increasing Availability of the Recovery Catalog
You may have a production system in which you want to maintain high availability
for the catalog database. For example, you may have 100 target databases registered
in the recovery catalog. In case the primary catalog database goes down, you can

Querying the Recovery Catalog Views

Managing the Recovery Catalog 13-29

create redundancy by storing a secondary recovery catalog in a separate database,
as illustrated in Figure 13–2. You must register the target database in the secondary
catalog.

In this availability scenario, the main catalog is synchronized as normal during
regular backups, while the secondary catalog is synchronized periodically with the
RESYNC CATALOG command. If the primary catalog database goes down or requires
routine maintenance, then you can resynchronize the secondary catalog and use it
as the new primary catalog during the interim.

Figure 13–2 Registering One Target Database in Two Recovery Catalogs

Querying the Recovery Catalog Views
The LIST, REPORT, and SHOW commands should provide you with all the
repository information that you require. Nevertheless, you can sometimes also
obtain useful information from the recovery catalog views, which are views in the
catalog schema prefixed with RC_.

See Also: "Creating a Recovery Catalog" on page 13-2

See Also: Oracle Database Recovery Manager Reference for reference
information about the recovery catalog views

Secondary
catalog

database

Primary
catalog

database

Target
database Synchronized manually

catalog

catalog

Synchronized
automatically

Querying the Recovery Catalog Views

13-30 Backup and Recovery Advanced User’s Guide

RMAN obtains backup and recovery metadata from the target database control file
and stores it in the catalog tables. The recovery catalog views are derived from these
tables. Note that these views are not normalized or optimized for user queries.

In general, the recovery catalog views are not as user-friendly as the RMAN
reporting commands. For example, when you start RMAN and connect to a target
database, you obtain the information for this target database only when you issue
LIST, REPORT, and SHOW commands. If you have 10 different target databases
registered in the same recovery catalog, then the catalog views show the
information for all incarnations of all databases registered in the catalog. You often
have to perform joins among the views to distinguish the specific incarnation of the
target database that you are interested in.

Most of the catalog views have a corresponding dynamic performance view (or V$
view) in the database server. For example, RC_BACKUP_PIECE corresponds to
V$BACKUP_PIECE. The primary difference between the recovery catalog view and
corresponding server view is that each catalog view contains information about all
the databases registered in the catalog, whereas the database server view contains
information only about itself. The RC_ views and corresponding V$ views use
different primary keys to uniquely identify rows.

Distinguishing a Database in the Catalog Views
Most of the catalog views contain the columns DB_KEY and DBINC_KEY. Each
target database can be uniquely identified by either the primary key, which is the
DB_KEY column value, or the DBID, which is the 32-bit unique database identifier.
Each incarnation of each target database is uniquely identified by the DBINC_KEY
primary key. When querying data about a specific incarnation of a target database,
you should use these columns to specify the database. Then, you can perform joins
with most of the other catalog views to obtain the desired information.

Distinguishing a Database Object in the Catalog Views
An important difference between catalog and V$ views is that a different system of
unique identifiers is used for backup and recovery objects. For example, many V$
views such as V$ARCHIVED_LOG use the RECID and STAMP columns to form a
concatenated primary key. The corresponding catalog view uses a derived value as
its primary keys and stores this value in a single column. For example, the primary
key in RC_ARCHIVED_LOG is the AL_KEY column. The AL_KEY column value is the
primary key that RMAN displays in the LIST command output.

Querying the Recovery Catalog Views

Managing the Recovery Catalog 13-31

Querying Catalog Views for the Target DB_KEY or DBID Values
The DB_KEY value, which is the primary key for a target database, is used only in
the recovery catalog. The easiest way is to obtain the DB_KEY is to use the DBID of
the target database, which is displayed whenever you connect RMAN to the target
database. The DBID, which is a unique system-defined number given to every
Oracle database, is what distinguishes one target database from another target
database in the RMAN metadata.

Assume that you want to obtain information about one of the target databases
registered in the recovery catalog. You can easily determine the DBID from this
database either by looking at the output displayed when RMAN connects to the
database, querying V$RMAN_OUTPUT, or querying a V$DATABASE view as in the
following:

SELECT DBID
FROM V$DATABASE;

DBID

598368217

You can then obtain the DB_KEY for a target database by running the following
query, where dbid_of_target is the DBID that you previously obtained:

SELECT DB_KEY
FROM RC_DATABASE
WHERE DBID = dbid_of_target;

To obtain information about the current incarnation of a target database, specify the
target database DB_KEY value and perform a join with RC_DATABASE_
INCARNATION by using a WHERE condition to specify that the CURRENT_
INCARNATION column value is set to YES. For example, to obtain information
about backup sets in the current incarnation of a target database with the DB_KEY
value of 1, you can execute the following script:

SELECT BS_KEY, BACKUP_TYPE, COMPLETION_TIME
 FROM RC_DATABASE_INCARNATION i, RC_BACKUP_SET b
 WHERE i.DB_KEY = 1
 AND i.DB_KEY = b.DB_KEY
 AND i.CURRENT_INCARNATION = 'YES';

You should use the DB_NAME column to specify a database only if you do not have
more than one database registered in the recovery catalog with the same DB_NAME.
RMAN permits you to register more than one database with the same database

Determining the Schema Version of the Recovery Catalog

13-32 Backup and Recovery Advanced User’s Guide

name, but requires that the DBID values be different. For example, you can have ten
databases with the DB_NAME value of prod1, each with a different DBID. Because
the DBID is the unique identifier for every database in the metadata, use this value
to obtain the DB_KEY and then use DB_KEY to uniquely identify the database.

Determining the Schema Version of the Recovery Catalog
The schema version of the recovery catalog is stored in the recovery catalog itself.
The information is important in case you maintain multiple databases of different
versions in your production system, and need to determine whether the catalog
schema version is usable with a specific target database version.

To determine the schema version of the recovery catalog:

1. Start SQL*Plus and connect to the recovery catalog database as the catalog
owner. For example:

% sqlplus rman/cat@catdb

2. Query the RCVER table to obtain the schema version, as in the following
example (sample output included):

SELECT *
FROM rcver;

VERSION

09.02.00

If the table displays multiple rows, then the highest version in the RCVER table is
the current catalog schema version. The table stores only the major version numbers
and not the patch numbers. For example, assume that the rcver table displays the
following rows:

VERSION

08.01.07
09.00.01
09.02.00

See Also: Oracle Database Recovery Manager Reference for the
complete set of compatibility rules governing the RMAN
environment

Upgrading the Recovery Catalog

Managing the Recovery Catalog 13-33

These rows indicate that the catalog was created with a release 8.1.7 executable,
then upgraded to release 9.0.1, and finally upgraded to release 9.2.0. The current
version of the catalog schema is 9.2.0.

Upgrading the Recovery Catalog
If you use a version of the recovery catalog that is older than that required by the
RMAN client, then you must upgrade it. For example, you must upgrade the
catalog if you use a release 8.1 version of the RMAN client with a release 8.0 version
of the recovery catalog.

You receive an error when issuing UPGRADE CATALOG if the recovery catalog is
already at a version greater than that required by the RMAN client. RMAN permits
the UPGRADE CATALOG command to be run if the recovery catalog is current and
does not require upgrading, however, so that you can re-create packages at any time
if necessary. Check the message log for error messages generated during the
upgrade.

To upgrade the recovery catalog:

1. To install the new recovery catalog schema, the recovery catalog user must have
TYPE privilege:

sqlplus> connect sys/oracle@catdb as sysdba;
sqlplus> grant TYPE to rman;

2. Use RMAN to connect to the target and recovery catalog databases. For
example, enter:

% rman TARGET / CATALOG rman/cat@catdb

connected to recovery catalog database
PL/SQL package rcat.DBMS_RCVCAT version 08.00.04 in RCVCAT database
is too old

3. Issue the UPGRADE CATALOG command:

UPGRADE CATALOG;

recovery catalog owner is rman
enter UPGRADE CATALOG command again to confirm catalog upgrade

4. Enter the UPDATE CATALOG command again to confirm:

UPGRADE CATALOG;

Dropping the Recovery Catalog

13-34 Backup and Recovery Advanced User’s Guide

recovery catalog upgraded to version 09.02.00
DBMS_RCVMAN package upgraded to version 09.02.00
DBMS_RCVCAT package upgraded to version 09.02.00

Dropping the Recovery Catalog
If you do not want to maintain a recovery catalog, then you can drop the recovery
catalog schema from the tablespace. The DROP CATALOG command deletes all
information from the recovery catalog. Hence, if you have no backups of the
recovery catalog schema, then backups of all target databases managed by this
catalog may become unusable. (The control file of the target database will still retain
a record of recent backups.)

The DROP CATALOG command is not appropriate for unregistering a single database
from a recovery catalog that has multiple target databases registered. Dropping the
catalog deletes the recovery catalog record of backups for all target databases
registered in the catalog.

To drop the recovery catalog schema:

1. Use RMAN to connect to the target and recovery catalog databases.

% rman TARGET / CATALOG rman/cat@catdb

2. Issue the DROP CATALOG command twice to confirm:

DROP CATALOG;

recovery catalog owner is rman
enter DROP CATALOG command again to confirm catalog removal

DROP CATALOG;

See Also:

■ Oracle Database Recovery Manager Reference for UPGRADE
CATALOG command syntax

■ Oracle Database Recovery Manager Reference for information
about recovery catalog compatibility

■ Oracle Database Upgrade Guide for complete compatibility and
migration information

Dropping the Recovery Catalog

Managing the Recovery Catalog 13-35

Note: Even after you drop the recovery catalog, the control file
still contains records about the backups. To purge RMAN
repository records from the control file, re-create the control file.

See Also: Oracle Database Recovery Manager Reference for DROP
CATALOG command syntax, and "Unregistering a Target Database
from the Recovery Catalog" on page 13-8 to learn how to unregister
a database from the catalog

Dropping the Recovery Catalog

13-36 Backup and Recovery Advanced User’s Guide

Tuning Backup and Recovery 14-1

14
Tuning Backup and Recovery

Tuning RMAN performance is mostly a matter of maximizing the speed with which
RMAN creates your backups and restores from backups, on disk and especially on
tape. A secondary concern is limiting the effect of backup activities on database
throughput.

You may also need to tune performance of the database during instance recovery.

This chapter covers the concepts needed for performance tuning, and the features in
RMAN that can help you. The discussion is divided into the following sections:

■ Tuning Recovery Manager: Overview

■ Features and Options Used to Tune RMAN Performance

■ Tuning RMAN Backup Performance: Examples

■ Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Recovery Manager: Overview

14-2 Backup and Recovery Advanced User’s Guide

Tuning Recovery Manager: Overview
RMAN backup and restore operations have the following distinct components:

■ Reading or writing input data

■ Processing data by validating blocks and copying them from the input to the
output buffers

The slowest of these operations in any RMAN task is called the bottleneck. RMAN
tuning involves identifying the bottlenecks for a given task and using RMAN
commands, initialization parameter settings, or adjustments to physical media to
improve performance on the backup.

The key to tuning RMAN is understanding how it performs I/O. RMAN's backup
and restore jobs use two types of I/O buffers: DISK and tertiary storage (usually
tape). When performing a backup, RMAN reads input files using disk buffers and
writes the output backup file by using either disk or tape buffers. Restore
operations use disk or tape buffers for input, depending on where the backup is
stored, and disk buffers for output.

To tune RMAN effectively, you must thoroughly understand concepts such as
synchronous and asynchronous I/O, disk and tape buffers, and channel
architecture. When you understand these concepts, then you can learn how to use
fixed views to monitor bottlenecks, and use the techniques described in "Tuning
RMAN Backup Performance: Examples" on page 14-8 to solve problems.

There are a number of concepts that affect RMAN performance and that can
therefore influence your strategy for backup performance tuning:

■ I/O Buffer Allocation

■ Allocation of Tape Buffers

■ Synchronous and Asynchronous I/O

■ Factors Affecting Backup Speed to Tape

■ Using the RATE Parameter to Control Disk Bandwidth Usage

I/O Buffer Allocation
RMAN I/O uses two different types of buffers: disk and tape. These buffers are
typically different sizes. They are allocated differently, depending upon the device
type and the role the buffer plays in an RMAN operation.

Tuning Recovery Manager: Overview

Tuning Backup and Recovery 14-3

Allocation for Disk Buffers
To understand how RMAN allocates buffers to read datafiles during backups, you
must understand how RMAN multiplexing works.

RMAN multiplexing is RMAN’s ability to read a number of files in a backup
simultaneously from different sources to improve reading performance, and then
write them to a single backup piece. The level of multiplexing is the number of files
read simultaneously.

Multiplexing is described at greater length in "Multiplexed Backup Sets" on
page 2-16. The level of multiplexing is determined by the algorithm described in
"Algorithm for Multiplexed Backups" on page 2-17. Review this section before
proceeding.

When RMAN backs up from disk, it uses the datafile described in the following
table to determine how large to make the buffers.

The number of buffers allocated depends on the following rules:

■ When the ouput of the backup resides on disk, 4 buffers are allocated, their size
being operating system dependent.

■ If the operation is a restore, and the backup resides on disk, 4 buffers are
allocated, their size being operating system dependent.

■ When restoring a backup, for each active datafile 4 buffers of 128K are allocated.

■ When image copies are produced, only 4 buffers in total are allocated, each of
an operating system dependent size.

Allocation of Tape Buffers
If you backup to or restore from an sbt device, then by default the database
allocates four buffers for each channel for the tape writers (or reads if doing a

Table 14–1 Datafile Read Buffer Sizing Algorithm

Level of Multiplexing Resulting Buffer Size

Less than or equal to 4 RMAN allocates buffers of size 1 MB so that the total buffer
size for all the input files is 16 MB.

Greater than 4 but less than
or equal to 8

RMAN allocates disk buffers of size 512 KB so that the total
buffer size for all the files is less than 16 MB.

Greater than 8 RMAN allocates a fixed 4 disk buffers of 128 KB for each
file, so that the total size is 512 KB for each file.

Tuning Recovery Manager: Overview

14-4 Backup and Recovery Advanced User’s Guide

restore). The size of these buffers is platform dependent, but is typically 256K. This
value can be changed using the ALLOCATE or SEND command using the PARMS
and the BLKSIZE option.

To calculate the total size of buffers used during a backup or restore, multiply the
buffer size by 2, and then multiply this product by the number of channels.

For example, assume that you use two tape channels and each buffer is 256K. In this
case, the total size of buffers used during a backup is as follows:

256KB/buffer x 4 buffers/channel x 2 channels = 2 MB

RMAN allocates the tape buffers in the SGA if I/O slaves are being used, or the
PGA otherwise.

If you use I/O slaves, then set the LARGE_POOL_SIZE initialization parameter to
set aside SGA memory dedicated to holding these large memory allocations. This
prevents RMAN I/O buffers from competing with the library cache for SGA
memory. If I/O slaves for tape I/O were requested but there is not enough space in
the SGA for them, slaves are not used, and a message appears in the alert log.

Synchronous and Asynchronous I/O
When RMAN reads or writes data, the I/O is either synchronous or asynchronous.
When the I/O is synchronous, a server process can perform only one task at a time.
When it is asynchronous, a server process can begin an I/O and then perform other
work while waiting for the I/O to complete. It can also begin multiple I/O
operations before waiting for the first to complete.

Some operating systems support native asynchronous disk I/O. The database takes
advantage of this feature if it is available. On operating systems that do not support
native asynchronous I/O, the database can simulate it with special I/O slave
processes that are dedicated to performing I/O on behalf of another process. You
can control disk I/O slaves by setting the DBWR_IO_SLAVES parameter to a
nonzero value. The database allocates four backup disk I/O slaves for any nonzero
value of DBWR_IO_SLAVES.

By contrast, tape I/O is always synchronous. For tape I/O, each channel allocated
(whether manually or based on a CONFIGURE command) corresponds to a server
process, called here a channel process.

Tuning Recovery Manager: Overview

Tuning Backup and Recovery 14-5

Synchronous I/O: Example
Figure 14–1 shows synchronous I/O in a backup to tape.

Figure 14–1 Synchronous I/O

The following steps occur:

1. The channel process composes a tape buffer.

2. The channel process executes media manager code that processes the tape
buffer and internalizes it for further processing and storage by the media
manager.

3. The media manager code returns a message to the server process stating that it
has completed writing.

4. The channel process can initiate a new task.

Figure 14–2 shows asynchronous I/O in a tape backup. Asynchronous I/O to tape
is simulated by using tape slaves. In this case, each allocated channel corresponds to
a server process, which in the explanation which follows is identified as a channel

1010101Channel
process

1 2Channel process
composes tape
buffer

3
Media Manger
code returns
after writing

Channel process runs media
manager code to internalize
buffer for writing

4 Channel Process
composes next
buffer

Tape Buffers

1010101

Media
Manager

Tuning Recovery Manager: Overview

14-6 Backup and Recovery Advanced User’s Guide

process. For each channel process, one tape slave is started (or more than one, in the
case of multiple copies).

Figure 14–2 Asynchronous I/O

The following steps occur:

1. A channel process writes blocks to a tape buffer.

2. The channel process sends a message to the tape slave process to process the
tape buffer. The tape slave process executes media manager code that processes
the tape buffer and internalizes it so that the media manager can process it.

3. While the tape slave process is writing, the channel process is free to read data
from the datafiles and prepare more output buffers.

4. Once the tape slave channel returns from the media manager code, it requests a
new tape buffer, which usually is ready. Thus waiting time for the channel
process is reduced, and the backup is completed faster.

Factors Affecting Backup Speed to Tape
The following factors affect the speed of the backup to tape:

■ Native Transfer Rate

■ Tape Compression

■ Tape Streaming

Channel
process

Tape
Slave

1010101 1010101 1010101

1
Channel process
prepares tape
buffer

3

4

2

2

3

22

Channel
process
prepares
more
tape
buffers
while
step
runs

2

Media
Manager

Tape Slave internalizes
and writes tape buffer

Tape slave returns
from media

manger, requests
next buffer

Tuning Recovery Manager: Overview

Tuning Backup and Recovery 14-7

■ Physical Tape Block Size

Native Transfer Rate
The tape native transfer rate is the speed of writing to a tape without compression.
This speed represents the upper limit of the backup rate. The upper limit of your
backup performance should be the aggregate transfer rate of all of your tape drives.
If your backup is already performing at that rate, and if it is not using an excessive
amount of CPU, then RMAN performance tuning will not help.

Tape Compression
The level of tape compression is very important for backup performance. If the tape
has good compression, then the sustained backup rate is faster. For example, if the
compression ratio is 2:1 and native transfer rate of the tape drive is 6 MB/s, then the
resulting backup speed is 12 MB/s. In this case, RMAN must be able to read disks
with a throughput of more than 12 MB/s or the disk becomes the bottleneck for the
backup.

Tape Streaming
Tape streaming during write operations has a major impact on tape backup
performance. Almost all tape drives currently on the market are fixed-speed,
streaming tape drives. Because such drives can only write data at one speed, when
they run out of data to write to tape, the tape must slow down and stop. Generally,
when the drive's buffer empties, the tape is moving so quickly that it actually
overshoots; to continue writing, the drive must rewind the tape to locate the point
where it stopped writing.

Note: You should not use both tape compression provided by the
media manager and binary backupset compression as provided by
RMAN. If the media manager compression is efficient, then it is
usually the better choice. Using RMAN compressed backupsets can
be an effective alternative if you need to reduce bandwidth used to
move uncompressed backupsets over a network to the media
manager, and if the CPU overhead required to compress the data in
RMAN is acceptable.

See Oracle Database Backup and Recovery Basics for more on using
compressed backupsets.

Features and Options Used to Tune RMAN Performance

14-8 Backup and Recovery Advanced User’s Guide

Physical Tape Block Size
The physical tape block size can affect backup performance. The block size is the
amount of data written by media management software to a tape in one write
operation. In general, the larger the tape block size, the faster the backup. Note that
physical tape block size is not controlled by RMAN or the Oracle database server,
but by media management software. See your media management software’s
documentation for details.

Features and Options Used to Tune RMAN Performance
There are a number of features you can use to tune your backup performance, once
you have sufficient knowledge of your database and its workload and bottlenecks.

Using the RATE Parameter to Control Disk Bandwidth Usage
The RATE parameter specifies the bytes/second that RMAN reads on this channel.
Use this parameter to set an upper limit for bytes read so that RMAN does not
consume excessive disk bandwidth and degrade online performance.

For example, set RATE=1500K. If each disk drive delivers 3 MB/second, then
RMAN leaves some disk bandwidth available to the online system.

Tuning RMAN Backup Performance: Examples
Many factors can affect backup performance. Often, finding the solution to a slow
backup is a process of trial and error. To get the best performance for a backup,
follow the suggested steps in this section:

■ Step 1: Remove RATE Parameters from Configured and Allocated Channels

■ Step 2: If You Use Synchronous Disk I/O, Set DBWR_IO_SLAVES

■ Step 3: If You Fail to Allocate Shared Memory, Set LARGE_POOL_SIZE

■ Step 4: Determine Whether Files Are Empty or Contain Few Changes

■ Step 5: Query V$ Views to Identify Bottlenecks

Step 1: Remove RATE Parameters from Configured and Allocated Channels
The RATE parameter on a channel is intended to reduce, rather than increase,
backup throughput, so that more disk bandwidth is available for other database
operations.

Tuning RMAN Backup Performance: Examples

Tuning Backup and Recovery 14-9

If your backup is not streaming to tape, then make sure that the RATE parameter is
not set on the ALLOCATE CHANNEL or CONFIGURE CHANNEL commands.

Step 2: If You Use Synchronous Disk I/O, Set DBWR_IO_SLAVES
If and only if your disk does not support asynchronous I/O, then try setting the
DBWR_IO_SLAVES initialization parameter to a nonzero value. Any nonzero value
for DBWR_IO_SLAVES causes a fixed number (four) of disk I/O slaves to be used
for backup and restore, which simulates asynchronous I/O. If I/O slaves are used,
I/O buffers are obtained from the SGA. The large pool is used, if configured.
Otherwise, the shared pool is used.

Note: By setting DBWR_IO_SLAVES, the database writer processes will use slaves as
well. You may need to increase the value of the PROCESSES initialization
parameter.

Step 3: If You Fail to Allocate Shared Memory, Set LARGE_POOL_SIZE
Set this initialization parameter if the database reports an error in the alert.log
stating that it does not have enough memory and that it will not start I/O slaves.
The message looks something like the following:

ksfqxcre: failure to allocate shared memory means sync I/O will be used whenever
async I/O to file not supported natively

When attempting to get shared buffers for I/O slaves, the database does the
following:

■ If LARGE_POOL_SIZE is set, then the database attempts to get memory from
the large pool. If this value is not large enough, then an error is recorded in the
alert log, the database does not try to get buffers from the shared pool, and
asynchronous I/O is not used.

■ If LARGE_POOL_SIZE is not set, then the database attempts to get memory
from the shared pool.

■ If the database cannot get enough memory, then it obtains I/O buffer memory
from the PGA and writes a message to the alert.log file indicating that
synchronous I/O is used for this backup.

The memory from the large pool is used for many features, including the shared
server (formerly called multi-threaded server), parallel query, and RMAN I/O slave
buffers. Configuring the large pool prevents RMAN from competing with other
subsystems for the same memory.

Tuning RMAN Backup Performance: Examples

14-10 Backup and Recovery Advanced User’s Guide

Requests for contiguous memory allocations from the shared pool are usually small
(under 5 KB) in size. However, it is possible that a request for a large contiguous
memory allocation can either fail or require significant memory housekeeping to
release the required amount of contiguous memory. Although the shared pool may
be unable to satisfy this memory request, the large pool is able to do so. The large
pool does not have a least recently used (LRU) list; the database does not attempt to
age memory out of the large pool.

Use the LARGE_POOL_SIZE initialization parameter to configure the large pool. To
see in which pool (shared pool or large pool) the memory for an object resides,
query V$SGASTAT.POOL.

The formula for setting LARGE_POOL_SIZE is as follows:

LARGE_POOL_SIZE = number_of_allocated_channels *
 (16 MB + (4 * size_of_tape_buffer))

Step 4: Determine Whether Files Are Empty or Contain Few Changes
When performing a full backup of files that are largely empty, or when performing
an incremental backup when block change tracking is disabled and few blocks have
changed, RMAN may not be able to supply blocks with data to the tape fast enough
to keep it streaming. In either case, you can improve performance by increasing the
level of multiplexing.

An incremental backup is an RMAN backup in which only modified blocks are
backed up. If change tracking is disabled, then incremental backups are often slow
because the database must read the entire datafile to find blocks which have

See Also: Oracle Database Concepts for more information about the
large pool, and Oracle Database Reference for complete information
about initialization parameters

Note: One reliable way to determine whether the tape streaming
or disk I/O is the bottleneck in a given backup job is to compare the
time required to run backup tasks with the time required to run
BACKUP VALIDATE of the same tasks. BACKUP VALIDATE of a
backup to tape performs the same disk reads as a real backup but
performs no tape I/O. If the time required for the BACKUP
VALIDATE to tape is significantly less than the time required for a
real backup to tape, then writing to tape is the likely bottleneck.

Tuning RMAN Backup Performance: Examples

Tuning Backup and Recovery 14-11

changed. If tape drives are not locally attached, then incremental backups can be
faster. You must consider how much bandwidth exists for reading the disks
compared to the bandwidth for writing to the tapes. If tape bandwidth is limited
compared to disk, then incremental backups may help.

If only a few blocks have changed in an incremental backup, then you need to input
many buffers from the datafile before you accumulate enough blocks to fill a buffer
and write to tape. Hence, the tape drive may not stream.

Step 5: Query V$ Views to Identify Bottlenecks
If none of the previous steps improves backup performance, then try to determine
the exact source of the bottleneck. Use the V$BACKUP_SYNC_IO and V$BACKUP_
ASYNC_IO views to determine the source of backup or restore bottlenecks and to
see detailed progress of backup jobs.

V$BACKUP_SYNC_IO contains rows when the I/O is synchronous to the process (or
thread on some platforms) performing the backup. V$BACKUP_ASYNC_IO contains
rows when the I/O is asynchronous. Asynchronous I/O is obtained either with I/O
processes or because it is supported by the underlying operating system.

To determine whether your tape is streaming when the I/O is synchronous, query
the EFFECTIVE_BYTES_PER_SECOND column in the V$BACKUP_SYNC_IO or
V$BACKUP_ASYNC_IO view. If EFFECTIVE_BYTES_PER_SECOND is less than the
raw capacity of the hardware, then the tape is not streaming. If EFFECTIVE_
BYTES_PER_SECOND is greater than the raw capacity of the hardware, the tape may
or may not be streaming. Compression may cause the EFFECTIVE_BYTES_PER_
SECOND to be greater than the speed of real I/O.

Identifying Bottlenecks with Synchronous I/O
With synchronous I/O, it is difficult to identify specific bottlenecks because all
synchronous I/O is a bottleneck to the process. The only way to tune synchronous
I/O is to compare the rate (in bytes/second) with the device’s maximum
throughput rate. If the rate is lower than the rate that the device specifies, then
consider tuning this aspect of the backup and restore process. The DISCRETE_
BYTES_PER_SECOND column in the V$BACKUP_SYNC_IO view displays the I/O
rate. If you see data in V$BACKUP_SYNC_IO, then the problem is that you have not
enabled asynchronous I/O or you are not using disk I/O slaves.

See Also: Oracle Database Reference for more information about
these views

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-12 Backup and Recovery Advanced User’s Guide

Identifying Bottlenecks with Asynchronous I/O
Long waits are the number of times the backup or restore process told the operating
system to wait until an I/O was complete. Short waits are the number of times the
backup or restore process made an operating system call to poll for I/O completion
in a nonblocking mode. Ready indicates the number of time when I/O was already
ready for use and so there was no need to made an operating system call to poll for
I/O completion.

The simplest way to identify the bottleneck is to query V$BACKUP_ASYNC_IO for
the datafile that has the largest ratio for LONG_WAITS divided by IO_COUNT.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET
This section offers guidelines for tuning the time required to perform crash and
instance recovery. It contains the following topics:

■ Understanding Instance Recovery

■ Checkpointing and Cache Recovery

■ Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET

■ Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor

Understanding Instance Recovery
Instance and crash recovery are the automatic application of redo log records to
Oracle data blocks after a crash or system failure. During normal operation, if an
instance is shut down cleanly (as when using a SHUTDOWN IMMEDIATE statement),
rather than terminated abnormally, then the in-memory changes that have not
already been written to the datafiles on disk are written to disk as part of the
checkpoint performed during shutdown.

However, if a single instance database crashes or if all instances of an Oracle Real
Application Cluster configuration crash, then Oracle performs crash recovery at the

Note: If you have synchronous I/O but you have set BACKUP_
DISK_IO_SLAVES, then the I/O will be displayed in V$BACKUP_
ASYNC_IO.

See Also: Oracle Database Reference for descriptions of the
V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO views

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Backup and Recovery 14-13

next startup. If one or more instances of an Oracle Real Application Cluster
configuration crash, then a surviving instance performs instance recovery
automatically. Instance and crash recovery occur in two steps: cache recovery
followed by transaction recovery.

The database can be opened as soon as cache recovery completes, so improving the
performance of cache recovery is important for increasing availability.

Cache Recovery (Rolling Forward)
During the cache recovery step, Oracle applies all committed and uncommitted
changes in the redo log files to the affected data blocks. The work required for cache
recovery processing is proportional to the rate of change to the database (update
transactions each second) and the time between checkpoints.

Transaction Recovery (Rolling Back)
To make the database consistent, the changes that were not committed at the time of
the crash must be undone (in other words, rolled back). During the transaction
recovery step, Oracle applies the rollback segments to undo the uncommitted
changes.

Checkpointing and Cache Recovery
Periodically, Oracle records a checkpoint. A checkpoint is the highest system change
number (SCN) such that all data blocks less than or equal to that SCN are known to
be written out to the data files. If a failure occurs, then only the redo records
containing changes at SCNs higher than the checkpoint need to be applied during
recovery. The duration of cache recovery processing is determined by two factors:
the number of data blocks that have changes at SCNs higher than the SCN of the
checkpoint, and the number of log blocks that need to be read to find those changes.

How Checkpoints Affect Performance
Frequent checkpointing writes dirty buffers to the datafiles more often than
otherwise, and so reduces cache recovery time in the event of an instance failure. If
checkpointing is frequent, then applying the redo records in the redo log between
the current checkpoint position and the end of the log involves processing relatively
few data blocks. This means that the cache recovery phase of recovery is fairly
short.

However, in a high-update system, frequent checkpointing can reduce runtime
performance, because checkpointing causes DBWn processes to perform writes.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-14 Backup and Recovery Advanced User’s Guide

Fast Cache Recovery Trade-offs To minimize the duration of cache recovery, you must
force Oracle to checkpoint often, thus keeping the number of redo log records to be
applied during recovery to a minimum. However, in a high-update system,
frequent checkpointing increases the overhead for normal database operations.

If daily operational efficiency is more important than minimizing recovery time,
then decrease the frequency of writes to data files due to checkpoints. This should
improve operational efficiency, but also increase cache recovery time.

Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET
The fast-start fault recovery feature reduces the time required for cache recovery
and makes the recovery bounded and predictable by limiting the number of dirty
buffers and the number of redo records generated between the most recent redo
record and the last checkpoint.

The foundation of fast-start fault recovery is the fast-start checkpointing
architecture. Instead of conventional event-driven (that is, log switching)
checkpointing, which does bulk writes, fast-start checkpointing occurs
incrementally. Each DBWn process periodically writes buffers to disk to advance the
checkpoint position. The oldest modified blocks are written first to ensure that
every write lets the checkpoint advance. Fast-start checkpointing eliminates bulk
writes and the resultant I/O spikes that occur with conventional checkpointing.

With the fast-start fault recovery feature,the FAST_START_MTTR_TARGET
initialization parameter simplifies the configuration of recovery time from instance
or system failure. FAST_START_MTTR_TARGET specifies a target for the expected
mean time to recover (MTTR), that is, the time (in seconds) that it should take to
start up the instance and perform cache recovery. Once FAST_START_MTTR_
TARGET is set, the database manages incremental checkpoint writes in an attempt to
meet that target. If you have chosen a practical value for FAST_START_MTTR_
TARGET, you can expect your database to recover, on average, in approximately the
number of seconds you have chosen.

Note: You must disable or remove the FAST_START_IO_TARGET,
LOG_CHECKPOINT_INTERVAL, and LOG_CHECKPOINT_TIMEOUT
initialization parameters when using FAST_START_MTTR_TARGET.
Setting these parameters interferes with the mechanisms used to
manage cache recovery time to meet FAST_START_MTTR_
TARGET.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Backup and Recovery 14-15

Practical Values for FAST_START_MTTR_TARGET The maximum value for FAST_
START_MTTR_TARGET is 3600 seconds (one hour). If you set the value to more than
3600, then Oracle rounds it to 3600.

The following example shows how to set the value of FAST_START_MTTR_TARGET:

SQL> ALTER DATABASE SET FAST_START_MTTR_TARGET=30;

In principle, the minimum value for FAST_START_MTTR_TARGET is one second.
However, the fact that you can set FAST_START_MTTR_TARGET this low does not
mean that that target can be achieved. There are practical limits to the minimum
achievable MTTR target, due to such factors as database startup time.

The MTTR target that your database can achieve given the current value of FAST_
START_MTTR_TARGET is called the effective MTTR target. You can view your
current effective MTTR by viewing the TARGET_MTTR column of the V$INSTANCE_
RECOVERY view.

The practical range of MTTR target values for your database is defined to be the
range between the lowest achieveable effective MTTR target for your database and
the longest that startup and cache recovery will take in the worst-case scenario (that
is, when the whole buffer cache is dirty). A procedure for determining the range of
achievable MTTR target values, one step in the process of tuning your FAST_
START_MTTR_TARGET value, is described in "Determine the Practical Range for
FAST_START_MTTR_TARGET" on page 14-17.

Reducing Checkpoint Frequency to Optimize Runtime Performance To reduce the
checkpoint frequency and optimize runtime performance, you can do the following:

■ Set the value of FAST_START_MTTR_TARGET to 3600. This enables fast-start
checkpointing and the fast-start fault recovery feature, but minimizes its effect

Note: It is usually not useful to set your FAST_START_MTTR_
TARGET to a value outside the practical range. If your FAST_
START_MTTR_TARGET value is shorter than the lower limit of the
practical range, the effect is as if you set it to the lower limit of the
practical range. In such a case, the effective MTTR target will be the
best MTTR target the system can achieve, but checkpointing will be
at a maximum, which can affect normal database performance. If
you set FAST_START_MTTR_TARGET to a time longer than the
practical range, the MTTR target will be no better than the
worst-case situation.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-16 Backup and Recovery Advanced User’s Guide

on runtime performance while avoiding the need for performance tuning of
FAST_START_MTTR_TARGET.

■ Size your online redo log files according to the amount of redo your system
generates. A good rule of thumb is to switch logs at most every twenty minutes.
Having your log files too small can increase checkpoint activity and reduce
performance. Also note that all redo log files should be the same size.

Monitoring Cache Recovery with V$INSTANCE_RECOVERY The V$INSTANCE_RECOVERY
view displays the current recovery parameter settings. You can also use statistics
from this view to determine which factor has the greatest influence on
checkpointing.

The following table lists those columns most useful in monitoring predicted cache
recovery performance:

For more details on the columns in V$INSTANCE_RECOVERY, see Oracle Database
Reference.

As part of the ongoing monitoring of your database, you can periodically compare
V$INSTANCE_RECOVERY.TARGET_MTTR to your FAST_START_MTTR_TARGET.
The two values should generally be the same if the FAST_START_MTTR_TARGET
value is in the practical range. If TARGET_MTTR is consistently longer than FAST_
START_MTTR_TARGET, then set FAST_START_MTTR_TARGET to a value no less
than TARGET_MTTR. If TARGET_MTTR is consistently shorter, then set FAST_
START_MTTR_TARGET to a value no greater than TARGET_MTTR.

See Also: Oracle Database Concepts for a complete discussion of
checkpoints

Table 14–2 V$INSTANCE_RECOVERY Columns

Column Description

TARGET_MTTR Effective mean time to recover (MTTR) target in seconds.
This field is 0 if FAST_START_MTTR_TARGET is not
specified.

ESTIMATED_MTTR The current estimated mean time to recover (MTTR) in
seconds, based on the current number of dirty buffers and
log blocks. This field is always calculated, whether or not
FAST_START_MTTR_TARGET is specified.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Backup and Recovery 14-17

Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor
To determine the appropriate value for FAST_START_MTTR_TARGET for your
database, execute the following four step process:

■ Calibrate the FAST_START_MTTR_TARGET

■ Determine the Practical Range for FAST_START_MTTR_TARGET

■ Evaluate Different Target Values with MTTR Advisor

■ Determine Optimal Size for Redo Logs

Calibrate the FAST_START_MTTR_TARGET
The FAST_START_MTTR_TARGET initialization parameter causes the database to
calculate internal system trigger values, in order to limit the length of the redo log
and the number of dirty data buffers in the data cache. This calculation uses
estimated time to read a redo block, estimates of the time to read and write a data
block, as well as characteristics of typical workload of the system, such as how
many dirty buffers corresponds to how many change vectors, and so on.

Initially, internal defaults are used in the calculation. These defaults are replaced
over time by data gathered on I/O performance during system operation and actual
cache recoveries.

You will have to perform several instance recoveries in order to calibrate your
FAST_START_MTTR_TARGET value properly. Before starting calibration, you must
decide whether FAST_START_MTTR_TARGET is being calibrated for a database
crash or a hardware crash. This is a consideration if your database files are stored in
a file system or if your I/O subsystem has a memory cache, because there is a
considerable difference in the read and write time to disk depending on whether or
not the files are cached. The appropriate value for FAST_START_MTTR_TARGET
will depend upon which type of crash is more important to recover from quickly.

To effecitvely calibrate FAST_START_MTTR_TARGET, make sure that you run the
typcial workload of the system for long enough, and perform several instance
recoveries to ensure that the time to read a redo block and the time to read or write
a data block during recovery are recorded accurately.

Determine the Practical Range for FAST_START_MTTR_TARGET
After calibration, you can perform tests to determine the practical range for FAST_
START_MTTR_TARGET for your database.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-18 Backup and Recovery Advanced User’s Guide

Determining Lower Bound for FAST_START_MTTR_TARGET: Scenario To determine the
lower bound of the practical range, set FAST_START_MTTR_TARGET to 1, and start
up your database. Then check the value of V$INSTANCE_RECOVERY.TARGET_
MTTR, and use this value as a good lower bound for FAST_START_MTTR_TARGET.
Database startup time, rather than cache recovery time, is usually the dominant
factor in determining this limit.

For example, set the FAST_START_MTTR_TARGET to 1:

SQL> ALTER DATABASE SET FAST_START_MTTR_TARGET=1;

Then, execute the following query immediately after opening the database:

SQL> SELECT TARGET_MTTR, ESTIMATED_MTTR
 FROM V$INSTANCE_RECOVERY;

Oracle responds with the following:

TARGET_MTTR ESTIMATED_MTTR
18 15

The TARGET_MTTR value of 18 seconds is the minimum MTTR target that the
system can achieve, that is, the lowest practical value for FAST_START_MTTR_
TARGET. This minimum is calculated based on the average database startup time.

The ESTIMATED_MTTR field contains the estimated mean time to recovery based on
the current state of the running database. Because the database has just opened, the
system contains few dirty buffers, so not much cache recovery would be required if
the instance failed at this moment. That is why ESTIMATED_MTTR can, for the
moment, be lower than the minimum possible TARGET_MTTR.

ESTIMATED_MTTR can be affected in the short term by recent database activity.
Assume that you query V$INSTANCE_RECOVERY immediately after a period of
heavy update activity in the database. Oracle responds with the following:

TARGET_MTTR ESTIMATED_MTTR
18 30

Now the effective MTTR target is still 18 seconds, and the estimated MTTR (if a
crash happened at that moment) is 30 seconds. This is an acceptable result. This
means that some checkpoints writes might not have finished yet, so the buffer cache
contains more dirty buffers than targeted.

Now wait for sixty seconds and reissue the query to V$INSTANCE_RECOVERY.
Oracle responds with the following:

TARGET_MTTR ESTIMATED_MTTR

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Backup and Recovery 14-19

18 25

The estimated MTTR at this time has dropped to 25 seconds, because some of the
dirty buffers have been written out during this period

Determining Upper Bound for FAST_START_MTTR_TARGET To determine the upper
bound of the practical range, set FAST_START_MTTR_TARGET to 3600, and operate
your database under a typical workload for a while. Then check the value of
V$INSTANCE_RECOVERY.TARGET_MTTR. This value is a good upper bound for
FAST_START_MTTR_TARGET.

The procedure is substantially similar to that in "Determining Lower Bound for
FAST_START_MTTR_TARGET: Scenario" on page 14-18.

Selecting Preliminary Value for FAST_START_MTTR_TARGET Once you have determined
the practical bounds for the FAST_START_MTTR_TARGET parameter, select a
preliminary value for the parameter. Choose a higher value within the practical
range if your concern is with database performance, and a lower value within the
practical range if your priority is shorter recovery times. The narrower the practical
range, of course, the easier the choice becomes.

For example, if you discovered that the practical range was between 17 and 19
seconds, it would be quite simple to choose 19, because it makes relatively little
difference in recovery time and at the same time minimizes the effect of
checkpointing on system performance. However, if you found that the practical
range was between 18 and 40 seconds, you might choose a compromise value of 30,
and set the parameter accordingly:

SQL> ALTER DATABASE SET FAST_START_MTTR_TARGET=30;

You might then go on to use the MTTR Advisor to determine an optimal value.

Evaluate Different Target Values with MTTR Advisor
Once you have selected a preliminary value for FAST_START_MTTR_TARGET, you
can use MTTR Advisor to evaluate the effect of different FAST_START_MTTR_
TARGET settings on system performance, compared to your chosen setting.

Enabling MTTR Advisor To enable MTTR Advisor, set the two initialization parameters
STATISTICS_LEVEL and FAST_START_MTTR_TARGET.

STATISTICS_LEVEL governs whether all advisors are enabled and is not specific
to MTTR Advisor. Make sure that it is set to TYPICAL or ALL. Then, when FAST_
START_MTTR_TARGET is set to a non-zero value, the MTTR Advisor is enabled.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-20 Backup and Recovery Advanced User’s Guide

Using MTTR Advisor After enabling MTTR Advisor, run a typical database workload
for a while. When MTTR Advisor is ON, the database simulates checkpoint queue
behavior under the current value of FAST_START_MTTR_TARGET, and up to four
other different MTTR settings within the range of valid FAST_START_MTTR_
TARGET values. (The database will in this case determine the valid range for FAST_
START_MTTR_TARGET itself before testing different values in the range.)

Viewing MTTR Advisor Results: V$MTTR_TARGET_ADVICE The dynamic performance
view V$MTTR_TARGET_ADVICE lets you view statistics or advisories collected by
MTTR Advisor.

The database populates V$MTTR_TARGET_ADVICE with advice about the effects of
each of the FAST_START_MTTR_TARGET settings for your database. For each
possible value of FAST_START_MTTR_TARGET, the row contains details about how
many cache writes would be performed under the workload tested for that value of
FAST_START_MTTR_TARGET.

Specifically, each row contains information about cache writes, total phyiscal writes
(including direct writes), and total I/O (including reads) for that value of FAST_
START_MTTR_TARGET, expressed both as a total number of operations and a ratio
compared to the operations under your chosen FAST_START_MTTR_TARGET
value. For instance, a ratio of 1.2 indicates 20% more cache writes.

Knowing the effect of different FAST_START_MTTR_TARGET settings on cache
write activity and other I/O enables you to decide better which FAST_START_
MTTR_TARGET value best fits your recovery and performance needs.

If MTTR Advisor is currently on,V$MTTR_TARGET_ADVICE shows the Advisor
information collected. If MTTR Advisor is currently OFF, the view shows
information collected the last time MTTR Advisor was ON since database startup, if
any. If the database has been restarted since the last time the MTTR Advisor was
used, or if it has never been used, the view will not show any rows.

Determine Optimal Size for Redo Logs
You can use the V$INSTANCE_RECOVERY view column OPTIMAL_LOGFILE_SIZE
to determine the size of your online redo logs. This field shows the redo log file size
in megabytes that is considered optimal based on the current setting of FAST_
START_MTTR_TARGET. If this field consistently shows a value greater than the size
of your smallest online log, then you should configure all your online logs to be at
least this size.

See Also: Oracle Database Reference for column details of the
V$MTTR_TARGET_ADVICE view

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

Tuning Backup and Recovery 14-21

Note, however, that the redo log file size affects the MTTR. In some cases, you may
be able to refine your choice of the optimal FAST_START_MTTR_TARGET value by
re-running the MTTR Advisor with your suggested optimal log file size.

Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET

14-22 Backup and Recovery Advanced User’s Guide

Recovery Manager Troubleshooting 15-1

15
Recovery Manager Troubleshooting

This chapter describes how to troubleshoot Recovery Manager. This chapter
contains these topics:

■ Interpreting RMAN Message Output

■ Testing the Media Management API

■ Terminating an RMAN Command

■ RMAN Troubleshooting Scenarios

Interpreting RMAN Message Output

15-2 Backup and Recovery Advanced User’s Guide

Interpreting RMAN Message Output
Recovery Manager provides detailed error messages that can aid in troubleshooting
problems. Also, the Oracle database server and third-party media vendors generate
useful debugging output of their own. The discussion which follows explains how
to identify and interpret the different errors you may encounter.

Identifying Types of Message Output
Output that is useful for troubleshooting failed or hung RMAN jobs is located in
several different places, as explained in the following table.

Type of Output Produced By Location Description

RMAN messages RMAN Completed job information is in
V$RMAN_STATUS and RC_RMAN_
STATUS. Current job information
is in V$RMAN_OUTPUT.

When running RMAN from the
command line, you can direct
output to the following places:

■ Standard output

■ A log file specified by LOG on
the command line or the
SPOOL LOG command

■ A file created by redirecting
RMAN output (for example,
UNIX > operator)

Contains actions relevant to the
RMAN job as well as error messages
generated by RMAN, the database
server, and the media vendor.
RMAN error messages have an
RMAN-xxxxx prefix. Normal action
descriptions do not have a prefix.

alert_SID.log Oracle
database
server

The directory named in the
BACKGROUND_DUMP_DEST
initialization parameter.

Contains a chronological log of
errors, initialization parameter
settings, and administration
operations. Records values for
overwritten control file records (refer
to Oracle Data Guard Concepts and
Administration).

Oracle trace file Oracle
database
server

The directory specified in the
USER_DUMP_DEST initialization
parameter.

Contains detailed output generated
by Oracle server processes. This file
is created when an ORA-600 or
ORA-3113 error message occurs,
whenever RMAN cannot allocate a
channel, and when the database fails
to load the media management
library.

Interpreting RMAN Message Output

Recovery Manager Troubleshooting 15-3

Recognizing RMAN Error Message Stacks
RMAN reports errors as they occur. If an error is not retriable, that is, RMAN cannot
perform failover to another channel to complete a particular job step, then RMAN
also reports a summary of the errors after all job sets complete. This feature is
known as deferred error reporting.

One way to determine whether RMAN encountered an error is to examine its return
code, as described in "Identifying RMAN Return Codes" on page 15-10. A second
way is to search the RMAN output for the string RMAN-00569, which is the
message number for the error stack banner. All RMAN errors are preceded by this
error message. If you do not see an RMAN-00569 message in the output, then there
are no errors. Following is sample output for a syntax error:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01005: syntax error: found ")": expecting one of: "archivelog, backup,
backupset, controlfilecopy, current, database, datafile, datafilecopy, (, plus,
;, tablespace"
RMAN-01007: at line 1 column 18 file: standard input

Identifying Error Codes
Typically, you find the following types of error codes in RMAN message stacks:

■ Errors prefixed with RMAN-

■ Errors prefixed with ORA-

■ Errors preceded by the line Additional information:

sbtio.log Third-party
media
management
software

The directory specified in the
USER_DUMP_DEST initialization
parameter.

Contains vendor-specific
information written by the media
management software. This log does
not contain Oracle server or RMAN
errors.

Media manager
log file

Third-party
media
management
software

The filenames for any media
manager logs other than
sbtio.log are determined by
the media management software.

Contains information on the
functioning of the media
management device.

Type of Output Produced By Location Description

Interpreting RMAN Message Output

15-4 Backup and Recovery Advanced User’s Guide

RMAN Error Message Numbers
Table 15–1 indicates the error ranges for common RMAN error messages, all of
which are described in Oracle Database Error Messages.

ORA-19511: Media Manager Errors
In the event of a media manager error, ORA-19511 is signalled, and the media
manager is expected to provide RMAN a descriptive error. RMAN will display the
error passed back to it by the media manager. For example, you might see this:

ORA-19511: Error received from media manager layer, error text:
 sbtpvt_open_input: file .* does not exist or cannot be accessed, errno = 2

The message from the media manager should provide you with enough
information to let you fix the root problem. If it does not, you should refer to the

See Also: Oracle Database Error Messages for explanations of RMAN
and ORA error codes

Table 15–1 RMAN Error Message Ranges

Error Range Cause

0550-0999 Command-line interpreter

1000-1999 Keyword analyzer

2000-2999 Syntax analyzer

3000-3999 Main layer

4000-4999 Services layer

5000-5499 Compilation of RESTORE or RECOVER command

5500-5999 Compilation of DUPLICATE command

6000-6999 General compilation

7000-7999 General execution

8000-8999 PL/SQL programs

9000-9999 Low-level keyword analyzer

10000-10999 Server-side execution

11000-11999 Interphase errors between PL/SQL and RMAN

12000-12999 Recovery catalog packages

Interpreting RMAN Message Output

Recovery Manager Troubleshooting 15-5

documentation for your media manager or contact your media management vendor
support representative for further information. ORA-19511 errors originate with
the media manager, not the Oracle database. The database merely passes the
message on from the media manager. The cause can only be addressed by the media
management vendor.

Note that if you are still using an SBT 1.1-compliant media management layer, you
may see some additional error message text. Output from an SBT 1.1-compliant
media management layer is similar to the following:

ORA-19507: failed to retrieve sequential file, handle="c-140148591-20031014-06",
parms=""
ORA-27007: failed to open file
Additional information: 7000
Additional information: 2
ORA-19511: Error received from media manager layer, error text:
 SBT error = 7000, errno = 0, sbtopen: backup file not found

The "Additional information" provided uses error codes specific to SBT 1.1. The
values displayed correspond to the media manager message numbers and error text
listed in Table 15–2. RMAN re-signals the error, as an ORA-19511 Error
received from media manager layer error, and a general error message
related to the error code returned from the media manager and including the SBT
1.1 error number is then displayed.

The SBT 1.1 error messages are listed here for your reference. Table 15–2 lists media
manager message numbers and their corresponding error text. In the error codes,
O/S stands for operating system. The errors prefixed with an asterisk are internal and
should not typically be seen during normal operation.

Interpreting RMAN Message Output

15-6 Backup and Recovery Advanced User’s Guide

Table 15–2 Media Manager Error Message Ranges (Page 1 of 2)

Cause No. Message

sbtopen 7000

7001

7002*

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012*

Backup file not found (only returned for read)

File exists (only returned for write)

Bad mode specified

Invalid block size specified

No tape device found

Device found, but busy; try again later

Tape volume not found

Tape volume is in-use

I/O Error

Can’t connect with Media Manager

Permission denied

O/S error for example malloc, fork error

Invalid argument(s) to sbtopen

sbtclose 7020*

7021*

7022

7023

7024*

7025

Invalid file handle or file not open

Invalid flags to sbtclose

I/O error

O/S error

Invalid argument(s) to sbtclose

Can’t connect with Media Manager

sbtwrite 7040*

7041

7042

7043

7044*

Invalid file handle or file not open

End of volume reached

I/O error

O/S error

Invalid argument(s) to sbtwrite

sbtread 7060*

7061

7062

7063

7064

7065*

Invalid file handle or file not open

EOF encountered

End of volume reached

 I/O error

O/S error

Invalid argument(s) to sbtread

Interpreting RMAN Message Output

Recovery Manager Troubleshooting 15-7

Interpreting RMAN Error Stacks
Sometimes you may find it difficult to identify the useful messages in the RMAN
error stack. Note the following tips and suggestions:

■ Read the messages from the bottom up, because this is the order in which
RMAN issues the messages. The last one or two errors displayed in the stack
are often the most informative.

■ When using an SBT 1.1 media management layer and presented with SBT 1.1
style error messages containing the "Additional information:" numeric
error codes, look for the ORA-19511 message that follows for the text of error
messages passed back to RMAN by the media manager. These should identify
the real failure in the media management layer.

■ Look for the RMAN-03002 or RMAN-03009 message (RMAN-03009 is the same
as RMAN-03002 but includes the channel ID), immediately following the error
banner. These messages indicate which command failed. Syntax errors generate
RMAN-00558.

sbtremove 7080

7081

7082

7083

7084

7085

7086*

Backup file not found

Backup file in use

I/O Error

Can’t connect with Media Manager

Permission denied

O/S error

Invalid argument(s) to sbtremove

sbtinfo 7090

7091

7092

7093

7094

7095*

Backup file not found

I/O Error

Can’t connect with Media Manager

Permission denied

O/S error

Invalid argument(s) to sbtinfo

sbtinit 7110*

7111

Invalid argument(s) to sbtinit

O/S error

Table 15–2 Media Manager Error Message Ranges (Page 2 of 2)

Cause No. Message

Interpreting RMAN Message Output

15-8 Backup and Recovery Advanced User’s Guide

■ Identify the basic type of error according to the error range chart in Table 15–1
and then refer to Oracle Database Error Messages for information on the most
important messages.

Interpreting RMAN Errors: Example
You attempt a backup of tablespace users and receive the following message:

Starting backup at 29-AUG-02
using channel ORA_DISK_1
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/29/2002 15:14:03
RMAN-20202: tablespace not found in the recovery catalog
RMAN-06019: could not translate tablespace name "USESR"

The RMAN-03002 error indicates that the BACKUP command failed. You read the
last two messages in the stack first and immediately see the problem: no tablespace
usesr appears in the recovery catalog because you mistyped the name.

Interpreting Server Errors: Example
Assume that you attempt to recover a tablespace and receive the following errors:

RMAN> RECOVER TABLESPACE users;

Starting recover at 29-AUG-01
using channel ORA_DISK_1

starting media recovery
media recovery failed
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of recover command at 08/29/2001 15:18:43
RMAN-11003: failure during parse/execution of SQL statement: alter database
recover if needed tablespace USERS
ORA-00283: recovery session canceled due to errors
ORA-01124: cannot recover data file 8 - file is in use or recovery
ORA-01110: data file 8: '/oracle/oradata/trgt/users01.dbf'

As suggested, you start reading from the bottom up. The ORA-01110 message
explains there was a problem with the recovery of datafile users01.dbf. The
second error indicates that the database cannot recover the datafile because it is in

Interpreting RMAN Message Output

Recovery Manager Troubleshooting 15-9

use or already being recovered. The remaining RMAN errors indicate that the
recovery session was cancelled due to the server errors. Hence, you conclude that
because you were not already recovering this datafile, the problem must be that the
datafile is online and you need to take it offline and restore a backup.

Interpreting SBT 2.0 Media Management Errors: Example
Assume that you use a tape drive and receive the following output during a backup
job:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
ORA-19624: operation failed, retry possible
ORA-19507: failed to retrieve sequential file, handle="/tmp/foo", parms=""
ORA-27029: skgfrtrv: sbtrestore returned error
ORA-19511: Error received from media manager layer, error text:
 sbtpvt_open_input:file /tmp/foo does not exist or cannot be accessed, errno=2

The error text displayed following the ORA-19511 error is generated by the media
manager and describes the real source of the failure. Refer to the media manager
documentation to interpret this error.

Interpreting SBT 1.1 Media Management Errors: Example
Assume that you use a tape drive and receive the following output during a backup
job:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of backup command on c1 channel at 09/04/2001 13:18:19
ORA-19506: failed to create sequential file, name="07d36ecp_1_1", parms=""
ORA-27007: failed to open file
SVR4 Error: 2: No such file or directory
Additional information: 7005
Additional information: 1
ORA-19511: Error received from media manager layer, error text:
 SBT error = 7005, errno = 2, sbtopen: system error

The main information of interest returned by SBT 1.1 media managers is the error
code in the "Additional information" line:

Additional information: 7005

Testing the Media Management API

15-10 Backup and Recovery Advanced User’s Guide

Referring to Table 15–2, "Media Manager Error Message Ranges", you discover that
error 7005 means that the media management device is busy. So, the media
management software is not able to write to the device because it is in use or there
is a problem with it.

Identifying RMAN Return Codes
One way to determine whether RMAN encountered an error is to examine its return
code or exit status. The RMAN client returns 0 to the shell from which it was
invoked if no errors occurred, and a nonzero error value otherwise.

How you access this return code depends upon the environment from which you
invoked the RMAN client. For example, if you are running UNIX with the C shell,
then, when RMAN completes, the return code is placed in a shell variable called
$status. The method of returning exit status is a detail specific to the host
operating system rather than the RMAN client.

Testing the Media Management API
On some platforms, Oracle provides a diagnostic tool called sbttest. This utility
performs a simple test of the media management software by attempting to
communicate with the media manager as the Oracle database server would.

Obtaining the sbttest Utility
On UNIX, the sbttest utility is typically located in $ORACLE_HOME/bin. If for
some reason the utility is not included with your platform, then contact Oracle
Support to obtain the C version of the program. You can compile this version of the
program on all UNIX platforms.

Note that on platforms such as Solaris, you do not have to relink when using
sbttest. On other platforms, relinking may be necessary.

Note: The sbtio.log contains information written by the media
management software, not the Oracle database server. Hence, you
must consult your media vendor documentation to interpret the
error codes and messages. If no information is written to the
sbtio.log, contact your media manager support to ask whether
they are writing error messages in some other location, or whether
there are steps you need to take to have the media manager errors
appear in sbtio.log.

Testing the Media Management API

Recovery Manager Troubleshooting 15-11

Obtaining Online Documentation for the sbttest Utility
For online documentation of sbttest, issue the following on the command line:

% sbttest

The program displays the list of possible arguments for the program:

Error: backup file name must be specified
Usage: sbttest backup_file_name # this is the only required parameter
 <-dbname database_name>
 <-trace trace_file_name>
 <-remove_before>
 <-no_remove_after>
 <-read_only>
 <-no_regular_backup_restore>
 <-no_proxy_backup>
 <-no_proxy_restore>
 <-file_type n>
 <-copy_number n>
 <-media_pool n>
 <-os_res_size n>
 <-pl_res_size n>
 <-block_size block_size>
 <-block_count block_count>
 <-proxy_file os_file_name bk_file_name
 [os_res_size pl_res_size block_size block_count]>
 <-libname sbt_library_name>

The display also indicates the meaning of each argument. For example, following is
the description for two optional parameters:

Optional parameters:
 -dbname specifies the database name which will be used by SBT
 to identify the backup file. The default is "sbtdb"
 -trace specifies the name of a file where the Media Management
 software will write diagnostic messages.

Using the sbttest Utility
Use sbttest to perform a quick test of the media manager. The following table
explains how to interpret the output.

Testing the Media Management API

15-12 Backup and Recovery Advanced User’s Guide

To use sbttest:

1. Make sure the program is installed and included in the system path by typing
sbttest at the command line:

% sbttest

If the program is operational, then you should see a display of the online
documentation.

2. Execute the program, specifying any of the arguments described in the online
documentation. For example, enter the following to create test file some_
file.f and write the output to sbtio.log:

% sbttest some_file.f -trace sbtio.log

You can also test a backup of an existing datafile. For example, this command
tests datafile tbs_33.f of database prod:

% sbttest tbs_33.f -dbname prod

3. Examine the output. If the program encounters an error, then it provides
messages describing the failure. For example, if the database cannot find the
library, you see:

libobk.so could not be loaded. Check that it is installed properly, and that
LD_LIBRARY_PATH environment variable (or its equivalent on your platform)
includes the directory where this file can be found. Here is some additional
information on the cause of this error:
ld.so.1: sbttest: fatal: libobk.so: open failed: No such file or directory

Note that in some cases sbttest can work but an RMAN backup does not. The
reasons can be the following:

■ The user who starts sbttest is not the owner of the Oracle processes.

If sbttest returns . . . Then . . .

0 The program ran without error. In other words, the media
manager is installed and can accept a data stream and return the
same data when requested.

a nonzero value The program encountered an error. Either the media manager is
not installed or it is not configured correctly.

Terminating an RMAN Command

Recovery Manager Troubleshooting 15-13

■ If the database server is not linked with the media management library or
cannot load it dynamically when needed, then RMAN backups to the media
manager fail, but sbttest may still work.

■ The sbttest program passes all environment parameters from the shell but
RMAN does not.

Terminating an RMAN Command
There are several ways to terminate an RMAN command in the middle of
execution:

■ The preferred method is to press CTRL+C (or the equivalent "attention" key
combination for your system) in the RMAN interface. This will also terminates
allocated channels, unless they are hung in the media management code, as
happens when, for example, when they are waiting for a tape to be mounted.

■ You can kill the server session corresponding to the RMAN channel by running
the SQL ALTER SYSTEM KILL SESSION statement.

■ You can terminate the server session corresponding to the RMAN channel on
the operating system.

Terminating the Session with ALTER SYSTEM KILL SESSION
You can identify the Oracle session ID for an RMAN channel by looking in the
RMAN log for messages with the format shown in the following example:

channel ch1: sid=15 devtype=SBT_TAPE

The sid and devtype are displayed for each allocated channel. Note that the
Oracle sid is different from the operating system process ID. You can kill the
session using a SQL ALTER SYSTEM KILL SESSION statement.

ALTER SYSTEM KILL SESSION takes two arguments, the sid printed in the
RMAN message and a serial number, both of which can be obtained by querying
V$SESSION. For example, run the following statement, where sid_in_rman_
output is the number from the RMAN message:

SELECT SERIAL# FROM V$SESSION WHERE SID=sid_in_rman_output;

Then, run the following statement, substituting the sid_in_rman_output and
serial number obtained from the query:

ALTER SYSTEM KILL SESSION 'sid_in_rman_output,serial#';

Terminating an RMAN Command

15-14 Backup and Recovery Advanced User’s Guide

Note that this will not unhang the session if the session is hung in media manager
code..

Terminating the Session at the Operating System Level
Finding and killing the processes that are associated with the server sessions is
operating system specific. On some platforms the server sessions are not associated
with any processes at all. Refer to your operating system specific documentation for
more information.

Terminating an RMAN Session That Is Hung in the Media Manager
You may sometimes need to kill an RMAN job that is hung in the media manager.
The best way to terminate RMAN when the channel connections are hung in the
media manager is to kill the session in the media manager. If this action does not
solve the problem, then on some platforms, such as Unix, you may be able to kill
the Oracle processes of the connections. (Note that killing the Oracle processes may
cause problems from the media manager. See your media manager documentation
for details.)

Components of an RMAN Session
The nature of an RMAN session depends on the operating system. In UNIX, an
RMAN session has the following processes associated with it:

■ The RMAN client process itself

■ The default channel, the initial connection to the target database

■ One target connection to the target database corresponding to each allocated
channel

■ The catalog connection to the recovery catalog database, if you use a recovery
catalog

■ An auxiliary connection to an auxiliary instance, during DUPLICATE or
TSPITR operations

■ A polling connection to the target database, used for monitoring RMAN
command execution on the various allocated channels. By default, RMAN
makes one polling connection. RMAN makes additional polling connections if
you use different connect strings in the ALLOCATE CHANNEL or CONFIGURE
CHANNEL commands. One polling connection exists for each distinct connect
string used in the ALLOCATE CHANNEL or CONFIGURE CHANNEL command.

Terminating an RMAN Command

Recovery Manager Troubleshooting 15-15

Process Behavior During a Hung Job
RMAN usually hangs because one of the channel connections is waiting in the
media manager code for a tape resource. The catalog connection and the default
channel appear to hang, because they are waiting for RMAN to tell them what to
do. Polling connections seem to be in an infinite loop while polling the RPC under
the control of the RMAN process.

If you kill the RMAN process itself, then you also kill the catalog connection, the
auxiliary connection, the default channel, and the polling connections. If target and
auxiliary connections are not hung in the media manager code, they also terminate.
If either the target connection or any of the auxiliary connections are executing in
the media management layer, they will not terminate until the processes are
manually killed at the operating system level.

Not all media managers can detect the termination of the Oracle process. Those
which cannot may keep resources busy or continue processing. Consult your media
manager documentation for details.

Terminating the catalog connection does not cause the RMAN process to terminate
because RMAN is not performing catalog operations while the backup or restore is
in progress. Removing default channel and polling connections causes the RMAN
process to detect that one of the channels has died and then proceed to exit. In this
case, the connections to the hung channels remain active as described previously.

Terminating an RMAN Session: Basic Steps
Once the hung channels in the media manager code are killed, the RMAN process
detects this termination and proceed to exit, removing all connections except target
connections that are still operative in the media management layer. The caveat
about the media manager resources still applies in this case.

To terminate an Oracle process that is hung in the media manager:

1. Query V$SESSION and V$SESSION_WAIT as described in "Monitoring RMAN
Through V$ Views" on page 4-9. For example, execute the following query:

COLUMN EVENT FORMAT a10
COLUMN SECONDS_IN_WAIT FORMAT 999
COLUMN STATE FORMAT a20
COLUMN CLIENT_INFO FORMAT a30

SELECT p.SPID, EVENT, SECONDS_IN_WAIT AS SEC_WAIT,
 STATE, CLIENT_INFO
FROM V$SESSION_WAIT sw, V$SESSION s, V$PROCESS p
WHERE sw.EVENT LIKE 'sbt%'

RMAN Troubleshooting Scenarios

15-16 Backup and Recovery Advanced User’s Guide

 AND s.SID=sw.SID
 AND s.PADDR=p.ADDR
;

Examine the SQL output to determine which sbt functions are waiting. For
example, the output may be as follows:

SPID EVENT SEC_WAIT STATE CLIENT_INFO
---- ---------- ---------- -------------------- -------------
8642 sbtwrite2 600 WAITING rman channel=ORA_SBT_TAPE_1
8374 sbtwrite2 600 WAITING rman channel=ORA_SBT_TAPE_2

2. Using operating system-level tools appropriate to your platform, kill the hung
sessions. For example, on Solaris execute a kill -9 command:

% kill -9 8642 8374

On Windows, there is a command-line utility called ORAKILL which lets you
kill a specific thread in this situation. From a command prompt, run the
following command:

orakill sid thread_id

where sid identifies the database instance to target, and the thread_id is the
SPID value from the query in step 1.

3. Check that the media manager also clears its processes. If any remain, the next
backup or restore operation may hang again, due to the previous hang. In some
media managers, the only solution is to shut down and restart the media
manager. If the documentation from the media manager does not provide the
needed information, contact technical support for the media manager.

RMAN Troubleshooting Scenarios
This section contains these topics:

■ After Installation of Media Manager, RMAN Channel Allocation Fails: Scenario

■ Backup Job Is Hanging: Scenario

■ RMAN Fails to Start RPC Call: Scenario

■ Backup Fails with Invalid RECID Error: Scenario

See Also: Your operating system specific documentation for the
relevant commands

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-17

■ Backup Fails Because of Control File Enqueue: Scenario

■ RMAN Fails to Delete All Archived Logs: Scenario

■ Backup Fails Because RMAN Cannot Locate an Archived Log: Scenario

■ RMAN Does Not Recognize Character Set Name: Scenario

■ RMAN Denies Logon to Target Database: Scenario

■ Database Duplication Fails Because of Missing Log: Scenario

■ Duplication Fails with Multiple RMAN-06023 Errors: Scenario

■ UNKNOWN Database Name Appears in Recovery Catalog: Scenario

After Installation of Media Manager, RMAN Channel Allocation Fails: Scenario
In this scenario, you install and test the media manager as explained in
"Configuring RMAN to Make Backups to a Media Manager" on page 6-5, but you
still cannot make RMAN back up to tape. For example, after allocating the sbt
channel, you receive an error stack similar to the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of allocate command on c1 channel at 08/29/2001 17:16:54
ORA-19554: error allocating device, device type: SBT_TAPE, device name:
ORA-27211: Failed to load Media Management Library
Additional information: 25

The most important line of the error output is the ORA-27211 error. It indicates the
basic problem, that the media management library could not be loaded. Typically,
there is no need to refer to the trace file or sbtio.log in such a case.

After Installation of Media Manager, RMAN Channel Allocation Fails: Diagnosis
The ORA-27211 error indicates that the channel allocation is failing because the
database is not loading the media management library. If the channel allocation
fails, then the database generates a trace file in the USER_DUMP_DEST location that
contains the error that caused the channel allocation to fail. The trace file should
have the complete path name of the media management library loaded by the
database as well as any other media manager errors or operating system errors. For
example, the trace file on UNIX may be called something like

RMAN Troubleshooting Scenarios

15-18 Backup and Recovery Advanced User’s Guide

/oracle/rdbms/log/prod1_ora_16226.trc, and may contain information
such as the following:

*** 2001-08-29 17:16:54.385
SKGFQ OSD: Error in function sbtinit on line 2396
SKGFQ OSD: Look for SBT Trace messages in file /oracle/rdbms/log/sbtio.log
SBT Initialize failed for oracle.static

The last line of this output indicates that Oracle is loading the default static library
instead of the media management library that you installed.

You may find more detailed information in the file sbtio.log, as described in the
error message. Note, however, that writing SBT trace messages is the responsibility
of the media management software, not the Oracle database or RMAN. The media
management vendor may not have implemented the writing of trace messages in a
particular situation. Contact the media management vendor for details about the
trace messages written to sbtio.log.

To test the loading of the media management library, try allocating a channel by
using the PARMS parameter SBT_LIBRARY to force the loading of the media
management library. For example, if your library is called /vendor/lib/some_
mm_lib.so, then run a command such as the following, making sure to specify
whatever PARMS settings are required by your media manager:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='SBT_LIBRARY=/vendor/lib/some_mm_lib.so',
 'ENV=(NSR_SERVER=tape_svr,NSR_CLIENT=oracleclnt,NSR_GROUP=oracle_tapes)';
}

If the channel allocation fails, then check the trace file again to see whether you can
learn anything new. If the channel allocation with SBT_LIBRARY succeeds, but an
ordinary sbt channel allocation fails, then the database is probably trying to load a
library other than the one you installed. By default, the database expects to find the
media management library at $ORACLE_HOME/lib/libobk.so on UNIX, or
%ORACLE_HOME%/bin/orasbt.dll on NT. You may have more than one library
in the operating system path, and the database is loading the wrong one.

After Installation of Media Manager, RMAN Channel Allocation Fails: Solution
If the problem is that the database is not loading the correct library, then make sure
that the library is named correctly in the SBT_LIBRARY parameter.

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-19

Backup Job Is Hanging: Scenario
In this scenario, an RMAN backup job starts as normal and then pauses
inexplicably:

Recovery Manager: Release 10.1.0.2.0 - Production

Copyright (c) 1995, 2003, Oracle. All rights reserved.

connected to target database: TRGT
connected to recovery catalog database

RMAN> BACKUP TABLESPACE SYSTEM, tools;

allocated channel: t1
channel t1: sid=16 devtype=SBT_TAPE

channel t1: starting datafile backupset
set_count=15 set_stamp=338309600
channel t1: including datafile 2 in backupset
channel t1: including datafile 1 in backupset
channel t1: including current controlfile in backupset
Hanging here for 30 minutes now

Backup Job Is Hanging: Diagnosis
If a backup job is hanging, that is, not proceeding, then several scenarios are
possible:

■ A server-side or media management error occurred.

■ RMAN is waiting for an event such as the insertion of a new cassette into the
tape device.

Query sbt wait events to gain more information. For example, run the following
query on the target instance:

COLUMN EVENT FORMAT a10
COLUMN SECONDS_IN_WAIT FORMAT 999
COLUMN STATE FORMAT a20
COLUMN CLIENT_INFO FORMAT a30

See Also: Oracle Database Recovery Manager Reference for
descriptions of the legal PARMS parameters

RMAN Troubleshooting Scenarios

15-20 Backup and Recovery Advanced User’s Guide

SELECT p.SPID, EVENT, SECONDS_IN_WAIT AS SEC_WAIT,
 STATE, CLIENT_INFO
FROM V$SESSION_WAIT sw, V$SESSION s, V$PROCESS p
WHERE sw.EVENT LIKE 'sbt%'
 AND s.SID=sw.SID
 AND s.PADDR=p.ADDR
;

Examine the SQL output to determine which sbt functions are waiting. For
example, the output may be as follows:

SPID EVENT SEC_WAIT STATE CLIENT_INFO
---- ---------- ---------- -------------------- ------------------------------
8642 sbtbackup 1500 WAITING rman channel=ORA_SBT_TAPE_1

Backup Job Is Hanging: Solution
Because the causes of a hung backup job can be varied, so are the solutions. For
example, backup jobs often hang simply because the tape device has completely
filled the current cassette and is waiting for a new tape to be inserted. Ideally, the
query of the sbt wait events should indicate the problem.

In this example, a single sbtbackup has taken 1500 seconds, so RMAN is waiting on
the media manager to finish its write operation. Check that the media manager is
functioning normally, and contact the media management vendor’s technical
support for assistance.

If the sbt wait event query is unhelpful, then examine media manager process, log,
and trace files for signs of abnormal termination or other errors (refer to the
description of message files in "Identifying Types of Message Output" on page 15-2).

RMAN Fails to Start RPC Call: Scenario
In this scenario, you run a backup job and receive message output similar to the
following:

channel c8: including datafile number 47 in backupset
RPC call appears to have failed to start on channel c9
RPC call ok on channel c9
channel c3: including datafile number 18 in backupset

See Also: "Terminating an RMAN Session: Basic Steps" on
page 15-15 to learn how to kill an RMAN session that is hanging

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-21

RMAN Fails to Start RPC Call: Diagnosis
The RPC call appears to have failed message does not usually indicate a
problem. The message indicates one of the following:

■ The target database instance is slow.

■ A timing problem occurred.

Timing problems occur in this way. When RMAN begins an RPC, it checks the
V$SESSION performance view. The RPC updates the information in the view to
indicate when it starts and finishes. Sometimes RMAN checks V$SESSION before
the RPC has indicated it has started, which in turn generates the following message:

RPC call appears to have failed

If a message stating "RPC call ok" does not appear in the output immediately
following the message stating "RPC call appears to have failed", then the
backup job encountered an internal problem. Contact Oracle Support for further
assistance.

Backup Fails with Invalid RECID Error: Scenario
In this scenario, you attempt a backup and receive the following error messages:

RMAN-3014: Implicit resync of recovery catalog failed
RMAN-6038: Recovery catalog package detected an error
RMAN-20035: Invalid high RECID error

Backup Fails with Invalid RECID Error: Diagnosis
In one common scenario, you restore a backup control file created through a
non-Oracle mechanism, and then open the database without the RESETLOGS
option. If you had created the backup control file through the RMAN BACKUP
command or the SQL ALTER DATABASE BACKUP CONTROLFILE statement, then the
database would have required you to reset the online logs.

The control file and the recovery catalog are now not synchronized. The database
control file is older than the recovery catalog, because at one time the recovery
catalog resynchronized with the old current control file, and now the database is
using a backup control file. RMAN detects that the control file currently in use is
older than the control file previously used to resynchronize.

RMAN Troubleshooting Scenarios

15-22 Backup and Recovery Advanced User’s Guide

Another common scenario occurs when you attempt to copy the target database to a
new machine as follows:

1. On machine 1, you shut down the database and make a copy of the control file
with an operating system utility. You do not use CATALOG to add this control
file copy to the repository.

2. You transfer the control file copy to machine 2.

3. On machine 2, you create a new initialization parameter file and new database
instance.

4. You mount the control file copy on machine 2. The database does not recognize
the control file as a backup control file: to the database it looks like the current
control file.

5. You start RMAN and connect to the new target database and the recovery
catalog on machine 2. Because the control file was not created with RMAN and
was not cataloged as a control file copy, RMAN sees the database on machine 2
as the database on machine 1.

6. You restore and recover database the new database on machine 2 and then open
it. As a consequence, various records are added to the recovery catalog during
the restore and recovery. For example, the highest RECID in the recovery
catalog moves from 90 to 100.

7. On machine 1, you start RMAN and connect to the original target database and
recovery catalog. The recovery catalog indicates that the highest RECID is 100,
but the control file indicates that the highest RECID is 90. The control file RECID
should always be greater than or equal to the recovery catalog RECID, so
RMAN issues RMAN-20035.

Backup Fails with Invalid RECID Error: Solution 1
This solution is safest and is strongly recommended. It preserves the control file, so
that the historical information about the database stored in the control file continues
to be available after the procedure.

To reset the database with RMAN:

1. Connect to the target database with SQL*Plus. For example, enter:

% sqlplus '/ AS SYSDBA'

2. Mount the database if it is not already mounted. For example, enter:

ALTER DATABASE MOUNT;

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-23

3. Start cancel-based recovery by using the backup control file, then cancel it. The
reason for canceling is that the USING BACKUP CONTROLFILE clause stamps
the controlfile as a backup, which then permits OPEN RESETLOGS. For example,
enter:

ALTER DATABASE RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE;
ALTER DATABASE RECOVER CANCEL;

4. Use RMAN to connect to the target database and recovery catalog. For example,
enter:

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb

5. Open the database with the RESETLOGS option. For example, enter:

RMAN> ALTER DATABASE OPEN RESETLOGS;

6. Take new backups so that you can recover the database if necessary. For
example, enter:

BACKUP DATABASE PLUS ARCHIVELOG;

Backup Fails with Invalid RECID Error: Solution 2
This solution is similar to the previous one, but does require that you re-create your
control file. It is better-suited for the case in which you are copying your database to
a second system, where you may not want to keep the history from the control file
for the copy of the database on the second system, or where you might drop a few
datafiles or change the online logs by editing your control file.

To create the control file with SQL*Plus:

1. Connect to the target database with SQL*Plus. For example, enter:

% sqlplus 'SYS/oracle@trgt AS SYSDBA'

2. Mount the database if it is not already mounted:

SQL> ALTER DATABASE MOUNT;

3. Back up the control file to a trace file:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

4. Edit the trace file as necessary. The relevant section of the trace file looks
something like the following:

RMAN Troubleshooting Scenarios

15-24 Backup and Recovery Advanced User’s Guide

The following commands will create a new control file and use it
to open the database.
Data used by the recovery manager will be lost. Additional logs may
be required for media recovery of offline data files. Use this
only if the current version of all online logs are available.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "TRGT" NORESETLOGS ARCHIVELOG
-- STANDBY DATABASE CLUSTER CONSISTENT AND UNPROTECTED
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 226
LOGFILE
 GROUP 1 '/oracle/oradata/trgt/redo01.log' SIZE 25M,
 GROUP 2 '/oracle/oradata/trgt/redo02.log' SIZE 25M,
 GROUP 3 '/oracle/oradata/trgt/redo03.log' SIZE 500K
-- STANDBY LOGFILE
DATAFILE
 '/oracle/oradata/trgt/system01.dbf',
 '/oracle/oradata/trgt/undotbs01.dbf',
 '/oracle/oradata/trgt/cwmlite01.dbf',
 '/oracle/oradata/trgt/drsys01.dbf',
 '/oracle/oradata/trgt/example01.dbf',
 '/oracle/oradata/trgt/indx01.dbf',
 '/oracle/oradata/trgt/tools01.dbf',
 '/oracle/oradata/trgt/users01.dbf'
CHARACTER SET WE8DEC
;
Take files offline to match current control file.
ALTER DATABASE DATAFILE '/oracle/oradata/trgt/tools01.dbf' OFFLINE;
ALTER DATABASE DATAFILE '/oracle/oradata/trgt/users01.dbf' OFFLINE;
Configure RMAN configuration record 1
VARIABLE RECNO NUMBER;
EXECUTE :RECNO := SYS.DBMS_BACKUP_RESTORE.SETCONFIG('CHANNEL','DEVICE TYPE
DISK DEBUG 255');
Recovery is required if any of the datafiles are restored backups,
or if the last shutdown was not normal or immediate.
RECOVER DATABASE
All logs need archiving and a log switch is needed.
ALTER SYSTEM ARCHIVE LOG ALL;
Database can now be opened normally.
ALTER DATABASE OPEN;
Commands to add tempfiles to temporary tablespaces.
Online tempfiles have complete space information.

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-25

Other tempfiles may require adjustment.
ALTER TABLESPACE TEMP ADD TEMPFILE '/oracle/oradata/trgt/temp01.dbf' REUSE;
End of tempfile additions.

5. Shut down the database:

SHUTDOWN IMMEDIATE

6. Execute the script to create the control file, recover (if necessary), archive the
logs, and open the database:

STARTUP NOMOUNT
CREATE CONTROLFILE ...;
EXECUTE ...;
RECOVER DATABASE
ALTER SYSTEM ARCHIVE LOG CURRENT;
ALTER DATABASE OPEN ...;

7. If you intend to keep and continue using this copy of the database, use the
DBNEWID utility to change the name and DBID of the new database as needed.

Backup Fails Because of Control File Enqueue: Scenario
In this scenario, a backup job fails because RMAN cannot make a snapshot control
file. The message stack is as follows:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/30/2001 22:48:44
ORA-00230: operation disallowed: snapshot controlfile enqueue unavailable

Backup Fails Because of Control File Enqueue: Diagnosis
When RMAN needs to back up or resynchronize from the control file, it first creates
a snapshot or consistent image of the control file. If one RMAN job is already

Caution: If you do not open with the RESETLOGS option, then two
copies of an archived redo log for a given log sequence number
may exist—even though these two copies have completely different
contents. For example, one log may have been created on the
original host and the other on the new host. If you accidentally
confuse the logs during a media recovery, then the database will be
corrupted but Oracle and RMAN cannot detect the problem.

RMAN Troubleshooting Scenarios

15-26 Backup and Recovery Advanced User’s Guide

backing up the control file while another needs to create a new snapshot control file,
then you may see the following message:

waiting for snapshot controlfile enqueue

Under normal circumstances, a job that must wait for the control file enqueue waits
for a brief interval and then successfully obtains the enqueue. RMAN makes up to
five attempts to get the enqueue and then fails the job. The conflict is usually caused
when two jobs are both backing up the control file, and the job that first starts
backing up the control file waits for service from the media manager.

To determine which job is holding the conflicting enqueue:

1. After you see the first message stating "RMAN-08512: waiting for
snapshot controlfile enqueue", start a new SQL*Plus session on the
target database:

% sqlplus 'SYS/oracle@trgt AS SYSDBA'

2. Execute the following query to determine which job is causing the wait:

SELECT s.SID, USERNAME AS "User", PROGRAM, MODULE,
 ACTION, LOGON_TIME "Logon", l.*
FROM V$SESSION s, V$ENQUEUE_LOCK l
WHERE l.SID = s.SID
AND l.TYPE = 'CF'
AND l.ID1 = 0
AND l.ID2 = 2;

You should see output similar to the following (the output in this example has
been truncated):

SID User Program Module Action
Logon
--- ---- -------------------- ------------------- ---------------- ---------
9 SYS rman@h13 (TNS V1-V3) backup full datafile: c10000210 STARTED 21-JUN-01

Backup Fails Because of Control File Enqueue: Solution
Commonly, enqueue situations occur when a job is writing to a tape drive, but the
tape drive is waiting for new tape to be inserted. If you start a new job in this
situation, then you will probably receive the enqueue message because the first job
cannot complete until the new tape is loaded.

After you have determined which job is creating the enqueue, you can do one of the
following:

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-27

■ Wait until the job holding the enqueue completes

■ Cancel the current job and restart it after the job holding the enqueue completes

■ Cancel the job creating the enqueue

RMAN Fails to Delete All Archived Logs: Scenario
In this scenario, the database archives automatically to two directories: ORACLE_
HOME/oradata/trgt/arch and ORACLE_HOME/oradata/trgt/arch2. You tell
RMAN to perform a backup and delete the input archived redo logs afterward in
the following script:

BACKUP ARCHIVELOG ALL DELETE INPUT;

You then run a crosscheck to make sure the logs are gone and find the following:

CROSSCHECK ARCHIVELOG ALL;

validation succeeded for archived log
archivelog filename=/oracle/oradata/trgt/arch2/archive1_964.arc recid=19
stamp=368726072

RMAN deleted one set of logs but not the other.

RMAN Fails to Delete All Archived Logs: Diagnosis
This problem is not an error. When you specify DELETE INPUT without the ALL
keyword, RMAN deletes only one copy of each input log. Even if you archive to
five destinations, RMAN deletes logs from only one directory.

RMAN Fails to Delete All Archived Logs: Solution
To force RMAN to delete all existing archived redo logs, use the DELETE ALL
INPUT clause of the BACKUP command. For example, enter:

BACKUP ARCHIVELOG ALL DELETE ALL INPUT;

Backup Fails Because RMAN Cannot Locate an Archived Log: Scenario
In this scenario, you schedule regular backups of the archived redo logs. The next
time you make a backup, you receive this error:

RMAN-6089: archive log NAME not found or out of sync with catalog

RMAN Troubleshooting Scenarios

15-28 Backup and Recovery Advanced User’s Guide

Backup Fails Because RMAN Cannot Locate an Archived Log: Diagnosis
This problem occurs when the archived log that RMAN is looking for cannot be
accessed by RMAN, or the recovery catalog needs to be resynchronized. Often, this
error occurs when you delete archived logs with an operating system command,
which means that RMAN is unaware of the deletion. The RMAN-6089 error occurs
because RMAN attempts to back up a log that the repository indicates still exists.

Backup Fails Because RMAN Cannot Locate an Archived Log: Solution
Make sure that the archived logs exists in the specified directory and that the
RMAN catalog is synchronized. Check the following:

1. Make sure the archived log file that is specified by the RMAN-6089 error exists
in the correct directory.

2. Check that the operating system permissions are correct for the archived log
(owner = oracle, group = DBA) to make sure that RMAN can access the file.

3. If the file appears to be correct, then try synchronizing the catalog by running
the following command from the RMAN prompt:

RESYNC CATALOG;

If you know that the logs are unavailable because you deleted them by using an
operating system utility, then run the following command at the RMAN prompt to
update RMAN metadata:

CROSSCHECK ARCHIVELOG ALL;

It is always better to use RMAN to delete logs than to use an operating system
utility. The easiest method to remove unwanted logs is to specify the DELETE
INPUT option when backing up archived logs. For example, enter:

BACKUP DEVICE TYPE sbt
 ARCHIVELOG ALL
 DELETE ALL INPUT;

RMAN Does Not Recognize Character Set Name: Scenario
In this scenario, you are connected to the target database while it is not open and
attempting to perform an RMAN operation. You receive the following error:

PLS-00553: character set name is not recognized

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-29

RMAN Does Not Recognize Character Set Name: Diagnosis
Typically, this message means that the character set in the client environment, that
is, the environment in which you are running the RMAN client, is different from the
character set in the target database environment.

RMAN Does Not Recognize Character Set Name: Solution
1. Query the target database to determine the value of the NLS_CHARACTERSET

parameter. For example, run this query:

SQL> SELECT VALUE FROM V$NLS_PARAMETERS WHERE PARAMETER='NLS_CHARACTERSET';

2. Set the character set environment variable in the client to the same value as the
variable in the server. For example, you can set the NLS_LANG environment
variable on a UNIX system as follows:

% setenv NLS_LANG american_america.we8dec
% setenv NLS_DATE_FORMAT "MON DD YYYY HH24:MI:SS"

If the connection is made througfh a listener, then the listener must be started with
the correct Globalization Support settings. Otherwise, the spawned connections
inherit the incorrect Globalization Support settings from the listener.

RMAN Denies Logon to Target Database: Scenario
RMAN fails with ORA-01031 (insufficient privileges) or ORA-01017 (invalid
username/password) errors when trying to connect to the target database:

% rman
Recovery Manager: Release 10.1.0.2.0 - Production

Copyright (c) 1995, 2003, Oracle. All rights reserved.

RMAN> CONNECT TARGET sys/mypass@inst1

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
ORA-01031: insufficient privileges

RMAN Denies Logon to Target Database: Diagnosis
RMAN automatically requests a connection to the target database as SYSDBA. In
order to connect to the target as SYSDBA, you must do one of the following:

RMAN Troubleshooting Scenarios

15-30 Backup and Recovery Advanced User’s Guide

■ Be part of the operating system DBA group with respect to the target database
(that is, have the ability to connect with SYSDBA privileges to the target
database without a password).

■ Create a password file with the orapwd command and the initialization
parameter REMOTE_LOGIN_PASSWORDFILE.

■ Make sure you are connecting with the correct username and password.

If the target database does not have a password file, then the user you are logged in
as must be validated with operating system authentication.

RMAN Denies Logon to Target Database: Solution
Either create a password file for the target database or add yourself to the
administrator list in the operating system.

Database Duplication Fails Because of Missing Log: Scenario
In this scenario, you attempt to duplicate a database with the DUPLICATE
command, but receive the following error stack:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of Duplicate Db command at 09/04/2001 12:11:29
RMAN-03015: error occurred in stored script Memory Script
RMAN-06053: unable to perform media recovery because of missing log
RMAN-06025: no backup of log thread 1 seq 16 scn 145858 found to restore

Database Duplication Fails Because of Missing Log: Diagnosis
The problem is that RMAN is not able to apply all the archived logs needed for
complete recovery. For example, if you only backed up logs through sequence 15,
but the most recent archived log is sequence 16, then DUPLICATE fails.

Database Duplication Fails Because of Missing Log: Solution
When creating the duplication script, use the SET UNTIL command to specify a log
sequence number for incomplete recovery. For example, to terminate recovery after
applying log sequence 15, enter:

RUN

See Also: Oracle Database Administrator's Guide to learn how to
create a password file

RMAN Troubleshooting Scenarios

Recovery Manager Troubleshooting 15-31

{
 SET UNTIL SEQUENCE 16 THREAD 1; # recovers up to but not including log 16
 DUPLICATE TARGET DATABASE TO 'dupdb';
}

Duplication Fails with Multiple RMAN-06023 Errors: Scenario
In this scenario, you back up the database, then run the DUPLICATE command. You
receive the following error stack:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of Duplicate Db command at 09/04/2001 13:55:11
RMAN-03015: error occurred in stored script Memory Script
RMAN-06026: some targets not found - aborting restore
RMAN-06023: no backup or copy of datafile 8 found to restore
RMAN-06023: no backup or copy of datafile 7 found to restore
RMAN-06023: no backup or copy of datafile 6 found to restore
RMAN-06023: no backup or copy of datafile 5 found to restore
RMAN-06023: no backup or copy of datafile 4 found to restore
RMAN-06023: no backup or copy of datafile 3 found to restore
RMAN-06023: no backup or copy of datafile 2 found to restore
RMAN-06023: no backup or copy of datafile 1 found to restore

Duplication Fails with Multiple RMAN-06023 Errors: Diagnosis
The DUPLICATE command recovers to archived redo logs, but cannot recover into
online redo logs. Thus, if the restored backup cannot be made consistent without
applying the online redo logs, then duplication fails with RMAN-06023 errors
because RMAN is looking for backups created before the most recent archived log.

Duplication Fails with Multiple RMAN-06023 Errors: Solution
After backing up the source database, archive and back up the current redo log:

RMAN> SQL ’ALTER SYSTEM ARCHIVE LOG CURRENT’;
RMAN> BACKUP ARCHIVELOG ALL;

This archives all records in the online redo logs so that RMAN can now recover the
backup by applying the most recent archived redo log.

See Also: "Creating Duplicate of the Database at a Past Point in
Time: Example" on page 11-23 for more information about
performing incomplete recovery during the duplication operation

RMAN Troubleshooting Scenarios

15-32 Backup and Recovery Advanced User’s Guide

UNKNOWN Database Name Appears in Recovery Catalog: Scenario
In this scenario, you list the database incarnations registered in the recovery catalog
and see a database with the name UNKNOWN:

LIST INCARNATION OF DATABASE;

RMAN-03022: compiling command: list
List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------ ---------- ----------
56 57 TRGT 4052472287 CURRENT 1 Sep 03 2001 06:45:51
1 19 UNKNOWN 4141147584 PARENT 1 Jan 08 2001 14:47:28
.
.
.

UNKNOWN Database Name Appears in Recovery Catalog: Diagnosis
One way you get the DB_NAME of UNKNOWN is when you register a database that
was once opened with the RESETLOGS option. The DB_NAME can be changed
during a RESETLOGS operation, so RMAN does not know what the DB_NAME was
for those old incarnations of the database because it was not registered in the
recovery catalog at the time. Consequently, RMAN sets the DB_NAME column to
UNKNOWN when creating the DBINC record.

UNKNOWN Database Name Appears in Recovery Catalog: Solution
The UNKNOWN name entry is expected behavior after a RESETLOGS operation. You
should not attempt to remove UNKNOWN entries from the recovery catalog.

Part III
Performing User-Managed Backup and

Recovery

The following chapters describe how to perform backup and recovery without
using Recovery Manager. This part of the book contains these chapters:

■ Chapter 16, "Making User-Managed Backups"

■ Chapter 17, "Performing User-Managed Database Flashback and Recovery"

■ Chapter 18, "Advanced User-Managed Recovery Scenarios"

■ Chapter 19, "Performing User-Managed TSPITR"

■ Chapter 20, "Troubleshooting User-Managed Media Recovery"

Making User-Managed Backups 16-1

16
Making User-Managed Backups

If you do not use Recovery Manager (RMAN), then you can make backups of your
database files with user-managed methods.

This chapter contains the following sections:

■ Querying V$ Views to Obtain Backup Information

■ Making User-Managed Backups of the Whole Database

■ Making User-Managed Backups of Offline Tablespaces and Datafiles

■ Making User-Managed Backups of Online Tablespaces and Datafiles

■ Making User-Managed Backups of the Control File

■ Making User-Managed Backups of Archived Redo Logs

■ Making User-Managed Backups in SUSPEND Mode

■ Making User-Managed Backups to Raw Devices

■ Verifying User-Managed Backups

■ Making Logical Backups with Oracle Export Utilities

■ Making User-Managed Backups of Miscellaneous Oracle Files

■ Keeping Records of Current and Backup Database Files

Querying V$ Views to Obtain Backup Information

16-2 Backup and Recovery Advanced User’s Guide

Querying V$ Views to Obtain Backup Information
Before making a backup, you must identify all the files in your database and decide
what to back up. Several V$ views can provide the necessary information.

Listing Database Files Before a Backup
Use V$DATAFILE, V$LOGFILE and V$CONTROLFILE to identify the datafiles, log
files and control files for your database. This same procedure works whether you
named these files manually or allowed Oracle Managed Files to name them.

To list datafiles, online redo logs, and control files:

1. Start SQL*Plus and query V$DATAFILE to obtain a list of datafiles. For
example, enter:

SQL> SELECT NAME FROM V$DATAFILE;

You can also join the V$TABLESPACE and V$DATAFILE views to obtain a
listing of datafiles along with their associated tablespaces:

SELECT t.NAME "Tablespace", f.NAME "Datafile"
 FROM V$TABLESPACE t, V$DATAFILE f
 WHERE t.TS# = f.TS#
 ORDER BY t.NAME;

2. Obtain the filenames of online redo log files by querying the V$LOGFILE view.
For example, issue the following query:

SQL> SELECT MEMBER FROM V$LOGFILE;

3. Obtain the filenames of the current control files by querying the
V$CONTROLFILE view. For example, issue the following query:

SQL> SELECT NAME FROM V$CONTROLFILE;

Note that you only need to back up one copy of a multiplexed control file.

4. If you plan to take a control file backup with the ALTER DATABASE BACKUP
CONTROLFILE TO 'filename' statement, then save a list of all datafiles and
online redo log files with the control file backup. Because the current database
structure may not match the database structure at the time a given control file
backup was created, saving a list of files recorded in the backup control file can
aid the recovery procedure.

Querying V$ Views to Obtain Backup Information

Making User-Managed Backups 16-3

Determining Datafile Status for Online Tablespace Backups
To check whether a datafile is part of a current online tablespace backup, query the
V$BACKUP view.

This view is useful only for user-managed online tablespace backups, because
neither RMAN backups nor offline tablespace backups require the datafiles of a
tablespace to be in backup mode.

The V$BACKUP view is most useful when the database is open. It is also useful
immediately after an instance failure because it shows the backup status of the files
at the time of the failure. Use this information to determine whether you have left
any tablespaces in backup mode.

V$BACKUP is not useful if the control file currently in use is a restored backup or a
new control file created after the media failure occurred. A restored or re-created
control file does not contain the information the database needs to populate
V$BACKUP accurately. Also, if you have restored a backup of a file, this file's
STATUS in V$BACKUP reflects the backup status of the older version of the file, not
the most current version. Thus, this view can contain misleading data about
restored files.

For example, the following query displays which datafiles are currently included in
a tablespace that has been placed in backup mode:

SELECT t.name AS "TB_NAME", d.file# as "DF#", d.name AS "DF_NAME", b.status
FROM V$DATAFILE d, V$TABLESPACE t, V$BACKUP b
WHERE d.TS#=t.TS#
AND b.FILE#=d.FILE#
AND b.STATUS=’ACTIVE’
/

The following sample output shows that the tools and users tablespaces
currently have ACTIVE status:

TB_NAME DF# DF_NAME STATUS
---------------------- ---------- -------------------------------- ------
TOOLS 7 /oracle/oradata/trgt/tools01.dbf ACTIVE
USERS 8 /oracle/oradata/trgt/users01.dbf ACTIVE

In the STATUS column, NOT ACTIVE indicates that the file is not currently in backup
mode (that is, you have not executed the ALTER TABLESPACE ... BEGIN BACKUP
or ALTER DATABASE BEGIN BACKUP statement), whereas ACTIVE indicates that
the file is currently in backup mode.

Making User-Managed Backups of the Whole Database

16-4 Backup and Recovery Advanced User’s Guide

Making User-Managed Backups of the Whole Database
You can make a whole database backup of all files in a database after the database
has been shut down with the NORMAL, IMMEDIATE, or TRANSACTIONAL options. A
whole database backup taken while the database is open or after an instance failure
or SHUTDOWN ABORT is inconsistent. In such cases, the files are inconsistent with
respect to the checkpoint SCN.

You can make a whole database backup if a database is operating in either
ARCHIVELOG or NOARCHIVELOG mode. If you run the database in NOARCHIVELOG
mode, however, the backup must be consistent; that is, you must shut down the
database cleanly before the backup.

The set of backup files that results from a consistent whole database backup is
consistent because all files are checkpointed to the same SCN. You can restore the
consistent database backup without further recovery. After restoring the backup
files, you can perform additional recovery steps to recover the database to a more
current time if the database is operated in ARCHIVELOG mode. Also, you can take
inconsistent whole database backups if your database is in ARCHIVELOG mode.

Control files play a crucial role in database restore and recovery. For databases
running in ARCHIVELOG mode, Oracle Corporation recommends that you back up
control files with the ALTER DATABASE BACKUP CONTROLFILE TO 'filename'
statement.

Making Consistent Whole Database Backups
This section describes how to back up the database with an operating system utility.

To make a consistent whole database backup:

1. If the database is open, use SQL*Plus to shut down the database with the
NORMAL, IMMEDIATE, or TRANSACTIONAL options.

2. Use an operating system utility to make backups of all datafiles as well as all
control files specified by the CONTROL_FILES parameter of the initialization
parameter file. Also, back up the initialization parameter file and other Oracle
product initialization files. To find these files, do a search for *.ora starting in
your Oracle home directory and recursively search all of its subdirectories.

For example, you can back up the datafiles, control files and archived logs to
/disk2/backup as follows:

See Also: "Making User-Managed Backups of the Control File" on
page 16-14 for more information about backing up control files

Making User-Managed Backups of Offline Tablespaces and Datafiles

Making User-Managed Backups 16-5

% cp $ORACLE_HOME/oradata/trgt/*.dbf /disk2/backup
% cp $ORACLE_HOME/oradata/trgt/arch/* /disk2/backup/arch

3. Restart the database. For example, enter:

SQL> STARTUP

Making User-Managed Backups of Offline Tablespaces and Datafiles
You can back up all or some of the datafiles of an individual tablespace while the
tablespace is offline. All other tablespaces of the database can remain open and
available for systemwide use. You must have the DBA privilege or have the MANAGE
TABLESPACE system privilege to take tablespaces offline and online.

Note the following guidelines when backing up offline tablespaces:

■ You cannot offline the SYSTEM tablespace or a tablespace with active rollback
segments. The following procedure cannot be used for such tablespaces.

■ Assume that a table is in tablespace Primary and its index is in tablespace
Index. Taking tablespace Index offline while leaving tablespace Primary
online can cause errors when DML is issued against the indexed tables located
in Primary. The problem only manifests when the access method chosen by the
optimizer needs to access the indexes in the Index tablespace.

To back up offline tablespaces:

1. Before beginning a backup of a tablespace, identify the tablespace's datafiles by
querying the DBA_DATA_FILES view. For example, assume that you want to
back up the users tablespace. Enter the following in SQL*Plus:

SELECT TABLESPACE_NAME, FILE_NAME
 FROM SYS.DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'USERS';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------------------
USERS /oracle/oradata/trgt/users01.dbf

In this example, /oracle/oradata/trgt/users01.dbf is a fully specified
filename corresponding to the datafile in the users tablespace.

See Also: Oracle Database Administrator's Guide for more
information on starting up and shutting down a database

Making User-Managed Backups of Online Tablespaces and Datafiles

16-6 Backup and Recovery Advanced User’s Guide

2. Take the tablespace offline using normal priority if possible because it
guarantees that you can subsequently bring the tablespace online without
having to recover it. For example:

SQL> ALTER TABLESPACE users OFFLINE NORMAL;

3. Back up the offline datafiles. For example:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_‘date "+%m_%d_%y"‘.dbf

4. Bring the tablespace online. For example:

ALTER TABLESPACE users ONLINE;

5. Archive the unarchived redo logs so that the redo required to recover the
tablespace backup is archived. For example, enter:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Making User-Managed Backups of Online Tablespaces and Datafiles
You can back up all or only specific datafiles of an online tablespace while the
database is open. The procedure differs depending on whether the online
tablespace is read/write or read-only.

Making User-Managed Backups of Online Read/Write Tablespaces
You must put a read/write tablespace in backup mode to make user-managed
datafile backups when the tablespace is online and the database is open. The ALTER
TABLESPACE ... BEGIN BACKUP statement places a tablespace in backup mode. In
backup mode, the database copies whole changed data blocks into the redo stream.
After you take the tablespace out of backup mode with the ALTER TABLESPACE
... END BACKUP or ALTER DATABASE END BACKUP statement, the database
advances the datafile header to the current database checkpoint.

Note: If you took the tablespace offline using temporary or
immediate priority, then you cannot bring the tablespace online
unless you perform tablespace recovery.

Note: You should not back up temporary tablespaces.

Making User-Managed Backups of Online Tablespaces and Datafiles

Making User-Managed Backups 16-7

When restoring a datafile backed up in this way, the database asks for the
appropriate set of redo log files to apply if recovery be needed. The redo logs
contain all changes required to recover the datafiles and make them consistent.

To back up online read/write tablespaces in an open database:

1. Before beginning a backup of a tablespace, identify all of the datafiles in the
tablespace with the DBA_DATA_FILES data dictionary view. For example,
assume that you want to back up the users tablespace. Enter the following:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'USERS';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
USERS /oracle/oradata/trgt/users01.dbf
USERS /oracle/oradata/trgt/users02.dbf

2. Mark the beginning of the online tablespace backup. For example, the following
statement marks the start of an online backup for the tablespace users:

SQL> ALTER TABLESPACE users BEGIN BACKUP;

3. Back up the online datafiles of the online tablespace with operating system
commands. For example, UNIX users might enter:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_‘date "+%m_%d_%y"‘.dbf
% cp /oracle/oradata/trgt/users02.dbf /d2/users02_‘date "+%m_%d_%y"‘.dbf

4. After backing up the datafiles of the online tablespace, run the SQL statement
ALTER TABLESPACE with the END BACKUP option. For example, the following
statement ends the online backup of the tablespace users:

SQL> ALTER TABLESPACE users END BACKUP;

Caution: If you do not use BEGIN BACKUP to mark the beginning
of an online tablespace backup and wait for that statement to
complete before starting your copies of online tablespaces, or then
the datafile copies produced are not usable for subsequent recovery
operations. Attempting to recover such a backup is risky and can
return errors that result in inconsistent data. For example, the
attempted recovery operation can issue a "fuzzy files" warning, and
can lead to an inconsistent database that you cannot open.

Making User-Managed Backups of Online Tablespaces and Datafiles

16-8 Backup and Recovery Advanced User’s Guide

5. Archive the unarchived redo logs so that the redo required to recover the
tablespace backup is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Making Multiple User-Managed Backups of Online Read/Write Tablespaces
When backing up several online tablespaces, you can back them up either serially
or in parallel. Use either of the following procedures depending on your needs.

Backing Up Online Tablespaces in Parallel
You can simultaneously create datafile copies of multiple tablespaces requiring
backups in backup mode. Note, however, that by putting all tablespaces in online
mode at once, you can generate large redo logs if there is heavy update activitiy on
the affected tablespaces, because the redo must contain a copy of each changed data
block in each changed datafile. Be sure to consider the size of the likely redo before
using the procedure outlined here.

To back up online tablespaces in parallel:

1. Prepare all online tablespaces for backup by issuing all necessary ALTER
TABLESPACE statements at once. For example, put tablespaces users, tools,
and indx in backup mode as follows:

SQL> ALTER TABLESPACE users BEGIN BACKUP;
SQL> ALTER TABLESPACE tools BEGIN BACKUP;
SQL> ALTER TABLESPACE indx BEGIN BACKUP;

If you are backing up all tablespaces, you might want to use this command:

SQL> ALTER DATABASE BEGIN BACKUP;

2. Back up all files of the online tablespaces. For example, a UNIX user might back
up datafiles with the *.dbf suffix as follows:

% cp $ORACLE_HOME/oradata/trgt/*.dbf /disk2/backup/

Caution: If you fail to take the tablespace out of backup mode,
then Oracle continues to write copies of data blocks in this
tablespace to the online logs, causing performance problems. Also,
you will receive an ORA-01149 error if you try to shut down the
database with the tablespaces still in backup mode.

Making User-Managed Backups of Online Tablespaces and Datafiles

Making User-Managed Backups 16-9

3. Take the tablespaces out of backup mode as in the following example:

SQL> ALTER TABLESPACE users END BACKUP;
SQL> ALTER TABLESPACE tools END BACKUP;
SQL> ALTER TABLESPACE indx END BACKUP;

Again, it you are handling all datafiles at once you can use the ALTER
DATABASE command instead of ALTER TABLESPACE:

SQL> ALTER DATABASE END BACKUP;

4. Archive the online redo logs so that the redo required to recover the tablespace
backups will be available for later media recovery. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Backing Up Online Tablespaces Serially
You can place all tablespaces requiring online backups in backup mode one at a
time. Oracle Corporation recommends the serial backup option because it
minimizes the time between ALTER TABLESPACE ... BEGIN/END BACKUP
statements. During online backups, more redo information is generated for the
tablespace because whole data blocks are copied into the redo log.

To back up online tablespaces serially:

1. Prepare a tablespace for online backup. For example, to put tablespace users
in backup mode enter the following:

SQL> ALTER TABLESPACE users BEGIN BACKUP;

In this case you probably do not want to use ALTER DATABASE BEGIN
BACKUP to put all tablespaces in backup mode simultaneously, because of the
unnecessary volume of redo log information generated for tablespaces in online
mode.

2. Back up the datafiles in the tablespace. For example, enter:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_‘date "+%m_%d_%y"‘.dbf

3. Take the tablespace out of backup mode. For example, enter:

SQL> ALTER TABLESPACE users END BACKUP;

4. Repeat this procedure for each remaining tablespace.

Making User-Managed Backups of Online Tablespaces and Datafiles

16-10 Backup and Recovery Advanced User’s Guide

5. Archive the unarchived redo logs so that the redo required to recover the
tablespace backups is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Ending a Backup After an Instance Failure or SHUTDOWN ABORT
The following situations can cause a tablespace backup to fail and be incomplete:

■ The backup completed, but you did not run the ALTER TABLESPACE ... END
BACKUP statement.

■ An instance failure or SHUTDOWN ABORT interrupted the backup.

Whenever crash recovery is required, if a datafile is in backup mode when an
attempt is made to open it, then the database will not open the database until either
a recovery command is issued, or the datafile is taken out of backup mode.

For example, the database may display a message such as the following at startup:

ORA-01113: file 12 needs media recovery
ORA-01110: data file 12: '/oracle/dbs/tbs_41.f'

If the database indicates that the datafiles for multiple tablespaces require media
recovery because you forgot to end the online backups for these tablespaces, then so
long as the database is mounted, running the ALTER DATABASE END BACKUP
statement takes all the datafiles out of backup mode simultaneously.

In high availability situations, and in situations when no DBA is monitoring the
database, the requirement for user intervention is intolerable. Hence, you can write
a crash recovery script that does the following:

1. Mounts the database

2. Runs the ALTER DATABASE END BACKUP statement

3. Runs ALTER DATABASE OPEN, allowing the system to come up automatically

An automated crash recovery script containing ALTER DATABASE END BACKUP is
especially useful in the following situations:

■ All nodes in an Oracle Real Application Clusters (RAC) configuration fail.

■ One node fails in a cold failover cluster (that is, a cluster that is not a RAC
configuration in which the secondary node must mount and recover the
database when the first node fails).

Alternatively, you can take the following manual measures after the system fails
with tablespaces in backup mode:

Making User-Managed Backups of Online Tablespaces and Datafiles

Making User-Managed Backups 16-11

■ Recover the database and avoid issuing END BACKUP statements altogether.

■ Mount the database, then run ALTER TABLESPACE ... END BACKUP for each
tablespace still in backup mode.

Ending Backup Mode with the ALTER DATABASE END BACKUP Statement
You can run the ALTER DATABASE END BACKUP statement when you have multiple
tablespaces still in backup mode. The primary purpose of this command is to allow
a crash recovery script to restart a failed system without DBA intervention. You can
also perform the following procedure manually.

To take tablespaces out of backup mode simultaneously:

1. Mount but do not open the database. For example, enter:

SQL> STARTUP MOUNT

2. If performing this procedure manually (that is, not as part of a crash recovery
script), query the V$BACKUP view to list the datafiles of the tablespaces that
were being backed up before the database was restarted:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
 12 ACTIVE 20863 25-NOV-02
 13 ACTIVE 20863 25-NOV-02
 20 ACTIVE 20863 25-NOV-02
 3 rows selected.

3. Issue the ALTER DATABASE END BACKUP statement to take all datafiles
currently in backup mode out of backup mode. For example, enter:

SQL> ALTER DATABASE END BACKUP;

You can use this statement only when the database is mounted but not open. If
the database is open, use ALTER TABLESPACE ... END BACKUP or ALTER
DATABASE DATAFILE ... END BACKUP for each affected tablespace or datafile.

Caution: Do not use ALTER DATABASE END BACKUP if you have
restored any of the affected files from a backup.

Making User-Managed Backups of Online Tablespaces and Datafiles

16-12 Backup and Recovery Advanced User’s Guide

Ending Backup Mode with the SQL*Plus RECOVER Command
The ALTER DATABASE END BACKUP statement is not the only way to respond to a
failed online backup: you can also run the SQL*Plus RECOVER command. This
method is useful when you are not sure whether someone has restored a backup,
because if someone has indeed restored a backup, then the RECOVER command
brings the backup up to date. Only run the ALTER DATABASE END BACKUP or
ALTER TABLESPACE ... END BACKUP statement if you are sure that the files are
current.

To take tablespaces out of backup mode with the RECOVER command:

1. Mount the database. For example, enter:

SQL> STARTUP MOUNT

2. Recover the database as normal. For example, enter:

SQL> RECOVER DATABASE

3. Use the V$BACKUP view to confirm that there are no active datafiles:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
0 rows selected.

Making User-Managed Backups of Read-Only Tablespaces
When backing up an online read-only tablespace, you can simply back up the
online datafiles. You do not have to place the tablespace in backup mode because
the system is permitting changes to the datafiles.

If the set of read-only tablespaces is self-contained, then in addition to backing up
the tablespaces with operating system commands, you can also export the
tablespace metadata with the transportable tablespace functionality. In the event of

Note: The RECOVER command method is slow because the
database must scan redo generated from the beginning of the
online backup.

See Also: Chapter 17, "Performing User-Managed Database
Flashback and Recovery" for information on recovering a database

Making User-Managed Backups of Online Tablespaces and Datafiles

Making User-Managed Backups 16-13

a media error or a user error (such as accidentally dropping a table in the read-only
tablespace), you can transport the tablespace back into the database.

To back up online read-only tablespaces in an open database:

1. Query the DBA_TABLESPACES view to determine which tablespaces are
read-only. For example, run this query:

SELECT TABLESPACE_NAME, STATUS
FROM DBA_TABLESPACES
WHERE STATUS = ’READ ONLY’;

2. Before beginning a backup of a read-only tablespace, identify all of the
tablespace's datafiles by querying the DBA_DATA_FILES data dictionary view.
For example, assume that you want to back up the history tablespace:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'HISTORY';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
HISTORY /oracle/oradata/trgt/history01.dbf
HISTORY /oracle/oradata/trgt/history02.dbf

3. Back up the online datafiles of the read-only tablespace with operating system
commands. You do not have to take the tablespace offline or put the tablespace
in backup mode because users are automatically prevented from making
changes to the read-only tablespace. For example:

% cp $ORACLE_HOME/oradata/trgt/history*.dbf /disk2/backup/

4. Optionally, export the metadata in the read-only tablespace. By using the
transportable tablespace feature, you can quickly restore the datafiles and

See Also: Oracle Database Administrator's Guide to learn how to
transport tablespaces

Note: When restoring a backup of a read-only tablespace, take the
tablespace offline, restore the datafiles, then bring the tablespace
online. A backup of a read-only tablespace is still usable if the
read-only tablespace is made read/write after the backup, but the
restored backup will require recovery.

Making User-Managed Backups of the Control File

16-14 Backup and Recovery Advanced User’s Guide

import the metadata in case of media failure or user error. For example, export
the metadata for tablespace history as follows:

% exp TRANSPORT_TABLESPACE=y TABLESPACES=(history) FILE=/disk2/backup/hs.dmp

Making User-Managed Backups of the Control File
Back up the control file of a database after making a structural modification to a
database operating in ARCHIVELOG mode. To back up a database's control file, you
must have the ALTER DATABASE system privilege.

Backing Up the Control File to a Binary File
The primary method for backing up the control file is to use a SQL statement to
generate a binary file. A binary backup is preferable to a trace file backup because it
contains additional information such as the archived log history, offline range for
read-only and offline tablespaces, and backup sets and copies (if you use RMAN).
Note that binary control file backups do not include tempfile entries.

To back up the control file after a structural change:

1. Make the desired change to the database. For example, you may create a new
tablespace:

CREATE TABLESPACE tbs_1 DATAFILE ’file_1.f’ SIZE 10M;

2. Back up the database's control file, specifying a filename for the output binary
file. The following example backs up a control file to
/disk1/backup/cf.bak:

ALTER DATABASE BACKUP CONTROLFILE TO '/disk1/backup/cf.bak' REUSE;

Specify the REUSE option to make the new control file overwrite one that
currently exists.

Backing Up the Control File to a Trace File
The TRACE option of the ALTER DATABASE BACKUP CONTROLFILE statement helps
you manage and recover the control file. The TRACE option prompts the database to
write SQL statements to the database's trace file rather than generate a binary

See Also: Oracle Database Reference for more information about the
DBA_DATA_FILES and DBA_TABLESPACES views

Making User-Managed Backups of the Control File

Making User-Managed Backups 16-15

backup. The statements in the trace file start the database, re-create the control file,
and recover and open the database appropriately.

To back up the control file to a trace file, mount or open the database and issue the
following SQL statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

If you specify neither the RESETLOGS nor NORESETLOGS option in the SQL
statement, then the resulting trace file contains versions of the control file for both
RESETLOGS and NORESETLOGS options. Tempfile entries are included in the
output using "ALTER TABLESPACE... ADD TEMPFILE" statements.

Backing Up the Control File to a Trace File: Example
Assume that you want to generate a script that re-creates the control file for the
sales database. The database has these characteristics:

■ Three threads are enabled, of which thread 2 is public and thread 3 is private.

■ The redo logs are multiplexed into three groups of two members each.

■ The database has the following datafiles:

– /diska/prod/sales/db/filea.dbf (offline datafile in online
tablespace)

– /diska/prod/sales/db/database1.dbf (online in SYSTEM
tablespace)

– /diska/prod/sales/db/fileb.dbf (only file in read-only tablespace)

You issue the following statement to create a trace file containing a CREATE
CONTROLFILE ... NORESETLOGS statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS;

You then edit the trace file to create a script that creates a new control file for the
sales database based on the control file that was current when you generated the
trace file. To avoid recovering offline normal or read-only tablespaces, edit them out
of the CREATE CONTROLFILE statement in the trace file. When you open the
database with the re-created control file, the dictionary check code will mark these

See Also: "Recovery of Read-Only Files with a Re-Created
Control File" on page 18-7 for special issues relating to read-only,
offline normal, and temporary files included in CREATE
CONTROLFILE statements

Making User-Managed Backups of the Control File

16-16 Backup and Recovery Advanced User’s Guide

omitted files as MISSING. You can run an ALTER DATABASE RENAME FILE
statement renames them back to their original filenames.

For example, you can edit the CREATE CONTROLFILE ... NORESETLOGS script in
the trace file as follows, renaming files labeled MISSING:

The following statements will create a new control file and use it to open the
database. Log history and RMAN metadata will be lost. Additional logs may be
required for media recovery of offline datafiles. Use this only if the current
version of all online logs are available.

STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG

MAXLOGFILES 32
MAXLOGMEMBERS 2
MAXDATAFILES 32
MAXINSTANCES 16
MAXLOGHISTORY 1600

LOGFILE
GROUP 1

'/diska/prod/sales/db/log1t1.dbf',
'/diskb/prod/sales/db/log1t2.dbf'

) SIZE 100K
GROUP 2

'/diska/prod/sales/db/log2t1.dbf',
'/diskb/prod/sales/db/log2t2.dbf'

) SIZE 100K,
GROUP 3

'/diska/prod/sales/db/log3t1.dbf',
'/diskb/prod/sales/db/log3t2.dbf'

) SIZE 100K
DATAFILE

'/diska/prod/sales/db/database1.dbf',
'/diskb/prod/sales/db/filea.dbf'

;

This datafile is offline, but its tablespace is online. Take the datafile
offline manually.
ALTER DATABASE DATAFILE '/diska/prod/sales/db/filea.dbf' OFFLINE;

Recovery is required if any datafiles are restored backups,
or if the most recent shutdown was not normal or immediate.
RECOVER DATABASE;

All redo logs need archiving and a log switch is needed.
ALTER SYSTEM ARCHIVE LOG ALL;

Making User-Managed Backups in SUSPEND Mode

Making User-Managed Backups 16-17

The database can now be opened normally.
ALTER DATABASE OPEN;

The backup control file does not list read-only and normal offline tablespaces
so that Oracle can avoid performing recovery on them. Oracle checks the data
dictionary and finds information on these absent files and marks them
'MISSINGxxxx'. It then renames the missing files to acknowledge them without
having to recover them.
ALTER DATABASE RENAME FILE 'MISSING0002'
 TO '/diska/prod/sales/db/fileb.dbf';

Making User-Managed Backups of Archived Redo Logs
To save disk space in your primary archiving location, you may want to back up
archived logs to tape or to an alternative disk location. If you archive to multiple
locations, then only back up one copy of each log sequence number.

To back up archived redo logs:

1. To determine which archived redo log files that the database has generated,
query V$ARCHIVED_LOG. For example, run the following query:

SELECT THREAD#,SEQUENCE#,NAME
FROM V$ARCHIVED_LOG;

2. Back up one copy of each log sequence number by using an operating system
utility. This example backs up all logs in the primary archiving location to a
disk devoted to log backups:

% cp $ORACLE_HOME/oracle/trgt/arch/* /disk2/backup/arch

Making User-Managed Backups in SUSPEND Mode
This section contains the following topics:

■ About the Suspend/Resume Feature

■ Making Backups in a Suspended Database

See Also: Oracle Database Reference for more information about the
data dictionary views

Making User-Managed Backups in SUSPEND Mode

16-18 Backup and Recovery Advanced User’s Guide

About the Suspend/Resume Feature
Some third-party tools allow you to mirror a set of disks or logical devices, that is,
maintain an exact duplicate of the primary data in another location, and then split
the mirror. Splitting the mirror involves separating the copies so that you can use
them independently.

With the SUSPEND/RESUME functionality, you can suspend I/O to the database,
then split the mirror and make a backup of the split mirror. By using this feature,
which complements the backup mode functionality, you can suspend database I/Os
so that no new I/O can be performed. You can then access the suspended database
to make backups without I/O interference.

You do not need to use SUSPEND/RESUME to make split mirror backups in most
cases, although it is necessary if your system requires the database cache to be free
of dirty buffers before a volume can be split. Some RAID devices benefit from
suspending writes while the split operation is occurring; your RAID vendor can
advise you on whether your system would benefit from this feature.

The ALTER SYSTEM SUSPEND statement suspends the database by halting I/Os to
datafile headers, datafiles, and control files. When the database is suspended, all
pre-existing I/O operations can complete; however, any new database I/O access
attempts are queued.

The ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME statements operate on
the database and not just the instance. If the ALTER SYSTEM SUSPEND statement is
entered on one system in a RAC configuration, then the internal locking
mechanisms propagate the halt request across instances, thereby suspending I/O
operations for all active instances in a given cluster.

Making Backups in a Suspended Database
After a successful database suspension, you can back up the database to disk or
break the mirrors. Because suspending a database does not guarantee immediate
termination of I/O, Oracle Corporation recommends that you precede the ALTER
SYSTEM SUSPEND statement with a BEGIN BACKUP statement so that the
tablespaces are placed in backup mode.

You must use conventional user-managed backup methods to back up split mirrors.
RMAN cannot make database backups or copies because these operations require
reading the datafile headers. After the database backup is finished or the mirrors are
re-silvered, then you can resume normal database operations using the ALTER
SYSTEM RESUME statement.

Making User-Managed Backups in SUSPEND Mode

Making User-Managed Backups 16-19

Backing up a suspended database without splitting mirrors can cause an extended
database outage because the database is inaccessible during this time. If backups are
taken by splitting mirrors, however, then the outage is nominal. The outage time
depends on the size of cache to flush, the number of datafiles, and the time required
to break the mirror.

Note the following restrictions for the SUSPEND/RESUME feature:

■ In a RAC configuration, you should not start a new instance while the original
nodes are suspended.

■ No checkpoint is initiated by the ALTER SYSTEM SUSPEND or ALTER SYSTEM
RESUME statements.

■ You cannot issue SHUTDOWN with IMMEDIATE, NORMAL, or TRANSACTIONAL
options while the database is suspended.

■ Issuing SHUTDOWN ABORT on a database that was already suspended reactivates
the database. This prevents media recovery or crash recovery from hanging.

To make a split mirror backup in SUSPEND mode:

1. Place the database tablespaces in backup mode. For example, to place
tablespace users in backup mode enter:

ALTER TABLESPACE users BEGIN BACKUP;

If you are backing up all of the tablespaces for your database, you can instead
use:

ALTER DATABASE BEGIN BACKUP;

2. If your mirror system has problems with splitting a mirror while disk writes are
occurring, then suspend the database. For example, issue the following:

ALTER SYSTEM SUSPEND;

3. Check to make sure that the database is suspended by querying V$INSTANCE.
For example:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

SUSPENDED

4. Split the mirrors at the operating system or hardware level.

Making User-Managed Backups to Raw Devices

16-20 Backup and Recovery Advanced User’s Guide

5. End the database suspension. For example, issue the following statement:

ALTER SYSTEM RESUME;

6. Check to make sure that the database is active by querying V$INSTANCE. For
example, enter:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

ACTIVE

7. Take the specified tablespaces out of backup mode. For example, enter the
following to take tablespace users out of backup mode:

ALTER TABLESPACE users END BACKUP;

8. Copy the control file and archive the online redo logs as usual for a backup.

Making User-Managed Backups to Raw Devices
A raw device is a disk or partition that does not have a file system. In other words,
a raw device can contain only a single file. Backing up files on raw devices poses
operating system specific issues. The following sections discuss some of these issues
on two of the most common operating systems supporting Oracle: UNIX and
Windows.

Caution: Do not use the ALTER SYSTEM SUSPEND statement as a
substitute for placing a tablespace in backup mode.

See Also: Oracle Database Administrator's Guide for more
information about the SUSPEND/RESUME feature, and Oracle
Database SQL Reference for more information about the ALTER
SYSTEM statement

See Also: Oracle Real Application Clusters Installation and
Configuration Guide for a general overview of raw devices as they
relate to Oracle Real Application Clusters

Making User-Managed Backups to Raw Devices

Making User-Managed Backups 16-21

Backing Up to Raw Devices on UNIX
When backing up to or from raw devices, the UNIX dd command is the most
common backup utility. See your operating system specific documentation for
complete details about this utility.

The most important aspect of using dd is determining which options to specify. You
need to know the following information.

The information in the preceding table enables you to set the dd options specified in
Table 16–1.

Data Explanation

Block size You can specify the size of the buffer that dd uses to copy data. For
example, you can specify that dd should copy data in units of 8 KB
or 64 KB. Note that the block size for dd need not correspond to
either the Oracle block size or the operating system block size: it is
merely the size of the buffer used by dd when making the copy.

Raw offset On some systems, the beginning of the file on the raw device is
reserved for use by the operating system. This storage space is
called the raw offset. Oracle should not back up or restore these
bytes.

Size of Oracle block 0 At the beginning of every Oracle file, the operating system-specific
code places an Oracle block called block 0. The generic Oracle code
does not recognize this block, but the block is included in the size
of the file on the operating system. Typically, this block is the same
size as the other Oracle blocks in the file.

Table 16–1 Options for dd Command

This option ... Specifies ...

if The name of the input file, that is, the file that you are reading.

of The name of the output file, that is, the file to which you are writing.

bs The buffer size used by dd to copy data.

skip The number of dd buffers to skip on the input raw device if a raw offset
exists. For example, if you are backing up a file on a raw device with a 64
KB raw offset, and the dd buffer size is 8 KB, then you can specify
skip=8 so that the copy starts at offset 64 KB.

Making User-Managed Backups to Raw Devices

16-22 Backup and Recovery Advanced User’s Guide

Because a raw device can be the input or output device for a backup, you have four
possible scenarios for the backup. The possible options for dd depend on which
scenario you choose, as illustrated in Table 16–2.

Backing Up with the dd utility on UNIX: Examples
For these examples of dd utility usage, assume the following:

■ You are backing up a 30720 KB datafile.

■ The beginning of the datafile has a block 0 of 8 KB.

■ The raw offset is 64 KB.

■ You set the dd block size to 8 KB when a raw device is involved in the copy.

In the following example, you back up from one raw device to another raw device:

% dd if=/dev/rsd1b of=/dev/rsd2b bs=8k skip=8 seek=8 count=3841

seek The number of dd buffers to skip on the output raw device if a raw offset
exists. For example, if you are backing up a file onto a raw device with a
64 KB raw offset, and the dd buffer size is 8 KB, then you can specify
skip=8 so that the copy starts at offset 64 KB.

count The number of blocks on the input raw device for dd to copy. It is best to
specify the exact number of blocks to copy when copying from raw
device to file system, otherwise any extra space at the end of the raw
volume that is not used by the Oracle datafile is copied to the file system.

Remember to include block 0 in the total size of the input file. For
example, if the dd block size is 8 KB, and you are backing up a 30720 KB
datafile, then you can set count=3841. This value for count actually
backs up 30728 KB: the extra 8 KB are for Oracle block 0.

Table 16–2 Scenarios Involving dd Backups

Backing Up from ... Backing Up to ... Options Specified for dd Command

Raw device Raw device if, of, bs, skip, seek, count

Raw device File system if, of, bs, skip, count

File system Raw device if, of, bs, seek

File system File system if, of, bs

Table 16–1 Options for dd Command

This option ... Specifies ...

Making User-Managed Backups to Raw Devices

Making User-Managed Backups 16-23

In the following example, you back up from a raw device to a file system:

% dd if=/dev/rsd1b of=/backup/df1.dbf bs=8k skip=8 count=3841

In the following example, you back up from a file system to a raw device:

% dd if=/backup/df1.dbf of=/dev/rsd2b bs=8k seek=8

In the following example, you back up from a file system to a file system, and so can
set the block size to a high value to boost I/O performance:

% dd if=/oracle/dbs/df1.dbf of=/backup/df1.dbf bs=1024k

Backing Up to Raw Devices on Windows
Like UNIX, Windows supports raw disk partitions in which the database can store
datafiles, online logs, and control files. Each raw partition is assigned either a drive
letter or physical drive number and does not contain a file system. As in UNIX, each
raw partition on NT is mapped to a single file.

NT differs from UNIX in the naming convention for Oracle files. On NT, raw
datafile names are formatted as follows:

\\.\drive_letter:
\\.\PHYSICALDRIVEdrive_number

For example, the following are possible raw filenames:

\\.\G:
\\.\PHYSICALDRIVE3

Note that you can also create aliases to raw filenames. The standard Oracle database
installation provides a SETLINKS utility that can create aliases such as
\\.\Datafile12 that point to filenames such as \\.\PHYSICALDRIVE3.

The procedure for making user-managed backups of raw datafiles is basically the
same as for copying files on an NT file system, except that you should use the
Oracle OCOPY utility rather than the NT-supplied copy.exe or ntbackup.exe
utilities. OCOPY supports 64-bit file I/O, physical raw drives, and raw files. Note
that OCOPY cannot back up directly to tape.

To display online documentation for OCOPY, enter OCOPY by itself at the Windows
prompt. Sample output follows:

Usage of OCOPY:
 ocopy from_file [to_file [a | size_1 [size_n]]]
 ocopy -b from_file to_drive

Making User-Managed Backups to Raw Devices

16-24 Backup and Recovery Advanced User’s Guide

 ocopy -r from_drive to_dir

Note the important OCOPY options described in the following table.

Backing Up with OCOPY: Example
In this example, assume the following:

■ Datafile 12 is mounted on the \\.\G: raw partition.

■ The C: drive mounts a file system.

■ The database is open.

To back up the datafile on the raw partition \\.\G: to a local file system, you can
run the following command at the prompt after placing datafile 12 in backup mode:

OCOPY "\\.G:" C:\backup\datafile12.bak

Specifying the -b and -r Options for OCOPY: Example
In this example, assume the following:

■ \\.\G: is a raw partition containing datafile 7

■ The A: drive is a removable disk drive.

■ The database is open.

To back up the datafile onto drive A:, you can execute the following command at
the NT prompt after placing datafile 7 in backup mode:

first argument is filename, second argument is drive
OCOPY -b "\\.\G:" A:\

When drive A: fills up, you can use another disk. In this way, you can divide the
backup of datafile 7 into multiple files.

Similarly, to restore the backup, take the tablespace containing datafile 7 offline and
run this command:

first argument is drive, second argument is directory

This option ... Specifies ...

b Splits the input file into multiple output files. This option is useful for
backing up to devices that are smaller than the input file.

r Combines multiple input files and writes to a single output file. This
option is useful for restoring backups created with the -b option.

Verifying User-Managed Backups

Making User-Managed Backups 16-25

OCOPY -r A:\ "\\.\G:"

Verifying User-Managed Backups
You should periodically verify your backups to ensure that they are usable for
recovery. This section contains the following topics:

■ Testing the Restore of Backups

■ Running the DBVERIFY Utility

Testing the Restore of Backups
The best way to test the usability of backups is to restore them to a separate host
and attempt to open the database, performing media recovery if necessary. This
option requires that you have a separate host available for the restore procedure.

Running the DBVERIFY Utility
The DBVERIFY program is an external command-line utility that performs a
physical data structure integrity check on an offline datafile. Use DBVERIFY
primarily when you need to ensure that a user-managed backup of a datafile is
valid before it is restored or as a diagnostic aid when you have encountered data
corruption problems.

The name and location of DBVERIFY is dependent on your operating system. For
example, to perform an integrity check on datafile tbs_52.f on UNIX, you can run
the dbv command as follows:

% dbv file=tbs_52.f

See Also:

■ "Restoring Datafiles with Operating System Utilities" on
page 17-6

■ "Restoring Control Files" on page 17-8

■ "Restoring Archived Redo Logs with Operating System
Utilities" on page 17-6

■ "Performing Complete User-Managed Media Recovery" on
page 17-21 to learn how to recover files with SQL*Plus

Making Logical Backups with Oracle Export Utilities

16-26 Backup and Recovery Advanced User’s Guide

Sample dbv output follows:

DBVERIFY - Verification starting : FILE = users01.dbf

DBVERIFY - Verification complete

Total Pages Examined : 250
Total Pages Processed (Data) : 1
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 0
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 247
Total Pages Marked Corrupt : 0
Total Pages Influx : 0

Making Logical Backups with Oracle Export Utilities
Oracle import and export utilities move Oracle data in and out of Oracle databases.
Export utilities write exported database objects to operating system files in an
Oracle-proprietary format. Import utilities can read the files produced by export
utilities and re-create database objects. Logical exports of data can be a useful
supplement to physical database backups in some situations, especially in backing
up recovery catalog databases.

There are two sets of Oracle database import and export utilities: Original Import
and Export (which were used in previous releases) and Data Pump Import and
Export (new for Oracle Database Release 10g). The Data Pump utilities offer better
performance and more complete support of features of Oracle Database Release 10g.
Whichever export tool you use to export objects to a file, you must use the
corresponding import tool to import the objects from the file, that is, you cannot use
the Data Pump Import utility to read the output of the Original Export utility, or the
Original Import to read the output of the Data Pump Export utility.

See Also: Oracle Database Utilities to learn about DBVERIFY

See Also: Oracle Database Utilities for complete documentation of
the Oracle import and export utilities, including a comparison of
their capabilities.

Keeping Records of Current and Backup Database Files

Making User-Managed Backups 16-27

Making User-Managed Backups of Miscellaneous Oracle Files
Always back up initialization parameter files, networking and configuration files,
and password files. If a media failure destroys these files, then you may have
difficulty re-creating your environment. For example, if you back up the database
and server parameter file but do not back up the networking files, then you can
restore and recover the database but will not be able to authenticate users through
Oracle Net until you re-create the networking files.

As a rule, you should back up miscellaneous Oracle files after changing them. For
example, if you add or change the net service names that can be used to access the
database, then create a new backup of the tnsnames.ora file.

The easiest way to find configuration files is to start in the Oracle home directory
and do a recursive search for all files ending in the .ora extension. For example, on
UNIX you can run this command:

% find $ORACLE_HOME -name "*.ora" -print

You must use third-party utilities to back up the configuration files. For example,
you can use the UNIX cp command to back up the tnsnames.ora and
listener.ora files as follows:

% cp $ORACLE_HOME/network/admin/tnsnames.ora /d2/tnsnames‘date "+%m_%d_%y"‘.ora
% cp $ORACLE_HOME/network/admin/listener.ora /d2/listener‘date "+%m_%d_%y"‘.ora

You can also use an operating system utility to back up the server parameter file.
Although the database does not depend on the existence of a particular version of
the server parameter file to be started, you should keep relatively current backups
of this file so that you do not lose changes made to the file. Note that if you lose the
server parameter file, you can always create a new one or start the instance with a
client-side initialization parameter file (PFILE).

Keeping Records of Current and Backup Database Files
One of the most important aspects of user-managed backup and recovery is keeping
records of all current database files as well as the backups of these files. For
example, you should have records for the location of the following files:

■ Datafiles and control files

■ Online and archived redo logs (note that online logs are never backed up)

■ Initialization parameter files

Keeping Records of Current and Backup Database Files

16-28 Backup and Recovery Advanced User’s Guide

■ Password files

■ Networking-related files

Recording the Locations of Datafiles, Control Files, and Online Redo Logs
The following useful SQL script displays the location of all control files, datafiles,
and online redo log files for the database:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE;

Recording the Locations of Archived Redo Logs
You can determine the location of the default archived log destinations by executing
the following SQL script:

SELECT NAME, VALUE
FROM V$PARAMETER
WHERE NAME LIKE log_archive_dest%
AND VALUE IS NOT NULL
/

NAME VALUE
---------------------------------- ---
log_archive_dest_1 LOCATION=/oracle/work/arc_dest/arc
log_archive_dest_state_1 enable

Determine the format for archived logs by running SHOW as follows:

SHOW PARAMETER LOG_ARCHIVE_FORMAT

To see a list of all the archived logs recorded in the control file, issue this query:

SELECT NAME FROM V$ARCHIVED_LOG;

Recording the Locations and Dates of Backup Files
It is not enough to merely record the location of backup files: you must correlate the
backups with the original files. If possible, name the backups with the same relative

See Also: Oracle Database Reference for more information on the
V$ views

Keeping Records of Current and Backup Database Files

Making User-Managed Backups 16-29

filename as the primary file. Whatever naming system you use, keep a table
containing the relevant information. For example, you could keep the following
table as a record of database file locations in case of a restore emergency.

Datafile # Tbs Current Datafiles Backup Datafiles

0 (cf) 0 (cf) /oracle/oradata/trgt/control01.dbf /d2/control01_10_31_02.dbf

1 SYSTEM /oracle/oradata/trgt/system01.dbf /d2/system01_10_31_02.dbf

2 undo /oracle/oradata/trgt/undo01.dbf /d2/undo01_10_31_02.dbf

3 cwmlite /oracle/oradata/trgt/cwmlite01.dbf /d2/cwmlite01_10_31_02.dbf

4 drsys /oracle/oradata/trgt/drsys01.dbf /d2/drsys01_10_31_02.dbf

Keeping Records of Current and Backup Database Files

16-30 Backup and Recovery Advanced User’s Guide

Performing User-Managed Database Flashback and Recovery 17-1

17
Performing User-Managed Database

Flashback and Recovery

This chapter describes how to restore and recover a database. It includes the
following topics:

■ User-Managed Backup and Flashback Features of Oracle

■ About User-Managed Restore Operations

■ Determining Which Datafiles Require Recovery

■ Restoring Datafiles and Archived Redo Logs

■ Restoring Control Files

■ About User-Managed Media Recovery

■ Performing Complete User-Managed Media Recovery

■ Performing Incomplete User-Managed Media Recovery

■ Opening the Database with the RESETLOGS Option

■ Recovering a Database in NOARCHIVELOG Mode

■ Performing Media Recovery in Parallel

User-Managed Backup and Flashback Features of Oracle
Oracle’s flashback features, which let you undo damage to your database after
logical data corruption, include the following:

User-Managed Backup and Flashback Features of Oracle

17-2 Backup and Recovery Advanced User’s Guide

■ Oracle Flashback Database, which returns your entire database to a previous
state without requiring you to restore files from backup;

■ Oracle Flashback Table, which returns one or more tables to their contents at a
previous time;

■ Oracle Flashback Drop, which undoes the effects of the DROP TABLE operation;

■ Oracle Flashback Query, which allows you to query the contents of the database
at a past time;

■ Oracle Flashback Version Query, which lets you view past states of data;

■ Oracle Flashback Transaction Query, which allows you review transactions
affecting a table over time.

All of these operations are available within SQL*Plus, and none of them require the
use of Recovery Manager. More details about using the flashback features of Oracle
in data recovery situations are provided in "Oracle Flashback Technology:
Overview" on page 9-2.

Performing Flashback Database with SQL*Plus
The SQL*Plus FLASHBACK DATABASE command performs the same function as the
RMAN FLASHBACK DATABASE command: it returns the database to a prior state.

Note that using Flashback Database requires that you create a flash recovery area
for your database and enable the collection of flashback logs. See "Oracle Flashback
Database: Alternative to Point-In-Time Recovery" on page 9-15 for more details
about how the Flashback Database feature works, requirements for using Flashback
Database , and how to enable collection of flashback logs required for Flashback
Database. The requirements and preparations are the same whether you use RMAN
or user-managed backup and recovery.

To perform the FLASHBACK DATABASE operation:

1. Query the target database to determine the range of possible flashback SCNs.
The following SQL*Plus queries show you the the latest and earliest SCN in the
flashback window:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;

SQL> SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
 FROM V$FLASHBACK_DATABASE_LOG;

About User-Managed Restore Operations

Performing User-Managed Database Flashback and Recovery 17-3

2. Use other flashback features if necessary, to identify the SCN or time of the
unwanted changes to your database.

3. Start SQL*Plus with administrator privileges, and run the FLASHBACK
DATABASE statement to return the database to a prior TIMESTAMP or SCN. For
example:

FLASHBACK DATABASE TO SCN 46963;
FLASHBACK DATABASE TO TIMESTAMP (SYSDATE-1/24);
FLASHBACK DATABASE TO TIMESTAMP timestamp'2002-11-05 14:00:00';
FLASHBACK DATABASE
 TO TIMESTAMP to_timestamp('2002-11-11 16:00:00', 'YYYY-MM-DD HH24:MI:SS');

Open the database read-only to examine the results of the Flashback Database
operation. When the operation completes, you can open the database read-only
and perform some queries to make sure you have recovered the data you need.
If you find that you need to perform Flashback Database again to a different
target time, then use RECOVER DATABASE to return the database back to the
present time, and then try another FLASHBACK DATABASE statement.

If you are satisfied with the results of Flashback Database, then you can re-open
your database with the RESETLOGS option. If appropriate, you can also use an
Oracle export utililty like Data Pump Export to save lost data, use RECOVER
DATABASE to return the database to the present, and re-import the lost object.

About User-Managed Restore Operations
To restore a file is to replace it with a backup file. Typically, you restore a file when a
media failure or user error has damaged or deleted the original file. The following
files are candidates for restore operations:

■ Datafiles and control files

■ Archived redo logs

■ Server parameter file

In each case, the loss of a primary file and the restore of a backup has the following
implications for media recovery.

Determining Which Datafiles Require Recovery

17-4 Backup and Recovery Advanced User’s Guide

Determining Which Datafiles Require Recovery
You can use the dynamic performance view V$RECOVER_FILE to determine which
files to restore in preparation for media recovery. This view lists all files that need to
be recovered and explains why they need to be recovered.

The following query displays the file ID numbers of datafiles that require media
recovery as well as the reason for recovery (if known) and the SCN and time when
recovery needs to begin:

SELECT * FROM V$RECOVER_FILE;

If you lose . . . Then . . .

One or more
datafiles

You must restore them from a backup and perform media recovery.
Recovery is required whenever the checkpoint SCN in the datafile
header does not match the checkpoint SCN for the datafile that is
recorded in the control file.

All copies of the
current control file

You must restore a backup control file and then open the database
with the RESETLOGS option.

If you do not have a backup, then you can attempt to re-create the
control file. If possible, use the script included in the ALTER
DATABASE BACKUP CONTROLFILE TO TRACE output. Additional
work may be required to match the control file structure with the
current database structure.

One copy of a
multiplexed control
file

Copy one of the intact multiplexed control files into the location of
the damaged or missing control file and open the database. If you
cannot copy the control file to its original location, then edit the
initialization parameter file to reflect a new location or remove the
damaged control file. Then, open the database.

One or more
archived logs
required for media
recovery

You must restore backups of these archived logs for recovery to
proceed. You can restore either to the default or nondefault location.
If you do not have backups, then you must performing incomplete
recovery up to an SCN before the first missing redo log and open
RESETLOGS.

The server
parameter file

If you have a backup of the server parameter file, then restore it.
Alternatively, if you have a backup of the client-side initialization
parameter file, then you can restore a backup of this file, start the
instance, and then re-create the server parameter file.

Note: Restore and recovery of Oracle-managed files is no different
from restore and recovery of user-named files.

Restoring Datafiles and Archived Redo Logs

Performing User-Managed Database Flashback and Recovery 17-5

FILE# ONLINE ERROR CHANGE# TIME
---------- ------- ------------------ ---------- ---------
 14 ONLINE 0
 15 ONLINE FILE NOT FOUND 0
 21 OFFLINE OFFLINE NORMAL 0

Query V$DATAFILE and V$TABLESPACE to obtain filenames and tablespace names
for datafiles requiring recovery. For example, enter:

SELECT d.NAME, t.NAME AS tablespace_name
FROM V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# IN (14,15,21); # use values obtained from V$RECOVER_FILE query

You can combine these queries in the following SQL*Plus script (sample output
show in the following example):

COL df# FORMAT 999
COL df_name FORMAT a20
COL tbsp_name FORMAT a10
COL status FORMAT a7
COL error FORMAT a10
SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#
/

Restoring Datafiles and Archived Redo Logs
This section contains the following topics:

■ Restoring Datafiles with Operating System Utilities

■ Restoring Archived Redo Logs with Operating System Utilities

Note: The view is not useful if the control file currently in use is a
restored backup or a new control file created after the media failure
occurred. A restored or re-created control file does not contain the
information the database needs to populate V$RECOVER_FILE
accurately.

Restoring Datafiles and Archived Redo Logs

17-6 Backup and Recovery Advanced User’s Guide

Restoring Datafiles with Operating System Utilities
If a media failure permanently damages one or more datafiles of a database, then
you must restore backups of these datafiles before you can recover the damaged
files. If you cannot restore a damaged datafile to its original location (for example,
you must replace a disk, so you restore the files to an alternate disk), then you must
indicate the new locations of these files to the control file.

If you are restoring a database file on a raw disk or partition, then the procedure is
basically the same as when restoring to a file on a file system. However, be aware of
the naming conventions for files on raw devices (which differ depending on the
operating system), and use an operating system utility that supports raw devices.

To restore backup datafiles to their default location:

1. Determine which datafiles to recover by using the techniques described in
"Determining Which Datafiles Require Recovery" on page 17-4.

2. If the database is open, then take the tablespaces containing the inaccessible
datafiles offline. For example, enter:

ALTER TABLESPACE users OFFLINE IMMEDIATE;

3. Copy backups of the damaged datafiles to their default location using operating
system commands. For example, to restore users01.dbf you might issue:

% cp /disk2/backup/users01.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

4. Recover the affected tablespace. For example, enter:

RECOVER TABLESPACE users

5. Bring the recovered tablespace online. For example, enter:

ALTER TABLESPACE users ONLINE;

Restoring Archived Redo Logs with Operating System Utilities
All archived redo logs generated between the time a restored backup was created
and the target recovery time are required for the pending recovery. The archived
logs will eventually need to be on disk so that they are available to the database.

See Also: "Making User-Managed Backups to Raw Devices" on
page 16-20 for an overview of considerations when backing up and
restoring files on raw devices

Restoring Datafiles and Archived Redo Logs

Performing User-Managed Database Flashback and Recovery 17-7

To restore necessary archived redo logs:

1. To determine which archived redo log files are needed, query V$ARCHIVED_
LOG and V$RECOVERY_LOG. If a datafile requires recovery, but no backup of the
datafile exists, then you need all redo generated starting from the time when the
datafile was added to the database.

2. If space is available, then restore the required archived redo log files to the
location specified by LOG_ARCHIVE_DEST_1. The database locates the correct
log automatically when required during media recovery. For example, enter:

% cp /disk2/arch/* $ORACLE_HOME/oradata/trgt/arch

3. If sufficient space is not available at the location indicated by the archiving
destination initialization parameter, restore some or all of the required archived
redo log files to an alternate location. Specify the location before or during
media recovery using the LOGSOURCE parameter of the SET statement in
SQL*Plus or the RECOVER ... FROM parameter of the ALTER DATABASE
statement in SQL. For example, enter:

SET LOGSOURCE /tmp # set location using SET statement
 DATABASE RECOVER FROM ’/tmp’; # set location in RECOVER statement

4. After an archived log is applied, and after making sure that a copy of each
archived log group still exists in offline storage, delete the restored copy of the
archived redo log file to free disk space. For example:

% rm /tmp/*.dbf

View Description

V$ARCHIVED_LOG Lists filenames for all the archived logs.

V$RECOVERY_LOG Lists only the archived redo logs that the database needs to perform
media recovery. It also includes the probable names of the files, using
LOG_ARCHIVE_FORMAT.

Note: This view is only populated when recovery is required for a
datafile. Hence, this view is not useful in the case of a planned
recovery such as a user error.

See Also: Oracle Database Reference for more information about the
data dictionary views, and "About User-Managed Media Recovery"
on page 17-14 for an overview of log application during media
recovery

Restoring Control Files

17-8 Backup and Recovery Advanced User’s Guide

Restoring Control Files
This section contains the following topics:

■ Losing a Member of a Multiplexed Control File

■ Losing All Current Control Files When a Backup Is Available

■ Losing All Current and Backup Control Files

Losing a Member of a Multiplexed Control File
Use the following procedures to recover a database if a permanent media failure has
damaged one or more control files of a database and at least one control file has not
been damaged by the media failure.

Copying a Multiplexed Control File to a Default Location
If the disk and file system containing the lost control file are intact, then you can
simply copy one of the intact control files to the location of the missing control file.
In this case, you do not have to alter the CONTROL_FILES initialization parameter
setting.

To replace a damaged control file by copying a multiplexed control file:

1. If the instance is still running, then shut it down:

SHUTDOWN ABORT

2. Correct the hardware problem that caused the media failure. If you cannot
repair the hardware problem quickly, then proceed with database recovery by
restoring damaged control files to an alternative storage device, as described in
"Copying a Multiplexed Control File to a Nondefault Location" on page 17-9.

3. Use an intact multiplexed copy of the database's current control file to copy
over the damaged control files. For example, to replace bad_cf.f with good_
cf.f, you might enter:

% cp /oracle/good_cf.f /oracle/dbs/bad_cf.f

4. Start a new instance and mount and open the database. For example, enter:

STARTUP

Restoring Control Files

Performing User-Managed Database Flashback and Recovery 17-9

Copying a Multiplexed Control File to a Nondefault Location
Assuming that the disk and file system containing the lost control file are not intact,
then you cannot copy one of the good control files to the location of the missing
control file. In this case, you must alter the CONTROL_FILES initialization
parameter to indicate a new location for the missing control file.

To restore a control file to a nondefault location:

1. If the instance is still running, then shut it down:

SHUTDOWN ABORT

2. If you cannot correct the hardware problem that caused the media failure, then
copy the intact control file to alternative locations. For example, to copy a good
version of control01.dbf to a new disk location you might issue:

% cp $ORACLE_HOME/oradata/trgt/control01.dbf /new_disk/control01.dbf

3. Edit the parameter file of the database so that the CONTROL_FILES parameter
reflects the current locations of all control files and excludes all control files that
were not restored. Assume the initialization parameter file contains:

CONTROL_FILES='/oracle/oradata/trgt/control01.dbf','/bad_disk/control02.dbf'

Then, you can edit it as follows:

CONTROL_FILES='/oracle/oradata/trgt/control01.dbf','/new_disk/control02.dbf'

4. Start a new instance and mount and open the database. For example:

STARTUP

Losing All Current Control Files When a Backup Is Available
Use the following procedures to restore a backup control file if a permanent media
failure has damaged all control files of a database and you have a backup of the
control file. When a control file is inaccessible, you can start the instance, but not
mount the database. If you attempt to mount the database when the control file is
unavailable, then you receive this error message:

ORA-00205: error in identifying controlfile, check alert log for more info

You cannot mount and open the database until the control file is accessible again. If
you restore a backup control file, then you must open RESETLOGS.

Restoring Control Files

17-10 Backup and Recovery Advanced User’s Guide

As indicated in Table 17–1, the procedure for restoring the control file depends on
whether the online redo logs are available.

Restoring a Backup Control File to the Default Location
If possible, restore the control file to its original location. In this way, you avoid
having to specify new control file locations in the initialization parameter file.

To restore a backup control file to its default location:

1. If the instance is still running, shut it down:

SHUTDOWN ABORT

2. Correct the hardware problem that caused the media failure.

3. Restore the backup control file to all locations specified in the CONTROL_FILES
parameter. For example, if ORACLE_HOME/oradata/trgt/control01.dbf
and ORACLE_HOME/oradata/trgt/control02.dbf are the control file
locations listed in the server parameter file, then use an operating system utility
to restore the backup control file to these locations:

% cp /backup/control01.dbf ORACLE_HOME/oradata/trgt/control01.dbf
% cp /backup/control02.dbf ORACLE_HOME/oradata/trgt/control02.dbf

Table 17–1 Scenarios When Control Files Are Lost

Status of
Online Logs

Status of
Datafiles Response

Available Current If the online logs contain redo necessary for recovery, then
restore a backup control file and apply the logs during
recovery. You must specify the filename of the online logs
containing the changes in order to open the database.
After recovery, open RESETLOGS.

Unavailable Current If the online logs contain redo necessary for recovery, then
re-create the control file. Because the online redo logs are
inaccessible, open RESETLOGS (when the online logs are
accessible it is not necessary to OPEN RESETLOGS after
recovery with a created control file).

Available Backup Restore a backup control file, perform complete recovery,
and then open RESETLOGS.

Unavailable Backup Restore a backup control file, perform incomplete
recovery, and then open RESETLOGS.

Restoring Control Files

Performing User-Managed Database Flashback and Recovery 17-11

4. Start a new instance and mount the database. For example, enter:

STARTUP MOUNT

5. Begin recovery by executing the RECOVER command with the USING BACKUP
CONTROLFILE clause. Specify UNTIL CANCEL if you are performing incomplete
recovery. For example, enter:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

6. Apply the prompted archived logs. If you then receive another message saying
that the required archived log is missing, it probably means that a necessary
redo record is located in the online redo logs. This situation can occur when
unarchived changes were located in the online logs when the instance crashed.

For example, assume that you see the following:

ORA-00279: change 55636 generated at 11/08/2002 16:59:47 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_111.arc
ORA-00280: change 55636 for thread 1 is in sequence #111
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can specify the name of an online redo log and press Enter (you may have
to try this a few times until you find the correct log):

ORACLE_HOME/oradata/redo01.dbf
Log applied.
Media recovery complete.

If the online logs are inaccessible, then you can cancel recovery without
applying them. If all datafiles are current, and if redo in the online logs is
required for recovery, then you cannot open the database without applying the
online logs. If the online logs are inaccessible, then you must re-create the
control file (refer to "Losing All Current and Backup Control Files" on
page 17-12).

7. Open the database with the RESETLOGS option after finishing recovery:

ALTER DATABASE OPEN RESETLOGS;

Restoring a Backup Control File to a Nondefault Location
If you cannot restore the control file to its original place because the media damage
is too severe, then you must specify new control file locations in the server
parameter file. A valid control file must be available in all locations specified by the

Restoring Control Files

17-12 Backup and Recovery Advanced User’s Guide

CONTROL_FILES initialization parameter. If not, then the database prevents you
from the mounting the database.

To restore a control file to a nondefault location:

Follow the steps in "Restoring a Backup Control File to the Default Location" on
page 17-10, except after step 2 add the following step:

Edit all locations specified in the CONTROL_FILES initialization parameter to reflect
the new control file locations. For example, if the control file locations listed in the
server parameter file are as follows, and both locations are inaccessible:

CONTROL_FILES='/oracle/oradata/trgt/control01.dbf',
 '/oracle/oradata/trgt/control01.dbf'

Then, you can edit the initialization parameter file as follows:

CONTROL_FILES='/good_disk/control01.dbf','/good_disk/control02.dbf'

Losing All Current and Backup Control Files
If all control files have been lost in a permanent media failure, but all online redo
log members remain intact, then you can recover the database after creating a new
control file. The advantage of this tactic is that you are not required to open the
database with the RESETLOGS option.

Depending on the existence and currency of a control file backup, you have the
options listed in Table 17–2 for generating the text of the CREATE CONTROLFILE
statement. Note that changes to the database are recorded in the alert_SID.log,
so check this log when deciding which option to choose.

Table 17–2 Options for Creating the Control File (Page 1 of 2)

If you . . . Then . . .

Executed ALTER DATABASE BACKUP
CONTROLFILE TO TRACE
NORESETLOGS after you made the
last structural change to the
database, and if you have saved the
SQL command trace output

Use the CREATE CONTROLFILE statement from the
trace output as-is.

Performed your most recent
execution of ALTER DATABASE
BACKUP CONTROLFILE TO TRACE
before you made a structural change
to the database

Edit the output of ALTER DATABASE BACKUP
CONTROLFILE TO TRACE to reflect the change. For
example, if you recently added a datafile to the
database, then add this datafile to the DATAFILE
clause of the CREATE CONTROLFILE statement.

Restoring Control Files

Performing User-Managed Database Flashback and Recovery 17-13

To create a new control file:

1. Start the database in NOMOUNT mode. For example, enter:

STARTUP NOMOUNT

2. Create the control file with the CREATE CONTROLFILE statement, specifying the
NORESETLOGS option (refer to Table 17–2 for options). The following example
assumes that the character set is the default US7ASCII:

CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 16
 MAXLOGHISTORY 1600
LOGFILE
 GROUP 1 (
 '/diska/prod/sales/db/log1t1.dbf',
 '/diskb/prod/sales/db/log1t2.dbf'
) SIZE 100K
 GROUP 2 (
 '/diska/prod/sales/db/log2t1.dbf',
 '/diskb/prod/sales/db/log2t2.dbf'

Backed up the control file with the
ALTER DATABASE BACKUP
CONTROLFILE TO filename
statement (not the TO TRACE option)

Use the control file copy to obtain SQL output.
Create a temporary database instance, mount the
backup control file, and then run ALTER DATABASE
BACKUP CONTROLFILE TO TRACE NORESETLOGS.
If the control file copy predated a recent structural
change, then edit the trace to reflect the change.

Do not have a control file backup in
either TO TRACE format or TO
filename format

Execute the CREATE CONTROLFILE statement
manually (refer to Oracle Database SQL Reference).

Note: If your character set is not the default US7ASCII, then you
must specify the character set as an argument to the CREATE
CONTROLFILE statement. The database character set is written to
the alert log at startup. The character set information is also
recorded in the BACKUP CONTROLFILE TO TRACE output.

Table 17–2 Options for Creating the Control File (Page 2 of 2)

If you . . . Then . . .

About User-Managed Media Recovery

17-14 Backup and Recovery Advanced User’s Guide

) SIZE 100K,
DATAFILE
 '/diska/prod/sales/db/database1.dbf',
 '/diskb/prod/sales/db/filea.dbf';

After creating the control file, the instance mounts the database.

3. Recover the database as normal (without specifying the USING BACKUP
CONTROLFILE clause):

RECOVER DATABASE

4. Open the database after recovery completes (RESETLOGS option not required):

ALTER DATABASE OPEN;

5. Immediately back up the control file. The following SQL statement backs up a
database's control file to /backup/control01.dbf:

ALTER DATABASE BACKUP CONTROLFILE TO '/backup/control01.dbf' REUSE;

About User-Managed Media Recovery
During complete or incomplete media recovery, the database applies redo log files
to the datafiles during the roll forward phase of media recovery. Because changes to
undo segments are recorded in the online redo log, rolling forward regenerates the
corresponding undo segments. Rolling forward proceeds through as many redo log
files as necessary to bring the database forward in time.

To perform recovery, Oracle Corporation recommends that you use the RECOVER
SQL statement in SQL*Plus. You can also use the SQL statement ALTER DATABASE
RECOVER, but the RECOVER statement is simpler in most cases.

Preconditions of Performing User-Managed Recovery
To start any type of media recovery, you must adhere to the following restrictions:

■ You must have administrator privileges.

■ All recovery sessions must be compatible.

See Also: "Backing Up the Control File to a Trace File" on
page 16-14, and "Recovering Through RESETLOGS with Created
Control File: Scenario" on page 18-5

About User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-15

■ One session cannot start complete media recovery while another performs
incomplete media recovery.

■ You cannot start media recovery if you are connected to the database through a
shared server process.

Applying Logs Automatically with the RECOVER Command
Oracle Corporation recommends that you use the SQL*Plus RECOVER command
rather than the ALTER DATABASE RECOVER statement to perform media recovery.
In almost all cases, the SQL*Plus method is easier.

When using SQL*Plus to perform media recovery, the easiest strategy is to perform
automatic recovery. Automatic recovery initiates recovery without manually
prompting SQL*Plus to apply each individual archived log.

When using SQL*Plus, you have two options for automating the application of the
default filenames of archived redo logs needed during recovery:

■ Issuing SET AUTORECOVERY ON before issuing the RECOVER command

■ Specifying the AUTOMATIC keyword as an option of the RECOVER command

In either case, no interaction is required when you issue the RECOVER command if
the necessary files are in the correct locations with the correct names. The filenames
used when you use automatic recovery are derived from the concatenated values of
LOG_ARCHIVE_FORMAT with LOG_ARCHIVE_DEST_n, where n is the highest value
among all enabled, local destinations.

For example, assume the following initialization parameter settings are in effect in
the database instance:

LOG_ARCHIVE_DEST_1 = "LOCATION=/arc_dest/loc1/"
LOG_ARCHIVE_DEST_2 = "LOCATION=/arc_dest/loc2/"
LOG_ARCHIVE_DEST_STATE_1 = DEFER
LOG_ARCHIVE_DEST_STATE_2 = ENABLE
LOG_ARCHIVE_FORMAT = arch_%t_%s.arc

In this case, SQL*Plus automatically suggests the filename /arc_
dest/loc2/arch_%t_%s.arc (where %t is the thread and %s is the sequence).

If you run SET AUTORECOVERY OFF, which is the default option, then you must
enter the filenames manually, or accept the suggested default filename by pressing
the Enter key.

About User-Managed Media Recovery

17-16 Backup and Recovery Advanced User’s Guide

Automating Recovery with SET AUTORECOVERY
Run the SET AUTORECOVERY ON command to enable on automatic recovery.

To automate the recovery using SET AUTORECOVERY:

1. Restore a backup of the offline datafiles. This example restores an inconsistent
backup of all datafiles with an operating system utility:

% cp /backup/datafiles/*.dbf $ORACLE_HOME/oradata/trgt/

2. Ensure the database is mounted. For example, if the database is shut down, run:

STARTUP MOUNT

3. Enable automatic recovery. For example, in SQL*Plus run:

SET AUTORECOVERY ON

4. Recover the desired datafiles. This example recovers the whole database:

RECOVER DATABASE

The database automatically suggests and applies the necessary archived logs.

5. Open the database. For example:

ALTER DATABASE OPEN;

Automating Recovery with the AUTOMATIC Option of the RECOVER Command
Besides using SET AUTORECOVERY to turn on automatic recovery, you can also
simply specify the AUTOMATIC keyword in the RECOVER command.

To automate the recovery with the RECOVER AUTOMATIC command:

1. Restore a backup of the offline datafiles. This example restores a backup of all
datafiles:

% cp /backup/datafiles/*.dbf $ORACLE_HOME/oradata/trgt/

Note: After issuing the SQL*Plus RECOVER command, you can
view all files that have been considered for recovery in the
V$RECOVERY_FILE_STATUS view. You can access status
information for each file in the V$RECOVERY_STATUS view. These
views are not accessible after you terminate the recovery session.

About User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-17

2. Ensure the database is mounted. For example, if the database is shut down, run:

STARTUP MOUNT

3. Recover the desired datafiles by specifying the AUTOMATIC keyword. This
example performs automatic recovery on the whole database:

RECOVER AUTOMATIC DATABASE

The database automatically suggests and applies the necessary archived logs.

4. Open the database. For example:

ALTER DATABASE OPEN;

If you use an Oracle Real Application Clusters configuration, and if you are
performing incomplete recovery or using a backup control file, then the database
can only compute the name of the first archived redo log file from the first redo
thread. You may have to manually apply the first log file from the other redo
threads. After the first log file in a given thread has been supplied, the database can
suggest the names of the subsequent logs in this thread.

Recovering When Archived Logs Are in the Default Location
Recovering when the archived logs are in their default location is the simplest case.
As a log is needed, the database suggests the filename. If you are running
nonautomatic media recovery with SQL*Plus, then the output is displayed in this
format:

ORA-00279: Change #### generated at DD/MM/YY HH:MM:SS needed for thread#
ORA-00289: Suggestion : logfile
ORA-00280: Change #### for thread # is in sequence #
Specify log: [<RET> for suggested | AUTO | FROM logsource | CANCEL]

For example, SQL*Plus displays output similar to the following:

ORA-00279: change 53577 generated at 11/26/02 19:20:58 needed for thread 1
ORA-00289: suggestion : /oracle/oradata/trgt/arch/arcr_1_802.arc
ORA-00280: change 53577 for thread 1 is in sequence #802
Specify log: [<RET> for suggested | AUTO | FROM logsource | CANCEL]

Similar messages are returned when you use an ALTER DATABASE ... RECOVER
statement. However, no prompt is displayed.

See Also: Your operating system specific Oracle documentation
for examples of log file application

About User-Managed Media Recovery

17-18 Backup and Recovery Advanced User’s Guide

The database constructs suggested archived log filenames by concatenating the
current values of the initialization parameters LOG_ARCHIVE_DEST_n (where n is
the highest value among all enabled, local destinations) and LOG_ARCHIVE_
FORMAT and using log history data from the control file. The following are possible
settings:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /oracle/oradata/trgt/arch/'
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

SELECT NAME FROM V$ARCHIVED_LOG;

NAME
--
/oracle/oradata/trgt/arch/arcr_1_467.arc
/oracle/oradata/trgt/arch/arcr_1_468.arc
/oracle/oradata/trgt/arch/arcr_1_469.arc

Thus, if all the required archived log files are mounted at the LOG_ARCHIVE_DEST_
1 destination, and if the value for LOG_ARCHIVE_FORMAT is never altered, then the
database can suggest and apply log files to complete media recovery automatically.

Recovering When Archived Logs Are in a Nondefault Location
Performing media recovery when archived logs are not in their default location
adds an extra step. You have the following mutually exclusive options:

■ Edit the LOG_ARCHIVE_DEST_n parameter that specifies the location of the
archived redo logs, then recover as usual.

■ Use the SET statement in SQL*Plus to specify the nondefault log location before
recovery, or the LOGFILE parameter of the RECOVER command

Resetting the Archived Log Destination
You can edit the initialization parameter file or issue ALTER SYSTEM statements to
change the default location of the archived redo logs.

To change the default archived log location before recovery:

1. Use an operating system utility to restore the archived logs to a nondefault
location. For example, enter:

% cp /backup/arch/* /tmp/

About User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-19

2. Change the value for the archive log parameter to the nondefault location. You
can issue ALTER SYSTEM statements while the instance is started, or edit the
initialization parameter file and then start the database instance. For example,
while the instance is shut down edit the parameter file as follows:

LOG_ARCHIVE_DEST_1 = 'LOCATION=/tmp/'
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

3. Using SQL*Plus, start a new instance by specifying the edited initialization
parameter file, and then mount the database. For example, enter:

STARTUP MOUNT

4. Begin media recovery as usual. For example, enter:

RECOVER DATABASE

Overriding the Archived Log Destination
In some cases, you may want to override the current setting for the archiving
destination parameter as a source for redo log files.

To recover archived logs in a nondefault location with SET LOGSOURCE:

1. Using an operating system utility, copy the archived redo logs to an alternative
location. For example, enter:

% cp $ORACLE_HOME/oradata/trgt/arch/* /tmp

2. Specify the alternative location within SQL*Plus for the recovery operation. Use
the LOGSOURCE parameter of the SET statement or the RECOVER ... FROM
clause of the ALTER DATABASE statement. For example, start SQL*Plus and run:

SET LOGSOURCE "/tmp"

3. Recover the offline tablespace. For example, to recover the offline tablespace
users do the following:

RECOVER AUTOMATIC TABLESPACE users

4. Alternatively, you can avoid running SET LOGSOURCE and simply run:

RECOVER AUTOMATIC TABLESPACE users FROM "/tmp"

Note: Overriding the redo log source does not affect the archive
redo log destination for online redo logs groups being archived.

About User-Managed Media Recovery

17-20 Backup and Recovery Advanced User’s Guide

Responding to Unsuccessful Application of Redo Logs
If you are using SQL*Plus's recovery options (not SQL statements), then each time
the database successfully applies a redo log file, the following message is returned:

Log applied.

You are then prompted for the next log in the sequence or, if the most recently
applied log is the last required log, terminates recovery.

If the suggested file is incorrect or you provide an incorrect filename, then the
database returns an error message. For example, you may see something like:

ORA-00308: cannot open archived log "/oracle/oradata/trgt/arch/arcr_1_811.arc"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

Recovery cannot continue until the required redo log is applied. If the database
returns an error message after supplying a log filename, then the following
responses are possible.

Interrupting User-Managed Media Recovery
If you start media recovery and must then interrupt it, for example, because a
recovery operation must end for the night and resume the next morning, then take
either of the following actions:

■ Enter the word CANCEL when prompted for a redo log file.

■ Use your operating system’s interrupt signal if you must terminate when
recovering an individual datafile, or when automated recovery is in progress.

Error Possible Cause Solution

ORA-27037: unable to
obtain file status

Entered wrong filename.

Log is missing.

Reenter correct filename.

Restore backup archived redo log.

ORA-27047: unable
to read the header
block of file

The log may have been
partially written or
become corrupted.

If you can locate an uncorrupted or
complete log copy, then apply the
intact copy and continue recovery.

If no copy of the log exists and you
know the time of the last valid redo
entry, then you use incomplete
recovery. Restore backups and
restart recovery.

Performing Complete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-21

After recovery is canceled, you can resume it later with the RECOVER command.
Recovery resumes where it left off when it was canceled.

Performing Complete User-Managed Media Recovery
When you perform complete recovery, you recover the backups to the current SCN.
You can either recover the whole database at once or recover individual tablespaces
or datafiles. Because you do not have to open the database with the RESETLOGS
option after complete recovery as you do after incomplete recovery, you have the
option of recovering some datafiles at one time and the remaining datafiles later.

This section describes the steps necessary to complete media recovery operations,
and includes the following topics:

■ Performing Closed Database Recovery

■ Performing Datafile Recovery in an Open Database

Performing Closed Database Recovery
This section describes steps to perform complete recovery while the database is not
open. You can recover either all damaged datafiles in one operation, or perform
individual recovery of each damaged datafile in separate operations.

Perform the media recovery in the following stages:

1. Prepare for closed database recovery as described in "Preparing for Closed
Database Recovery" on page 17-22.

2. Restore the necessary files as described in "Restoring Backups of the Damaged
or Missing Files" on page 17-22.

3. Recover the restored datafiles as described in "Recovering the Database" on
page 17-23.

See Also: Oracle Database Backup and Recovery Basics for basic
information about media recovery concepts, which apply in both
user-managed and RMAN-based backup and recovery.

See Also: Oracle Database Backup and Recovery Basics to familiarize
yourself with fundamental recovery concepts and strategies:

Performing Complete User-Managed Media Recovery

17-22 Backup and Recovery Advanced User’s Guide

Preparing for Closed Database Recovery
In this stage, you shut down the instance and inspect the media device that is
causing the problem.

To prepare for closed database recovery:

1. If the database is open, then shut it down. For example:

SHUTDOWN IMMEDIATE

2. If you are recovering from a media error, then correct it if possible. If the
hardware problem that caused the media failure was temporary, and if the data
was undamaged (for example, a disk or controller power failure), then no
media recovery is required: simply start the database and resume normal
operations. If you cannot repair the problem, then proceed to the next stage.

Restoring Backups of the Damaged or Missing Files
In this stage, you restore all necessary backups.

To restore the necessary files:

1. Determine which datafiles to recover by using the techniques described in
"Determining Which Datafiles Require Recovery" on page 17-4.

2. If the files are permanently damaged, then identify the most recent backups for
the damaged files. Restore only the datafiles damaged by the media failure: do
not restore any undamaged datafiles or any online redo log files.

For example, if ORACLE_HOME/oradata/trgt/users01.dbf is the only
damaged file, then you may determine that /backup/users01_10_24_
02.dbf is the most recent backup of this file. If you do not have a backup of a
specific datafile, then you may be able to create an empty replacement file that
can be recovered.

3. Use an operating system utility to restore the files to their default location or to
a new location. Restore the necessary files as described in "Restoring Datafiles
and Archived Redo Logs" on page 17-5. For example, a UNIX user restoring
users01.dbf to its default location might enter:

% cp /backup/users01_10_24_02.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

Performing Complete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-23

Use the following guidelines when determining where to restore datafile
backups.

Recovering the Database
In the final stage, you recover the datafiles that you have restored.

To recover the restored datafiles:

1. Connect to the database with administrator privileges, then start a new instance
and mount, but do not open, the database. For example, enter:

STARTUP MOUNT

2. Obtain the datafile names and statuses of all datafiles by checking the list of
datafiles that normally accompanies the current control file or querying the
V$DATAFILE view. For example, enter:

SELECT NAME,STATUS FROM V$DATAFILE;

3. Ensure that all datafiles of the database are online. All datafiles of the database
requiring recovery must be online unless an offline tablespace was taken offline
normally or is part of a read-only tablespace. For example, to guarantee that a
datafile named /oracle/dbs/tbs_10.f is online, enter the following:

ALTER DATABASE DATAFILE '/oracle/dbs/tbs_10.f' ONLINE;

If a specified datafile is already online, then the database ignores the statement.
If you prefer, create a script to bring all datafiles online at once as in the
following:

SPOOL onlineall.sql
SELECT 'ALTER DATABASE DATAFILE '''||name||''' ONLINE;' FROM V$DATAFILE;
SPOOL OFF

If . . . Then . . .

The hardware problem is repaired
and you can restore the datafiles to
their default locations

Restore the datafiles to their default locations and
begin media recovery.

The hardware problem persists and
you cannot restore datafiles to their
original locations

Restore the datafiles to an alternative storage
device. Indicate the new location of these files in the
control file with ALTER DATABASE RENAME FILE.
Use the operation described in "Renaming and
Relocating Datafiles" in the Oracle Database
Administrator's Guide, as necessary.

Performing Complete User-Managed Media Recovery

17-24 Backup and Recovery Advanced User’s Guide

SQL> @onlineall

4. Issue the statement to recover the database, tablespace, or datafile. For example,
enter one of the following RECOVER command:

RECOVER DATABASE # recovers whole database
RECOVER TABLESPACE users # recovers specific tablespace
RECOVER DATAFILE '?/oradata/trgt/users01.dbf'; # recovers specific
datafile

Follow these guidelines when deciding which statement to execute:

5. If you choose not to automate the application of archived logs, then you must
accept or reject each prompted log. If you automate recovery, then the database
applies the logs automatically. Recovery continues until all required archived
and online redo logs have been applied to the restored datafiles.

6. The database notifies you when media recovery is complete:

Media recovery complete.

If no archived redo log files are required for complete media recovery, then the
database applies all necessary online redo log files and terminates recovery.

7. After recovery terminates, open the database for use:

ALTER DATABASE OPEN;

Performing Datafile Recovery in an Open Database
It is possible for a media failure to occur while the database remains open, leaving
the undamaged datafiles online and available for use. Damaged datafiles—but not

If you want to . . . Then . . .

Recover all damaged files in one step Execute RECOVER DATABASE

Recover an individual tablespace Execute RECOVER TABLESPACE

Recover an individual damaged datafile Execute RECOVER DATAFILE

Parallelize recovery of the whole database
or an individual datafile

Refer to "Performing Media Recovery in
Parallel" on page 17-39

See Also: "About User-Managed Media Recovery" on page 17-14
for more information about applying redo log files

Performing Complete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-25

the tablespaces that contain them—are automatically taken offlineif the database
writer is unable to write to them. Queries that cannot read damaged files return
errors, but the datafiles are not taken offline because of the failed queries. For
example, you may run a query and see output such as:

ERROR at line 1:
ORA-01116: error in opening database file 3
ORA-01110: data file 11: ’/oracle/oradata/trgt/cwmlite02.dbf’
ORA-27041: unable to open file
SVR4 Error: 2: No such file or directory
Additional information: 3

The procedure in this section cannot be used to perform complete media recovery
on the datafiles of the SYSTEM tablespace while the database is open. If the media
failure damages datafiles of the SYSTEM tablespace, then the database automatically
shuts down.

Perform media recovery in these stages:

1. Prepare the database for recovery by making sure it is open and taking the
tablespaces requiring recovery offline, as described in "Preparing for Open
Database Recovery" on page 17-25.

2. Restore the necessary files in the affected tablespaces as described in "Restoring
Backups of the Inaccessible Datafiles" on page 17-26.

3. Recover the affected tablespaces as described in "Recovering Offline
Tablespaces in an Open Database" on page 17-26.

Preparing for Open Database Recovery
In this stage, you take affected tablespaces offline and inspect the media device that
is causing the problem.

See Also:

■ "Determining Which Datafiles Require Recovery" on page 17-4

■ "Performing Closed Database Recovery" on page 17-21 for
procedures for proceeding with complete media recovery of the
SYSTEM tablespace

Performing Complete User-Managed Media Recovery

17-26 Backup and Recovery Advanced User’s Guide

To prepare for datafile recovery when the database is open:

1. If the database is open when you discover that recovery is required, take all
tablespaces containing damaged datafiles offline. For example, if tablespace
users and tools contain damaged datafiles, enter:

ALTER TABLESPACE users OFFLINE TEMPORARY;
ALTER TABLESPACE tools OFFLINE TEMPORARY;

2. Correct the hardware problem that caused the media failure. If the hardware
problem cannot be repaired quickly, proceed with database recovery by
restoring damaged files to an alternative storage device.

Restoring Backups of the Inaccessible Datafiles
In this stage, you restore all necessary backups in the offline tablespaces.

To restore datafiles in an open database:

1. If files are permanently damaged, then restore the most recent backup files of
only the datafiles damaged by the media failure. Do not restore undamaged
datafiles, online redo logs, or control files. If the hardware problem is fixed and
the datafiles can be restored to their original locations, then do so. Otherwise,
restore the datafiles to an alternative storage device.

2. If you restored one or more damaged datafiles to alternative locations, update
the control file of the database to reflect the new datafile names. For example, to
change the filename of the datafile in tablespace users you might enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/users01.dbf' TO
 '/disk2/users01.dbf';

Recovering Offline Tablespaces in an Open Database
In the final stage, you recover the datafiles in the offline tablespaces.

Note: In some circumstances, if you do not have a backup of a
specific datafile, you can use ALTER DATABASE CREATE DATAFILE
to create an empty replacement file that is recoverable.

See Also: Oracle Database SQL Reference for more information
about ALTER DATABASE RENAME FILE

Performing Incomplete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-27

To recover offline tablespaces in an open database:

1. Connect to the database with administrator privileges, and start offline
tablespace recovery of all damaged datafiles in one or more offline tablespaces
using one step. For example, recover users and tools:

RECOVER TABLESPACE users, tools # recovers datafiles in users and tools

2. The database begins the roll forward phase of media recovery by applying the
necessary redo logs (archived and online) to reconstruct the restored datafiles.
Unless the applying of files is automated with RECOVER AUTOMATIC or SET
AUTORECOVERY ON, the database prompts for each required redo log file.

Recovery continues until all required archived logs have been applied to the
datafiles. The online redo logs are then automatically applied to the restored
datafiles to complete media recovery. If no archived redo logs are required for
complete media recovery, then the database does not prompt for any. Instead,
all necessary online redo logs are applied, and media recovery is complete.

3. When the damaged tablespaces are recovered up to the moment that media
failure occurred, bring the offline tablespaces online. For example, to bring
tablespaces users and tools online, issue the following statements:

ALTER TABLESPACE users ONLINE;
ALTER TABLESPACE tools ONLINE;

Performing Incomplete User-Managed Media Recovery
This section describes the steps necessary to complete the different types of
incomplete media recovery operations, and includes the following topics:

■ Preparing for Incomplete Recovery

■ Restoring Datafiles Before Performing Incomplete Recovery

■ Performing Cancel-Based Incomplete Recovery

■ Performing Time-Based or Change-Based Incomplete Recovery

Note: For best performance, use parallel recovery to recover the
datafiles. See "Performing Media Recovery in Parallel" on
page 17-39.

See Also: Oracle Database Administrator's Guide for more
information about creating datafiles

Performing Incomplete User-Managed Media Recovery

17-28 Backup and Recovery Advanced User’s Guide

Preparing for Incomplete Recovery
In this phase, you examine the source of the media problem.

To prepare for incomplete recovery:

1. If you are uncertain about performing incomplete recovery, then back up the
whole database—all datafiles, a control file, and the parameter files—as a
precautionary measure in case an error occurs during the recovery procedure.

2. If the database is still open and incomplete media recovery is necessary, then
terminate the instance:

SHUTDOWN ABORT

3. If a media failure occurred, correct the hardware problem that caused the
failure. If the hardware problem cannot be repaired quickly, then proceed with
database recovery by restoring damaged files to an alternative storage device.

Restoring Datafiles Before Performing Incomplete Recovery
In this phase, you restore a whole database backup.

To restore the files necessary for cancel-based recovery and bring them online:

1. If the current control files do not match the physical structure of the database at
the intended time of recovery, then restore a backup control file as described in
"Losing All Current Control Files When a Backup Is Available" on page 17-9.
The restored control file should reflect the database's physical file structure at
the point at which incomplete media recovery should finish. To determine
which control file backup to use:

■ Review the list of files that corresponds to the current control file and each
control file backup to determine the correct control file to use.

■ If necessary, replace all current control files of the database with the correct
control file backup.

■ Alternatively, create a new control file to replace the missing one.

Note: If your database is affected by seasonal time changes (for
example, daylight savings time), then you may experience a
problem if a time appears twice in the redo log and you want to
recover to the second, or later time. To handle time changes,
perform cancel-based or change-based recovery.

Performing Incomplete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-29

2. Restore backups of all the datafiles of the database. All backups used to replace
existing datafiles must have been taken before the intended time of recovery.
For example, if you intend to recover to January 2 at 2:00 p.m., then restore all
datafiles with backups completed before this time. Follow these guidelines:

3. Start SQL*Plus and connect to the database with administrator privilege, then
start a new instance and mount the database:

STARTUP MOUNT

4. If one or more damaged datafiles were restored to alternative locations in
Step 2, then indicate the new locations of these files to the control file of the
associated database. For example, enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/users01.dbf' TO
 '/disk2/users01.dbf';

Note: If you are unable to restore a control file backup to one of
the CONTROL_FILES locations, then edit the initialization
parameter file so that this CONTROL_FILES location is removed.

If . . . Then . . .

You do not have a backup of a datafile Create an empty replacement file that can be
recovered as described in "Restoring Backups
of the Damaged or Missing Files" on
page 17-22.

A datafile was added after the intended
time of recovery

Do not restore a backup of this file because it
will no longer be used for the database after
recovery completes.

The hardware problem causing the failure
has been solved and all datafiles can be
restored to their default locations

Restore the files as described in "Restoring
Datafiles and Archived Redo Logs" on
page 17-5 and skip Step 4 of this procedure.

A hardware problem persists Restore damaged datafiles to an alternative
storage device.

Note: Files in read-only tablespaces should be offline if you are
using a control file backup. Otherwise, the recovery will try to
update the headers of the read-only files.

Performing Incomplete User-Managed Media Recovery

17-30 Backup and Recovery Advanced User’s Guide

5. Obtain the datafile names and statuses of all datafiles by checking the list of
datafiles that normally accompanies the current control file or querying the
V$DATAFILE view. For example, enter:

SELECT NAME,STATUS FROM V$DATAFILE;

6. Ensure that all datafiles of the database are online. All datafiles of the database
requiring recovery must be online unless a tablespace was taken offline with the
NORMAL option or is a read-only tablespace. For example, to guarantee that a
datafile named ?/oradata/trgt/users01.dbf is online, enter the
following:

ALTER DATABASE DATAFILE '?/oradata/trgt/users01.dbf' ONLINE;

If a specified datafile is already online, the statement has no effect. If you prefer,
create a script to bring all datafiles online at once as in the following:

SPOOL onlineall.sql
SELECT 'ALTER DATABASE DATAFILE '''||name||''' ONLINE;' FROM V$DATAFILE;
SPOOL OFF
SQL> @onlineall

Performing Cancel-Based Incomplete Recovery
In cancel-based recovery, recovery proceeds by prompting you with the suggested
filenames of archived redo log files. Recovery stops when you specify CANCEL
instead of a filename or when all redo has been applied to the datafiles.

Cancel-based recovery is better than change-based or time-based recovery if you
want to control which archived log terminates recovery. For example, you may
know that you have lost all logs past sequence 1234, so you want to cancel recovery
after log 1233 is applied.

You should perform cancel-based media recovery in these stages:

1. Prepare for recovery by backing up the database and correct any media failures
as described in "Preparing for Incomplete Recovery" on page 17-28.

2. Restore backup datafiles as described in "Restoring Datafiles Before Performing
Incomplete Recovery" on page 17-28. If you have a current control file, then do
not restore a backup control file.

3. Perform media recovery on the restored database backup as described in the
following procedure.

Performing Incomplete User-Managed Media Recovery

Performing User-Managed Database Flashback and Recovery 17-31

To perform cancel-based recovery:

1. Start SQL*Plus and connect to the database with administrator privileges, then
start a new instance and mount the database:

STARTUP MOUNT

2. Begin cancel-based recovery by issuing the following command:

RECOVER DATABASE UNTIL CANCEL

If you are using a backup control file with this incomplete recovery, then specify
the USING BACKUP CONTROLFILE option in the RECOVER command.

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

3. The database applies the necessary redo log files to reconstruct the restored
datafiles. The database supplies the name it expects to find from LOG_
ARCHIVE_DEST_1 and requests you to stop or proceed with applying the log
file. Note that if the control file is a backup, then you must supply the names of
the online logs if you want to apply the changes in these logs.

4. Continue applying redo log files until the last log has been applied to the
restored datafiles, then cancel recovery by executing the following command:

CANCEL

The database indicates whether recovery is successful. If you cancel before all
the datafiles have been recovered to a consistent SCN and then try to open the
database, you will get an ORA-1113 error if more recovery is necessary. As

Note: If you fail to specify the UNTIL clause on the RECOVER
command, then the database assumes a complete recovery and will
not open until all redo is applied.

Note: If you use a Real Application Clusters (RAC) configuration,
and you are performing incomplete recovery or using a backup
control file, then the database can only compute the name of the
first archived redo log file from the first thread. The first redo log
file from the other threads must be supplied by the user. After the
first log file in a given thread has been supplied, the database can
suggest the names of the subsequent log files in this thread.

Performing Incomplete User-Managed Media Recovery

17-32 Backup and Recovery Advanced User’s Guide

explained in "Determining Which Datafiles Require Recovery" on page 17-4,
you can query V$RECOVER_FILE to determine whether more recovery is
needed, or if a backup of a datafile was not restored prior to starting incomplete
recovery.

5. Open the database with the RESETLOGS option. You must always reset the logs
after incomplete recovery or recovery with a backup control file. For example:

ALTER DATABASE OPEN RESETLOGS;

Performing Time-Based or Change-Based Incomplete Recovery
This section describes how to perform the time-based media recovery procedure in
the following stages:

1. Prepare for recovery by backing up the database and correct any media failures
as described in "Preparing for Incomplete Recovery" on page 17-28.

2. Restore backup datafiles as described in "Restoring Datafiles Before Performing
Incomplete Recovery" on page 17-28. If you have a current control file, then do
not restore a backup control file.

3. Perform media recovery with the following procedure.

To perform change-based or time-based recovery:

1. Issue the RECOVER DATABASE UNTIL statement to begin recovery. If recovering
to an SCN, specify as a decimal number without quotation marks. For example,
to recover through SCN 10034 issue:

RECOVER DATABASE UNTIL CHANGE 10034;

If recovering to a time, the time is always specified using the following format,
delimited by single quotation marks: 'YYYY-MM-DD:HH24:MI:SS'. The
following statement recovers the database up to a specified time:

RECOVER DATABASE UNTIL TIME '2000-12-31:12:47:30'

2. Apply the necessary redo log files to recover the restored datafiles. The
database automatically terminates the recovery when it reaches the correct time,
and returns a message indicating whether recovery is successful.

See Also: "Opening the Database with the RESETLOGS Option"
on page 17-33

Opening the Database with the RESETLOGS Option

Performing User-Managed Database Flashback and Recovery 17-33

3. Open the database in RESETLOGS mode. You must always reset the online logs
after incomplete recovery or recovery with a backup control file. For example:

ALTER DATABASE OPEN RESETLOGS;

Opening the Database with the RESETLOGS Option
Whenever you perform incomplete recovery or recovery with a backup control file,
you must reset the online logs when you open the database. The new version of the
reset database is called a new incarnation.

This section contains the following topics:

■ About Opening with the RESETLOGS Option

■ Executing the ALTER DATABASE OPEN Statements

■ Checking the Alert Log After a RESETLOGS Operation

About Opening with the RESETLOGS Option
The RESETLOGS option is always required after incomplete media recovery or
recovery using a backup control file. Resetting the redo log does the following:

■ Archives the current online redo logs (if they are accessible) and then erases the
contents of the online redo logs and resets the log sequence number to 1. For
example, if the current online redo logs are sequence 1000 and 1001 when you
open RESETLOGS, then the database archives logs 1000 and 1001 and then
resets the online logs to sequence 1 and 2.

■ Creates the online redo log files if they do not currently exist.

■ Reinitializes the control file metadata about online redo logs and redo threads.

Note: Unless recovery is automated, the database supplies the
name from LOG_ARCHIVE_DEST_1 and asks you to stop or
proceed with after each log. If the control file is a backup, then after
the archived logs are applied you must supply the names of the
online logs.

See Also: "Opening the Database with the RESETLOGS Option"
on page 17-33

Opening the Database with the RESETLOGS Option

17-34 Backup and Recovery Advanced User’s Guide

■ Updates all current datafiles and online redo logs and all subsequent archived
redo logs with a new RESETLOGS SCN and time stamp.

Because the database will not apply an archived log to a datafile unless the
RESETLOGS SCN and time stamps match, the RESETLOGS prevents you from
corrupting datafiles with archived logs that are not from direct parent incarnations
of the current incarnation.

In prior releases, it was recommended that you back up the database immediately
after the RESETLOGS. Because you can now easily recover a pre-RESETLOGS
backup like any other backup, making a new database backup is optional. In order
to perform recovery through resetlogs you must have all archived logs generated
since the last backup and at least one control file (current, backup, or created).

Figure 17–1 shows the case of a database that can only be recovered to log sequence
2500 because an archived redo log is missing. When the online redo log is at
sequence 4000, the database crashes. You restore the sequence 1000 backup and
prepare for complete recovery. Unfortunately, one of your archived logs is
corrupted. The log before the missing log contains sequence 2500, so you recover to
this log sequence and open RESETLOGS. As part of the RESETLOGS, the database
archives the current online logs (sequence 4000 and 4001) and resets the log
sequence to 1.

You generate changes in the new incarnation of the database, eventually reaching
log sequence 4000. The changes between sequence 2500 and sequence 4000 for the
new incarnation of the database are different from the changes between sequence
2500 and sequence 4000 for the old incarnation. You cannot apply logs generated
after 2500 in the old incarnation to the new incarnation, but you can apply the logs
generated before 2500 in the old incarnation to the new incarnation. The invalid logs
are said to be orphaned in the new incarnation because they are unusable for
recovery.

Opening the Database with the RESETLOGS Option

Performing User-Managed Database Flashback and Recovery 17-35

Figure 17–1 Creating a New Database Incarnation

Executing the ALTER DATABASE OPEN Statements
To preserve the log sequence number when opening a database after media
recovery, execute either of the following statements:

ALTER DATABASE OPEN NORESETLOGS;
ALTER DATABASE OPEN;

To reset the log sequence number when opening a database after recovery and
thereby create a new incarnation of the database, execute the following statement:

ALTER DATABASE OPEN RESETLOGS;

2
3

log sequence
1000

log sequence
2000

log sequence
2500

log sequence
3000

log sequence
4000

Restore
database

Database crashes

Recover database
to 2500 and then
OPEN RESETLOGS

Generate redo for
new incarnation

lo
g

se
qu

en
ce

10
00

lo
g

se
qu

en
ce

20
00

lo
g

se
qu

en
ce

30
00

4

log
 se

qu
en

ce
40

00

1

Opening the Database with the RESETLOGS Option

17-36 Backup and Recovery Advanced User’s Guide

If you open with the RESETLOGS option, the database returns different messages
depending on whether recovery was complete or incomplete. If the recovery was
complete, then the following message appears in the alert_SID.log file:

RESETLOGS after complete recovery through change scn

If the recovery was incomplete, then this message is reported in the alert_
SID.log file, where scn refers to the end point of incomplete recovery:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

If you attempt to OPEN RESETLOGS when you should not, or if you neglect to reset
the log when you should, then the database returns an error and does not open the
database. Correct the problem and try again.

Checking the Alert Log After a RESETLOGS Operation
After opening the database with the RESETLOGS option, check the alert_
SID.log to see whether the database detected inconsistencies between the data
dictionary and the control file, for example, a datafile that the data dictionary
includes but which is not listed in the new control file. The following table describes
two possible scenarios.

See Also: "About User-Managed Media Recovery Problems" on
page 20-2 for descriptions of situations that can cause ALTER
DATABASE OPEN RESETLOGS to fail

Control File Data Dictionary Result

Datafile is listed Datafile is not
listed

References to the unlisted datafile are removed from
the control file. A message in the alert log indicates
what was found.

Datafile is not
listed

Datafile is listed The database creates a placeholder entry in the
control file under MISSINGnnnnn (where nnnnn is
the file number in decimal). MISSINGnnnnn is
flagged in the control file as offline and requiring
media recovery. You can make the datafile
corresponding to MISSINGnnnnn accessible by
using ALTER DATABASE RENAME FILE for
MISSINGnnnnn so that it points to the datafile. If
you do not have a backup of this datafile, then drop
the tablespace.

Recovering a Database in NOARCHIVELOG Mode

Performing User-Managed Database Flashback and Recovery 17-37

Recovering a Database in NOARCHIVELOG Mode
If a media failure damages datafiles in a NOARCHIVELOG database, then the only
option for recovery is usually to restore a consistent whole database backup. If you
are using logical backups created by an Oracle export utility to supplement regular
physical backups, then you can also attempt to restore the database by importing an
exported backup of the database into a re-created database or a database restored
from an old backup.

Restoring a NOARCHIVELOG Database to its Default Location
In this scenario, the media failure is repaired so that you are able to restore all
database files to their original location.

To restore the most recent whole database backup to the default location:

1. If the database is open, then shut down the database. For example, enter:

SHUTDOWN IMMEDIATE

2. If possible, correct the media problem so that the backup database files can be
restored to their original locations.

3. Restore the most recent whole database backup with operating system
commands as described in "Restoring Datafiles and Archived Redo Logs" on
page 17-5. Restore all of the datafiles and control files of the whole database
backup, not just the damaged files. The following example restores a whole
database backup to its default location:

% cp /backup/*.dbf $ORACLE_HOME/oradata/trgt/

4. Because online redo logs are not backed up, you cannot restore them with the
datafiles and control files. In order to allow the database to reset the online redo
logs, you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

5. Open the database in RESETLOGS mode:

ALTER DATABASE OPEN RESETLOGS;

Restoring a NOARCHIVELOG Database to a New Location
In this scenario, you restore the database files to an alternative location because the
original location is damaged by a media failure.

Recovering a Database in NOARCHIVELOG Mode

17-38 Backup and Recovery Advanced User’s Guide

To restore the most recent whole database backup to a new location:

1. If the database is open, then shut it down. For example, enter:

SHUTDOWN IMMEDIATE

2. Restore all of the datafiles and control files of the whole database backup, not
just the damaged files. If the hardware problem has not been corrected and
some or all of the database files must be restored to alternative locations, then
restore the whole database backup to a new location. For example, enter:

% cp /backup/*.dbf /new_disk/oradata/trgt/

3. If necessary, edit the restored parameter file to indicate the new location of the
control files. For example:

CONTROL_FILES = "/new_disk/oradata/trgt/control01.dbf"

4. Start an instance using the restored and edited parameter file and mount, but
do not open, the database. For example:

STARTUP MOUNT

5. If the restored datafile filenames will be different (as will be the case when you
restore to a different file system or directory, on the same node or a different
node), then update the control file to reflect the new datafile locations. For
example, to rename datafile 1 you might enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/system01.dbf' TO
 '/new_disk/oradata/system01.dbf';

6. If the online redo logs were located on a damaged disk, and the hardware
problem is not corrected, then specify a new location for each affected online
log. For example, enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/redo01.log' TO
 '/new_disk/oradata/redo_01.log';
ALTER DATABASE RENAME FILE '?/oradata/trgt/redo02.log' TO
 '/new_disk/oradata/redo_02.log';

7. Because online redo logs are not backed up, you cannot restore them with the
datafiles and control files. In order to allow the database to reset the online redo
logs, you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL;
CANCEL;

Performing Media Recovery in Parallel

Performing User-Managed Database Flashback and Recovery 17-39

8. Open the database in RESETLOGS mode. This command clears the online redo
logs and resets the log sequence to 1:

ALTER DATABASE OPEN RESETLOGS;

Note that restoring a NOARCHIVELOG database backup and then resetting the
log discards all changes to the database made from the time the backup was
taken to the time of the failure.

Performing Media Recovery in Parallel
Use parallel media recovery to tune the roll forward phase of media recovery. In
parallel media recovery, the database uses a "division of labor" approach to allocate
different processes to different data blocks while rolling forward, thereby making
the procedure more efficient. For example, if parallel recovery is performed with
PARALLEL 4, and only one datafile is recovered, then four spawned processes read
blocks from the datafile and apply records instead of only one process.

Typically, recovery is I/O-bound on reads to data blocks. Parallelism at the block
level may only help recovery performance if it increases total I/Os, for example, by
bypassing operating system restrictions on asynchronous I/Os. Systems with
efficient asynchronous I/O see little benefit from parallel media recovery.

The SQL*Plus RECOVER PARALLEL command specifies parallel media recovery (the
default is NOPARALLEL). This command selects a degree of parallelism equal to the
number of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

The format for the RECOVER PARALLEL command is the following:

RECOVER PARALLEL integer;

The integer variable sets the number of recovery processes used for media
recovery. If you use a Real Application Clusters configuration, then the database
decides how to distribute these recovery processes among the instances. If integer
is not specified, then the database picks a default number of recovery processes.

See Also: Oracle Database Administrator's Guide for more
information about renaming and relocating datafiles, and Oracle
Database SQL Reference to learn about ALTER DATABASE RENAME
FILE

Performing Media Recovery in Parallel

17-40 Backup and Recovery Advanced User’s Guide

Note: The RECOVERY_PARALLELISM initialization parameter
specifies the number of concurrent recovery processes for instance
or crash recovery only. Media recovery is not affected.

See Also:

■ Oracle Database Performance Tuning Guide for more information
on parallel recovery

■ SQL*Plus User's Guide and Reference for more information about
the SQL*Plus RECOVER ... PARALLEL statement

Advanced User-Managed Recovery Scenarios 18-1

18
Advanced User-Managed Recovery

Scenarios

This chapter describes how to recover from common media failures, and includes
the following topics:

■ Recovering After the Loss of Datafiles: Scenarios

■ Recovering Through an Added Datafile with a Backup Control File: Scenario

■ Re-Creating Datafiles When Backups Are Unavailable: Scenario

■ Recovering Through RESETLOGS with Created Control File: Scenario

■ Recovering NOLOGGING Tables and Indexes: Scenario

■ Recovering Read-Only Tablespaces with a Backup Control File: Scenario

■ Recovering Transportable Tablespaces: Scenario

■ Recovering After the Loss of Online Redo Log Files: Scenarios

■ Recovering After the Loss of Archived Redo Log Files: Scenario

■ Recovering from a Dropped Table: Scenario

■ Performing Media Recovery in a Distributed Environment: Scenario

■ Dropping a Database with SQL*Plus

Recovering After the Loss of Datafiles: Scenarios

18-2 Backup and Recovery Advanced User’s Guide

Recovering After the Loss of Datafiles: Scenarios
If a media failure affects datafiles, then the recovery procedure depends on:

■ The archiving mode of the database: ARCHIVELOG or NOARCHIVELOG

■ The type of media failure

■ The files affected by the media failure

Losing Datafiles in NOARCHIVELOG Mode
If either a permanent or temporary media failure affects any datafiles of a database
operating in NOARCHIVELOG mode, then the database automatically shuts down.

If the media failure is temporary, correct the underlying problem and restart the
database. Usually, crash recovery will recover all committed transactions from the
online redo log. If the media failure is permanent, then restore the database as
described in "Recovering a Database in NOARCHIVELOG Mode" on page 17-37.

Losing Datafiles in ARCHIVELOG Mode
If either a permanent or temporary media failure affects the datafiles of a database
operating in ARCHIVELOG mode, then the following scenarios can occur.

Damaged Datafiles Database Status Solution

Datafiles in the SYSTEM
tablespace or datafiles with
active undo segments.

Database shuts down. If the hardware problem is temporary, then fix it and
restart the database. Usually, crash recovery recovers
lost transactions. If the hardware problem is
permanent, then recover the database as described in
"Performing Closed Database Recovery" on
page 17-21.

Datafiles not in the SYSTEM
tablespace or datafiles that
do not contain active
rollback or undo segments.

Affected datafiles are
taken offline, but the
database stays open.

If the unaffected portions of the database must remain
available, then do not shut down the database. Take
tablespaces containing problem datafiles offline using
the temporary option, then recover them as described
in "Performing Datafile Recovery in an Open
Database" on page 17-24.

Recovering Through an Added Datafile with a Backup Control File: Scenario

Advanced User-Managed Recovery Scenarios 18-3

Recovering Through an Added Datafile with a Backup Control File:
Scenario

If database recovery with a backup control file rolls forward through a CREATE
TABLESPACE or an ALTER TABLESPACE ADD DATAFILE operation, then the
database stops recovery when applying the redo record for the added files and lets
you confirm the filenames.

For example, suppose the following sequence of events occurs:

1. You back up the database

2. You create a new tablespace containing two datafiles:
/oracle/oradata/trgt/test01.dbf and
/oracle/oradata/trgt/test02.dbf.

3. You later restore a backup control file and perform media recovery through the
CREATE TABLESPACE operation.

You may see the following error when applying the CREATE TABLESPACE redo
data:

ORA-00283: recovery session canceled due to errors
ORA-01244: unnamed datafile(s) added to controlfile by media recovery
ORA-01110: data file 11: '/oracle/oradata/trgt/test02.dbf'
ORA-01110: data file 10: '/oracle/oradata/trgt/test01.dbf'

To recover through an ADD DATAFILE operation:

1. View the files added by selecting from V$DATAFILE. For example:

SELECT FILE#,NAME
FROM V$DATAFILE;

FILE# NAME
--------------- ----------------------
1 /oracle/oradata/trgt/system01.dbf
.
.
.
10 /oracle/oradata/trgt/UNNAMED00001
11 /oracle/oradata/trgt/UNNAMED00002

2. If multiple unnamed files exist, then determine which unnamed file
corresponds to which datafile by using one of these methods:

Re-Creating Datafiles When Backups Are Unavailable: Scenario

18-4 Backup and Recovery Advanced User’s Guide

■ Open the alert_SID.log, which contains messages about the original file
location for each unnamed file.

■ Derive the original file location of each unnamed file from the error
message and V$DATAFILE: each unnamed file corresponds to the file in the
error message with the same file number.

3. Issue the ALTER DATABASE RENAME FILE statement to rename the datafiles.
For example, enter:

ALTER DATABASE RENAME FILE '/db/UNNAMED00001' TO
 '/oracle/oradata/trgt/test01.dbf';
ALTER DATABASE RENAME FILE '/db/UNNAMED00002' TO
 '/oracle/oradata/trgt/test02.dbf';

4. Continue recovery by issuing the previous recovery statement. For example:

RECOVER AUTOMATIC DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

Re-Creating Datafiles When Backups Are Unavailable: Scenario
If a datafile is damaged and no backup of the file is available, then you can still
recover the datafile if:

■ All archived log files written after the creation of the original datafile are
available

■ The control file contains the name of the damaged file (that is, the control file is
current, or is a backup taken after the damaged datafile was added to the
database)

To re-create a datafile for recovery:

1. Create a new, empty datafile to replace a damaged datafile that has no
corresponding backup. For example, assume that the datafile
?/oradata/trgt/users01.dbf has been damaged, and no backup is
available. The following statement re-creates the original datafile (same size) on
disk2:

ALTER DATABASE CREATE DATAFILE '?/oradata/trgt/users01.dbf' AS

Note: You cannot re-create any of the datafiles for the SYSTEM
tablespace by using the CREATE DATAFILE clause of the ALTER
DATABASE statement because the necessary redo is not available.

Recovering Through RESETLOGS with Created Control File: Scenario

Advanced User-Managed Recovery Scenarios 18-5

 '/disk2/users01.dbf';

This statement creates an empty file that is the same size as the lost file. The
database looks at information in the control file and the data dictionary to
obtain size information. The old datafile is renamed as the new datafile.

2. Perform media recovery on the empty datafile. For example, enter:

RECOVER DATAFILE '/disk2/users01.dbf'

3. All archived logs written after the original datafile was created must be applied
to the new, empty version of the lost datafile during recovery.

Recovering Through RESETLOGS with Created Control File: Scenario
You can recover backups through an OPEN RESETLOGS so long as:

■ You have a current, backup, or created control file that knows about the prior
incarnations

■ You have all available archived redo logs

If you need to re-create the control file, the trace file generated by ALTER DATABASE
BACKUP CONTROLFILE TO TRACE will contain the necessary commands to
re-construct the complete incarnation history. The V$DATABASE_INCARNATION
view displays the RESETLOGS history known to the control file, while the V$LOG_
HISTORY view displays the archived log history.

It is possible for the incarnation history to be incomplete in the in re-created control
file. For example, archived logs necessary for recovery may be missing. In this case,
it is possible to create incarnation records explicitly with the ALTER DATABASE
REGISTER LOGFILE statement.

In the following example, you register four logs that are necessary for recovery but
are not recorded in the re-created control file, and then recover the database:

ALTER DATABASE REGISTER LOGFILE ’?/oradata/trgt/arch/arcr_1_1_42343523.arc’;
ALTER DATABASE REGISTER LOGFILE ’?/oradata/trgt/arch/arcr_1_1_34546466.arc’;
ALTER DATABASE REGISTER LOGFILE ’?/oradata/trgt/arch/arcr_1_1_23435466.arc’;
ALTER DATABASE REGISTER LOGFILE ’?/oradata/trgt/arch/arcr_1_1_12343533.arc’;
RECOVER AUTOMATIC DATABASE;

Recovering NOLOGGING Tables and Indexes: Scenario

18-6 Backup and Recovery Advanced User’s Guide

Recovering NOLOGGING Tables and Indexes: Scenario
You can create tables and indexes with the CREATE TABLE AS SELECT statement.
You can also specify that the database create them with the NOLOGGING option.
When you create a table or index as NOLOGGING, the database does not generate
redo log records for the operation. Thus, you cannot recover objects created with
NOLOGGING, even if you are running in ARCHIVELOG mode.

Be aware that when you perform media recovery, and some tables or indexes are
created normally whereas others are created with the NOLOGGING option, the
NOLOGGING objects are marked logically corrupt by the RECOVER operation. Any
attempt to access the unrecoverable objects returns an ORA-01578 error message.
Drop the NOLOGGING objects and re-create them if needed.

Because it is possible to create a table with the NOLOGGING option and then create
an index with the LOGGING option on that table, the index is not marked as
logically corrupt after you perform media recovery. The table was unrecoverable
(and thus marked as corrupt after recovery), however, so the index points to corrupt
blocks. The index must be dropped, and the table and index must be re-created if
necessary.

Recovering Read-Only Tablespaces with a Backup Control File:
Scenario

If you have a read-only tablespace on read-only or slow media, then you may
encounter errors or poor performance when recovering with the USING BACKUP
CONTROLFILE option. This situation occurs when the backup control file indicates
that a tablespace was read/write when the control file was backed up. In this case,
media recovery may attempt to write to the files. For read-only media, the database
issues an error saying that it cannot write to the files. For slow media, such as a
hierarchical storage system backed up by tapes, performance may suffer.

Note: If you cannot afford to lose tables or indexes created with
NOLOGGING, then make a backup after the unrecoverable table or
index is created.

See Also: Oracle Data Guard Concepts and Administration for
information about the impact of NOLOGGING on a b database

Recovering Read-Only Tablespaces with a Backup Control File: Scenario

Advanced User-Managed Recovery Scenarios 18-7

To avoid these recovery problems, use current control files rather than backups to
recover the database. If you need to use a backup control file, then you can also
avoid this problem if the read-only tablespace has not suffered a media failure.

Recovery of Read-Only or Slow Media with a Backup Control File
You have these alternatives for recovering read-only and slow media when using a
backup control file:

■ Take datafiles from read-only tablespaces offline before doing recovery with a
backup control file, and then bring the files online at the end of media recovery.

■ Use the correct version of the control file for the recovery. If the tablespace will
be read-only when recovery completes, then the control file backup must be
from a time when the tablespace was read-only. Similarly, if the tablespace will
be read/write at the end of recovery, then the control file must be from a time
when the tablespace was read/write.

Recovery of Read-Only Files with a Re-Created Control File
If a current or backup control file is unavailable for recovery, then you can execute a
CREATE CONTROLFILE statement as described in "Losing All Current and Backup
Control Files" on page 17-12. Read-only files should not be listed in the CREATE
CONTROLFILE statement so that recovery can skip these files. No recovery is
required for read-only datafiles unless you restored backups of these files from a
time when the datafiles were read/write.

After you create a new control file and attempt to mount and open the database, the
database performs a data dictionary check against the files listed in the control file.
Files that were not listed in the CREATE CONTROLFILE statement but are present in
the data dictionary have entries created for them in the control file. These files are
named as MISSINGnnnnn, where nnnnn is a five digit number starting with 0.

After the database is open, rename the read-only files to their correct filenames by
executing the ALTER DATABASE RENAME FILE statement for all the files whose
name is prefixed with MISSING.

To prepare for a scenario in which you might have to re-create the control file, run
the following statement when the database is mounted or open to obtain the
CREATE CONTROLFILE syntax:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

Recovering Transportable Tablespaces: Scenario

18-8 Backup and Recovery Advanced User’s Guide

This SQL statement produces a trace file that you can edit and use as a script to
re-create the control file. You can specify either the RESETLOGS or NORESETLOGS
(default) keywords to generate CREATE CONTROLFILE ... RESETLOGS or CREATE
CONTROLFILE ... NORESETLOGS versions of the script.

All the restrictions related to read-only files in CREATE CONTROLFILE statements
also apply to offline normal tablespaces, except that you need to bring the
tablespace online after the database is open. You should leave out tempfiles from
the CREATE CONTROLFILE statement and add them after database open.

Recovering Transportable Tablespaces: Scenario
The transportable tablespace feature of Oracle allows a user to transport a set of
tablespaces from one database to another. Transporting a tablespace into a database
is like creating a tablespace with preloaded data. Using this feature is often an
advantage because:

■ It is faster than using the Export or SQL*Loader utilities because it involves
only copying datafiles and integrating metadata

■ You can use it to move index data, hence avoiding the necessity of rebuilding
indexes

Like normal tablespaces, transportable tablespaces are recoverable. While you can
recover normal tablespaces without a backup, you must have a version of the
transported datafiles in order to recover a transported tablespace.

To recover a transportable tablespace:

1. If the database is open, then take the transported tablespace offline. For
example, if you want to recover the users tablespace, then issue:

ALTER TABLESPACE users OFFLINE IMMEDIATE;

2. Restore a backup of the transported datafiles with an operating system utility.
The backup can be the initial version of the transported datafiles or any backup
taken after the tablespace is transported. For example, enter:

% cp /backup/users.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

3. Recover the tablespace as normal. For example, enter:

RECOVER TABLESPACE users

See Also: Oracle Database Backup and Recovery Basics to learn how
to make trace backups of the control file

Recovering After the Loss of Online Redo Log Files: Scenarios

Advanced User-Managed Recovery Scenarios 18-9

You may see the error ORA-01244 when recovering through a transportable
tablespace operation just as when recovering through a CREATE TABLESPACE
operation. In this case, rename the unnamed files to the correct locations using the
procedure in "Recovering Through an Added Datafile with a Backup Control File:
Scenario" on page 18-3.

Recovering After the Loss of Online Redo Log Files: Scenarios
If a media failure has affected the online redo logs of a database, then the
appropriate recovery procedure depends on the following:

■ The configuration of the online redo log: mirrored or non-mirrored

■ The type of media failure: temporary or permanent

■ The types of online redo log files affected by the media failure: current, active,
unarchived, or inactive

Table 18–1 displays V$LOG status information that can be crucial in a recovery
situation involving online redo logs.

See Also: Oracle Database Administrator's Guide for detailed
information about using the transportable tablespace feature

Table 18–1 STATUS Column of V$LOG

Status Description

UNUSED The online redo log has never been written to.

CURRENT The online redo log is active, that is, needed for instance recovery,
and it is the log to which the database is currently writing. The redo
log can be open or closed.

ACTIVE The online redo log is active, that is, needed for instance recovery,
but is not the log to which the database is currently writing.It may
be in use for block recovery, and may or may not be archived.

CLEARING The log is being re-created as an empty log after an ALTER
DATABASE CLEAR LOGFILE statement. After the log is cleared, then
the status changes to UNUSED.

CLEARING_CURRENT The current log is being cleared of a closed thread. The log can stay
in this status if there is some failure in the switch such as an I/O
error writing the new log header.

INACTIVE The log is no longer needed for instance recovery. It may be in use
for media recovery, and may or may not be archived.

Recovering After the Loss of Online Redo Log Files: Scenarios

18-10 Backup and Recovery Advanced User’s Guide

Recovering After Losing a Member of a Multiplexed Online Redo Log Group
If the online redo log of a database is multiplexed, and if at least one member of
each online redo log group is not affected by the media failure, then the database
continues functioning as normal, but error messages are written to the log writer
trace file and the alert_SID.log of the database.

Solve the problem by taking one of the following actions:

■ If the hardware problem is temporary, then correct it. The log writer process
accesses the previously unavailable online redo log files as if the problem never
existed.

■ If the hardware problem is permanent, then drop the damaged member and
add a new member by using the following procedure.

To replace a damaged member of a redo log group:

1. Locate the filename of the damaged member in V$LOGFILE. The status is
INVALID if the file is inaccessible:

SELECT GROUP#, STATUS, MEMBER
FROM V$LOGFILE
WHERE STATUS=’INVALID’;

GROUP# STATUS MEMBER
------- ----------- ---------------------
0002 INVALID /oracle/oradata/trgt/redo02.log

2. Drop the damaged member. For example, to drop member redo01.log from
group 2, issue:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/oradata/trgt/redo02.log';

3. Add a new member to the group. For example, to add redo02.log to group 2,
issue:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/oradata/trgt/redo02b.log'
 TO GROUP 2;

If the file you want to add already exists, then it must be the same size as the
other group members, and you must specify REUSE. For example:

Note: The newly added member provides no redundancy until
the log group is reused.

Recovering After the Loss of Online Redo Log Files: Scenarios

Advanced User-Managed Recovery Scenarios 18-11

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/oradata/trgt/redo02b.log'
 REUSE TO GROUP 2;

Recovering After the Loss of All Members of an Online Redo Log Group
If a media failure damages all members of an online redo log group, then different
scenarios can occur depending on the type of online redo log group affected by the
failure and the archiving mode of the database.

If the damaged log group is inactive, then it is not needed for crash recovery; if it is
active, then it is needed for crash recovery.

Your first task is to determine whether the damaged group is active or inactive.

To determine whether the damaged groups are active:

1. Locate the filename of the lost redo log in V$LOGFILE and then look for the
group number corresponding to it. For example, enter:

SELECT GROUP#, STATUS, MEMBER FROM V$LOGFILE;

GROUP# STATUS MEMBER
------- ----------- ---------------------
0001 /oracle/dbs/log1a.f
0001 /oracle/dbs/log1b.f
0002 INVALID /oracle/dbs/log2a.f
0002 INVALID /oracle/dbs/log2b.f
0003 /oracle/dbs/log3a.f
0003 /oracle/dbs/log3b.f

2. Determine which groups are active. For example, enter:

If the group is . . . Then . . . And you should . . .

Inactive It is not needed for
crash recovery

Clear the archived or unarchived group.

Active It is needed for
crash recovery

Attempt to issue a checkpoint and clear the
log; if impossible, then you must restore a
backup and perform incomplete recovery
up to the most recent available redo log.

Current It is the log that the
database is
currently writing to

Attempt to clear the log; if impossible, then
you must restore a backup and perform
incomplete recovery up to the most recent
available redo log.

Recovering After the Loss of Online Redo Log Files: Scenarios

18-12 Backup and Recovery Advanced User’s Guide

SELECT GROUP#, MEMBERS, STATUS, ARCHIVED
FROM V$LOG;

GROUP# MEMBERS STATUS ARCHIVED
------ ------- --------- -----------
 0001 2 INACTIVE YES
 0002 2 ACTIVE NO
 0003 2 CURRENT NO

3. If the affected group is inactive, follow the procedure in "Losing an Inactive
Online Redo Log Group" on page 18-12. If the affected group is active (as in the
preceding example), then follow the procedure in "Losing an Active Online
Redo Log Group" on page 18-14.

Losing an Inactive Online Redo Log Group
If all members of an online redo log group with INACTIVE status are damaged,
then the procedure depends on whether you can fix the media problem that
damaged the inactive redo log group.

Clearing Inactive, Archived Redo You can clear an inactive redo log group when the
database is open or closed. The procedure depends on whether the damaged group
has been archived.

To clear an inactive, online redo log group that has been archived:

1. If the database is shut down, then start a new instance and mount the database:

STARTUP MOUNT

2. Reinitialize the damaged log group. For example, to clear redo log group 2,
issue the following statement:

ALTER DATABASE CLEAR LOGFILE GROUP 2;

If the failure is . . . Then . . .

Temporary Fix the problem. LGWR can reuse the redo log group when
required.

Permanent The damaged inactive online redo log group eventually halts
normal database operation. Reinitialize the damaged group
manually by issuing the ALTER DATABASE CLEAR LOGFILE
statement as described in this section.

Recovering After the Loss of Online Redo Log Files: Scenarios

Advanced User-Managed Recovery Scenarios 18-13

Clearing Inactive, Not-Yet-Archived Redo Clearing a not-yet-archived redo log allows it
to be reused without archiving it. This action makes backups unusable if they were
started before the last change in the log, unless the file was taken offline prior to the
first change in the log. Hence, if you need the cleared log file for recovery of a
backup, then you cannot recover that backup. Also, it prevents complete recovery
from backups due to the missing log.

To clear an inactive, online redo log group that has not been archived:

1. If the database is shut down, then start a new instance and mount the database:

STARTUP MOUNT

2. Clear the log using the UNARCHIVED keyword. For example, to clear log group
2, issue:

ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2;

If there is an offline datafile that requires the cleared log to bring it online, then
the keywords UNRECOVERABLE DATAFILE are required. The datafile and its
entire tablespace have to be dropped because the redo necessary to bring it
online is being cleared, and there is no copy of it. For example, enter:

ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2 UNRECOVERABLE DATAFILE;

3. Immediately back up the whole database with an operating system utility, so
that you have a backup you can use for complete recovery without relying on
the cleared log group. For example, enter:

% cp /disk1/oracle/dbs/*.f /disk2/backup

4. Back up the database's control file with the ALTER DATABASE statement. For
example, enter:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/dbs/cf_backup.f';

Failure of CLEAR LOGFILE Operation The ALTER DATABASE CLEAR LOGFILE
statement can fail with an I/O error due to media failure when it is not possible to:

■ Relocate the redo log file onto alternative media by re-creating it under the
currently configured redo log filename

■ Reuse the currently configured log filename to re-create the redo log file
because the name itself is invalid or unusable (for example, due to media
failure)

Recovering After the Loss of Online Redo Log Files: Scenarios

18-14 Backup and Recovery Advanced User’s Guide

In these cases, the ALTER DATABASE CLEAR LOGFILE statement (before receiving
the I/O error) would have successfully informed the control file that the log was
being cleared and did not require archiving. The I/O error occurred at the step in
which the CLEAR LOGFILE statement attempts to create the new redo log file and
write zeros to it. This fact is reflected in V$LOG.CLEARING_CURRENT.

Losing an Active Online Redo Log Group
If the database is still running and the lost active redo log is not the current log, then
issue the ALTER SYSTEM CHECKPOINT statement. If successful, then the active redo
log is rendered inactive, and you can follow the procedure in "Losing an Inactive
Online Redo Log Group" on page 18-12. If unsuccessful, or if your database has
halted, then perform one of procedures in this section, depending on the archiving
mode.

The current log is the one LGWR is currently writing to. If a LGWR I/O fails, then
LGWR terminates and the instance crashes. In this case, you must restore a backup,
perform incomplete recovery, and open the database with the RESETLOGS option.

To recover from loss of an active online log group in NOARCHIVELOG mode:

1. If the media failure is temporary, then correct the problem so that the database
can reuse the group when required.

2. Restore the database from a consistent, whole database backup (datafiles and
control files) as described in "Restoring Datafiles Before Performing Incomplete
Recovery" on page 17-28. For example, enter:

% cp /disk2/backup/*.dbf $ORACLE_HOME/oradata/trgt/

3. Mount the database:

STARTUP MOUNT

4. Because online redo logs are not backed up, you cannot restore them with the
datafiles and control files. In order to allow the database to reset the online redo
logs, you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

5. Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

6. Shut down the database consistently. For example, enter:

Recovering After the Loss of Archived Redo Log Files: Scenario

Advanced User-Managed Recovery Scenarios 18-15

SHUTDOWN IMMEDIATE

7. Make a whole database backup.

To recover from loss of an active online redo log group in ARCHIVELOG mode:

If the media failure is temporary, then correct the problem so that the database can
reuse the group when required. If the media failure is not temporary, then use the
following procedure.

1. Begin incomplete media recovery, recovering up through the log before the
damaged log.

2. Ensure that the current name of the lost redo log can be used for a newly
created file. If not, then rename the members of the damaged online redo log
group to a new location. For example, enter:

ALTER DATABASE RENAME FILE "?/oradata/trgt/redo01.log" TO "/tmp/redo01.log";
ALTER DATABASE RENAME FILE "?/oradata/trgt/redo01.log" TO "/tmp/redo02.log";

3. Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

Loss of Multiple Redo Log Groups
If you have lost multiple groups of the online redo log, then use the recovery
method for the most difficult log to recover. The order of difficulty, from most
difficult to least difficult, follows:

1. The current online redo log

2. An active online redo log

3. An unarchived online redo log

4. An inactive online redo log

Recovering After the Loss of Archived Redo Log Files: Scenario
If the database is operating in ARCHIVELOG mode, and if the only copy of an
archived redo log file is damaged, then the damaged file does not affect the present

Note: All updates executed from the endpoint of the incomplete
recovery to the present must be re-executed.

Recovering from a Dropped Table: Scenario

18-16 Backup and Recovery Advanced User’s Guide

operation of the database. The following situations can arise, however, depending
on when the redo log was written and when you backed up the datafile.

Recovering from a Dropped Table: Scenario
One not-uncommon error is the accidental dropping of a table from your database.
In general, the fastest and simplest solution is to use the flashback drop feature,
described in "Oracle Flashback Drop: Undo a DROP TABLE Operation" on page 9-6,
to reverse the dropping of the table. However, if for some reason, such as flashback
drop being disabled or the table having been dropped with the PURGE option, you
cannot use flashback table, you can create a copy of the database, perform
point-in-time recovery of that copy to a time before the table was dropped, export
the dropped table using an Oracle export utility, and re-import it into your primary
database using an Oralce import utility.

In this scenario, assume that you do not have the flashback database functionality
enabled, so FLASHBACK DATABASE is not an option, but you do have physical
backups of the database.

If you backed up . . . Then . . .

All datafiles after the filled online redo
log group (which is now archived) was
written

The archived version of the filled online redo log
group is not required for complete media
recovery operation.

A specific datafile before the filled
online redo log group was written

If the corresponding datafile is damaged by a
permanent media failure, use the most recent
backup of the damaged datafile and perform
incomplete recovery of the tablespace containing
the damaged datafile, up to the damaged log.

Caution: If you know that an archived redo log group has been
damaged, immediately back up all datafiles so that you will have a
whole database backup that does not require the damaged archived
redo log.

Note: If you have granted powerful privileges (such as DROP ANY
TABLE) to only selected, appropriate users, you can minimize user
errors that require database recovery.

Performing Media Recovery in a Distributed Environment: Scenario

Advanced User-Managed Recovery Scenarios 18-17

To recover a table that has been accidentally dropped:

1. If possible, keep the database that experienced the user error online and
available for use. Back up all datafiles of the existing database in case an error is
made during the remaining steps of this procedure.

2. Restore a database backup to an alternative location, then perform incomplete
recovery of this backup using a restored backup control file, to the point just
before the table was dropped.

3. Export the lost data from the temporary, restored version of the database using
an Oracle export utility. In this case, export the accidentally dropped table.

4. Use an Oracle import utility to import the data back into the production
database.

5. Delete the files of the temporary copy of the database to conserve space.
D

Performing Media Recovery in a Distributed Environment: Scenario
How you perform media recovery depends on whether your database participates
in a distributed database system. The Oracle distributed database architecture is
autonomous. Therefore, depending on the type of recovery operation selected for a
single damaged database, you may have to coordinate recovery operations globally
among all databases in the distributed system.

Table 18–2 summarizes different types of recovery operations and whether
coordination among nodes of a distributed database system is required.

Note: System audit options are exported.

See Also: Oracle Database Utilities for more information about the
Oracle export and import utilities

Performing Media Recovery in a Distributed Environment: Scenario

18-18 Backup and Recovery Advanced User’s Guide

Coordinating Time-Based and Change-Based Distributed Database Recovery
If one node in a distributed database requires recovery to a past time, it is often
necessary to recover all other nodes in the system to the same point in time to
preserve global data consistency. This operation is called coordinated, time-based,
distributed database recovery. The following tasks should be performed with the
standard procedures of time-based and change-based recovery described in this
chapter.

1. Recover the database that requires the recovery operation using time-based
recovery. For example, if a database needs to be recovered because of a media
failure, then recover this database first using time-based recovery. Do not
recover the other databases at this point.

2. After you have recovered the database and opened it with the RESETLOGS
option, search the alert_SID.log of the database for the RESETLOGS
message.

If the message is, "RESETLOGS after complete recovery through
change xxx", then you have applied all the changes in the database and
performed complete recovery. Do not recover any of the other databases in the
distributed system, or you will unnecessarily remove changes in them.
Recovery is complete.

If the message is, "RESETLOGS after incomplete recovery UNTIL
CHANGE xxx", then you have successfully performed an incomplete recovery.
Record the change number from the message and proceed to the next step.

Table 18–2 Recovery Operations in a Distributed Database Environment

If you are . . . Then . . .

Restoring a whole backup for a database that was
never accessed from a remote node

Use non-coordinated, autonomous database recovery.

Restoring a whole backup for a database that was
accessed by a remote node for a database in
NOARCHIVELOG mode

Shut down all databases and restore them using the
same coordinated full backup.

Performing complete media recovery of one or
more databases in a distributed database

Use non-coordinated, autonomous database recovery.

Performing incomplete media recovery of a
database that was never accessed by a remote node

Use non-coordinated, autonomous database recovery.

Performing incomplete media recovery of a
database that was accessed by a remote node

Use coordinated, incomplete recovery to the same global
point in time for all databases in the distributed system.

Dropping a Database with SQL*Plus

Advanced User-Managed Recovery Scenarios 18-19

3. Recover all other databases in the distributed database system using
change-based recovery, specifying the change number (SCN) from Step 2.

Dropping a Database with SQL*Plus
You may need to remove a database, that is, the database files that form the
database, from the operating system. For example, this scenario can occur when you
create a test database and then no longer have a use for it. The SQL*Plus command
DROP DATABASE can perform this function.

To drop the database:

1. Start SQL*Plus and connect to the target database with administrator privileges,
then ensure that the database is either mounted or open with no users
connected. For example:

SQL> STARTUP FORCE MOUNT

2. Remove the datafiles and control files listed in the control file from the
operating system. For example:

SQL> DROP DATABASE; # deletes all database files, both ASM and non-ASM

If the database is on raw disk, the command does not delete the actual raw disk
special files.

3. Use an operating system utility to delete all backups and archived logs
associated with the database because these are not automatically deleted by the
SQL*Plus command. For example:

% rm /backup/* ?/oradata/trgt/arch/*

See Also: Oracle Database Backup and Recovery Basics to learn how
to use the equivalent RMAN command DROP DATABASE

Dropping a Database with SQL*Plus

18-20 Backup and Recovery Advanced User’s Guide

Performing User-Managed TSPITR 19-1

19
Performing User-Managed TSPITR

This chapter describes how to perform user-managed tablespace point-in-time
recovery (TSPITR) with the transportable tablespace feature.

This chapter includes the following topics:

■ Introduction to User-Managed Tablespace Point-in-Time Recovery

■ Preparing for Tablespace Point-in-Time Recovery: Basic Steps

■ Restoring and Recovering the Auxiliary Database: Basic Steps

■ Performing TSPITR with Transportable Tablespaces

■ Performing Partial TSPITR of Partitioned Tables

■ Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped

■ Performing TSPITR of Partitioned Tables When a Partition Has Split

See Also: Chapter 10, "RMAN Tablespace Point-in-Time Recovery
(TSPITR)"

Introduction to User-Managed Tablespace Point-in-Time Recovery

19-2 Backup and Recovery Advanced User’s Guide

Introduction to User-Managed Tablespace Point-in-Time Recovery
Tablespace point-in-time recovery (TSPITR) with the transportable tablespace
feature enables you to quickly recover one or more tablespaces (other than the
SYSTEM tablespace) to a time that is prior to the rest of the database.

User-managed TSPITR is most useful for recovering the following:

■ An erroneous DROP TABLESPACE operation

■ An incorrect batch job or other DML statement that has affected only a subset of
the database

■ A logical schema to a point different from the rest of the physical database
when multiple schemas exist in separate tablespaces of one physical database

■ A tablespace in a VLDB (very large database) when TSPITR is more efficient
than restoring the whole database from a backup and rolling it forward

Refer to "Preparing for Tablespace Point-in-Time Recovery: Basic Steps" on
page 19-4 before deciding to perform TSPITR.

TSPITR Terminology
Familiarize yourself with the following terms and abbreviations, which are used
throughout this chapter:

TSPITR
Tablespace point-in-time recovery

Primary Database
The database containing the tablespace or tablespaces that you want to recover to a
prior point in time.

Auxiliary Database
A copy of the current database that is restored from a backup. It includes restored
backups on the auxiliary host of the following files:

■ Datafiles belonging to the SYSTEM tablespace

■ Datafiles in the set of tablespaces to be recovered

■ Datafiles belonging to an undo tablespace or tablespace that contains rollback
segments

All backups must be from a point in time prior to the desired recovery time.

Introduction to User-Managed Tablespace Point-in-Time Recovery

Performing User-Managed TSPITR 19-3

Recovery Set
All the tablespaces on the primary database that require point-in-time recovery to
be performed on them.

Recovery Set Self-Containment Check
All objects that are part of the recovery set must be self-contained: there can be no
dependencies on objects outside the recovery set. For example, if a table is part of
the recovery set and its indexes are in a separate tablespace, then the recovery set
must include the tablespace containing the index. Alternatively, the index can be
dropped. You can check the recovery set tablespaces for self-containment with the
procedure DBMS_TTS.TRANSPORT_SET_CHECK.

Auxiliary Set
Any other files required for restoring the auxiliary database, including:

■ Backup control file

■ Datafiles from the SYSTEM tablespace

■ Datafiles in an undo tablespace or datafiles containing rollback segments

Transportable Tablespace
A rapid method of transporting tablespaces across databases by unplugging them
from a source database and plugging them into a target database. The databases can
even be on different platforms, for example, Solaris and Windows 2000. The
unplugging and plugging is done with the Export and Import utilities. Note that
there is no actual export and import of the table data, but simply an export and
import of internal metadata. During the procedure, the datafiles of the transported
tablespaces are made part of the target database.

TSPITR Methods
In releases prior to Oracle9i, you had the following two methods for performing
user-managed TSPITR:

■ Traditional user-managed TSPITR, which required you to create a special type
of database called a clone database

■ User-managed TSPITR with the transportable tablespace feature

As of Oracle Database Release 10g, TSPITR should be performed by using the
transportable tablespace feature. This procedure is relatively easy to use and is less
error prone than the traditional method, which is currently deprecated (although
not yet unsupported).

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

19-4 Backup and Recovery Advanced User’s Guide

TSPITR is performed by dropping the tablespaces to be recovered from the primary
database, restoring a copy of the database called an auxiliary database and
recovering it to the desired point in time, then transporting the relevant tablespaces
from the auxiliary database to the current version of the primary database.

For ease of use, it is highly recommended that you place the auxiliary and primary
databases on different hosts. Nevertheless, you can also perform TSPITR when the
databases are located on the same host.

The basic procedure for performing user-managed TSPITR is as follows:

1. Take the tablespaces requiring TSPITR offline.

2. Plan the setup of the auxiliary database.

3. Create the auxiliary database and recover it to the desired point in time.

4. Drop the tablespaces requiring TSPITR from the primary database.

5. Use the transportable tablespace feature to transport the set of tablespaces from
the auxiliary database to the primary database.

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
TSPITR requires careful planning. Before proceeding you should read this chapter
thoroughly.

This section contains the following topics:

■ Step 1: Review TSPITR Requirements

■ Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces

■ Step 3: Determine Whether Objects Will Be Lost

■ Step 4: Choose a Method for Connecting to the Auxiliary Instance

■ Step 5: Create an Oracle Password File for the Auxiliary Instance

■ Step 6: Create the Initialization Parameter File for the Auxiliary Instance

See Also: Oracle Database Administrator's Guide for a complete
account of how to use the transportable tablespace feature

Caution: You should not perform TSPITR for the first time on a
production system, or when there is a time constraint.

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

Performing User-Managed TSPITR 19-5

Step 1: Review TSPITR Requirements
Satisfy the following requirements before performing TSPITR:

■ Ensure that you have backups of all datafiles in the recovery and auxiliary set
tablespaces. The datafile backups must have been created before the desired
TSPITR time.

■ Ensure that you have a control file backup that is usable on the auxiliary
database. To be usable, the control file must meet these requirements:

– The control file must have been backed up before the desired TSPITR time.

– The control file must have been backed up with the following SQL
statement, where cf_name refers to the fully specified filename:

ALTER DATABASE BACKUP CONTROLFILE TO 'cf_name';

■ Ensure that all files constituting the recovery set tablespaces are in the recovery
set on the auxiliary database; otherwise, the export phase during tablespace
transport fails.

■ Allocate enough disk space on the auxiliary host to accommodate the auxiliary
database.

■ Provide enough real memory to start the auxiliary instance.

■ If the tablespace to be recovered has been renamed, ensure that the target SCN
for TSPITR is after the time when the file was renamed. You cannot TSPITR a
renamed tablespace to a point in time earlier than the rename. However, you
can perform a DBPITR to an SCN before the rename. In this case, the tablespace
reverts to its name as of the target SCN.

Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces
Before you create the auxiliary database, make sure that you connect to the primary
database with administrator privileges and obtain all of the following information
about the primary database:

■ The filenames of the datafiles in the recovery set tablespaces

■ The filenames of the datafiles in the SYSTEM tablespace

■ The filenames of the datafiles in an undo tablespace or datafiles containing
rollback segments

See Also: "Step 6: Create the Initialization Parameter File for the
Auxiliary Instance" on page 19-7

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

19-6 Backup and Recovery Advanced User’s Guide

■ The filenames of the control files

The following useful query displays the filenames of all datafiles and control files in
the database:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE;

To determine the filenames of the datafiles in the SYSTEM and recovery set
tablespaces, execute the following query and replace RECO_TBS_1, RECO_TBS_2,
and so forth with the names of the recovery set tablespaces:

SELECT t.NAME AS "reco_tbs", d.NAME AS "dbf_name"
 FROM V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND t.NAME IN ('SYSTEM', ’RECO_TBS_1’, ’RECO_TBS_2’);

If you run the database in manual undo management mode (which is deprecated),
then the following query displays the names of the tablespaces containing rollback
segments as well as the names of the datafiles in the tablespaces:

SELECT DISTINCT r.TABLESPACE_NAME AS "rbs_tbs", d.FILE_NAME AS "dbf_name"
 FROM DBA_ROLLBACK_SEGS r, DBA_DATA_FILES d
WHERE r.TABLESPACE_NAME=d.TABLESPACE_NAME;

If you run the database in automatic undo management mode, then the following
query displays the names of the undo tablespaces as well as the names of the
datafiles in the tablespaces:

SELECT DISTINCT u.TABLESPACE_NAME AS "undo_tbs", d.FILE_NAME AS "dbf_name"
 FROM DBA_UNDO_EXTENTS u, DBA_DATA_FILES d
WHERE u.TABLESPACE_NAME=d.TABLESPACE_NAME;

Step 3: Determine Whether Objects Will Be Lost
When TSPITR is performed on a tablespace, any objects created after the recovery
time are lost. To determine which objects will be lost, query the TS_PITR_
OBJECTS_TO_BE_DROPPED view on the primary database. The contents of the
view are described in Table 19–1.

Table 19–1 TS_PITR_OBJECTS_TO_BE_DROPPED View

Column Name Meaning

OWNER Owner of the object to be dropped.

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

Performing User-Managed TSPITR 19-7

When querying this view, supply all the elements of the date field, otherwise the
default setting is used. Also, use the TO_CHAR and TO_DATE functions. For
example, with a recovery set consisting of users and tools, and a recovery point
in time of 19 October 2002, 15:34:11, execute the following SQL script:

SELECT OWNER, NAME, TABLESPACE_NAME,
 TO_CHAR(CREATION_TIME, 'YYYY-MM-DD:HH24:MI:SS')
 FROM SYS.TS_PITR_OBJECTS_TO_BE_DROPPED
WHERE TABLESPACE_NAME IN ('users','tools')
AND CREATION_TIME > TO_DATE('02-OCT-19:15:34:11','YY-MON-DD:HH24:MI:SS')
ORDER BY TABLESPACE_NAME, CREATION_TIME;

Step 4: Choose a Method for Connecting to the Auxiliary Instance
You must be able to connect to the auxiliary instance. You can either use Oracle Net
or operating system authentication. To learn how to configure networking files,
refer to Oracle Net Services Administrator's Guide.

Step 5: Create an Oracle Password File for the Auxiliary Instance
For information about creating and maintaining Oracle password files, refer to the
Oracle Database Administrator's Guide. If you do not use a password file, then you
can skip this step.

Step 6: Create the Initialization Parameter File for the Auxiliary Instance
Create a new initialization parameter file rather than copying and then editing the
production database initialization parameter file. Save memory by using low
settings for parameters such as the following:

■ DB_CACHE_SIZE

NAME The name of the object that will be lost as a result of TSPITR

CREATION_TIME Creation time stamp for the object.

TABLESPACE_NAME Name of the tablespace containing the object.

See Also: Oracle Database Reference for more information about the
TS_PITR_OBJECTS_TO_BE_DROPPED view

Table 19–1 TS_PITR_OBJECTS_TO_BE_DROPPED View (Cont.)

Column Name Meaning

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

19-8 Backup and Recovery Advanced User’s Guide

■ SHARED_POOL_SIZE

■ LARGE_POOL_SIZE

Reducing the preceding parameter settings can prevent the auxiliary database from
starting when other dependent parameters are set too high—for example, the
initialization parameter ENQUEUE_RESOURCES, which allocates memory from
within the shared pool.

The auxiliary database can be either on the same host as the primary database or on
a different host. Because the auxiliary database filenames are identical to the
primary database filenames in the auxiliary control file, you must update the
auxiliary control file to point to the locations to which the files were restored for the
auxiliary database. If the auxiliary database is on the same machine as the primary
database, or if the auxiliary database is on a different machine that uses different
path names, then you must rename the control files, datafiles, and online redo logs.
If the auxiliary database is on a different machine with the same path names, then
you can rename just the online redo logs. To view the names of the online redo log
files of the primary database so that you can be sure to use unique names when
creating the auxiliary, use this query on the primary database:

SELECT NAME FROM V$LOGFILE;

Set the parameters shown in Table 19–2 in the auxiliary initialization parameter file.

Caution: If the auxiliary and primary database are on the same
machine, then failing to rename the online redo log files may cause
primary database corruption.

Table 19–2 Auxiliary Initialization Parameters

Parameter Purpose

DB_NAME Names the auxiliary database. Leave the name of the
auxiliary database the same as the primary database.

CONTROL_FILES Identifies auxiliary control files. Set to the filename of the
auxiliary control file. If the auxiliary database is on the
same host as the primary database, make sure that the
control file name is different from the primary database
control file name.

DB_UNIQUE_NAME Allows the auxiliary database to start even though it has
the same name as the primary database. Set to any unique
value, for example, = AUX. This parameter is only needed if
the auxiliary and primary database are on the same host.

Preparing for Tablespace Point-in-Time Recovery: Basic Steps

Performing User-Managed TSPITR 19-9

Set other parameters as needed, including the parameters that allow you to connect
as SYSDBA through Oracle Net.

For example, the auxiliary parameter file for a database on the same host as the
primary could look like the following:

DB_NAME = prod1
CONTROL_FILES = /oracle/aux/control01.dbf
DB_UNIQUE_NAME = aux
DB_FILE_NAME_CONVERT=("/oracle/oradata/","/aux/")
LOG_FILE_NAME_CONVERT=("/oracle/oradata/","/aux/")
LOG_ARCHIVE_DEST_1 = ’LOCATION=/oracle/oradata/arch/’
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

The auxiliary parameter file for a database on a different host with the same path
names as the primary could look like the following:

DB_NAME = prod1
you do not need to set CONTROL_FILES or DB_FILE_NAME_CONVERT because the file
system structure on both hosts is identical
LOG_FILE_NAME_CONVERT=("/oracle/oradata/","/tmp/oradata/")
LOG_ARCHIVE_DEST_1 = ’LOCATION=/tmp/arch/’
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

DB_FILE_NAME_CONVERT Uses patterns to convert filenames for the datafiles of the
auxiliary database. This parameter is only necessary if you
are either restoring the auxiliary database on the same host
as the primary host, or on a different host that uses
different path names from the primary host.

LOG_FILE_NAME_CONVERT Uses patterns to convert filenames for the online redo logs
of the auxiliary database. This parameter is mandatory.

LOG_ARCHIVE_DEST_1 Specifies the default directory containing the archived redo
logs required for recovery.This parameter specifies the
location on the auxiliary host in which the archived logs
will be located.

LOG_ARCHIVE_FORMAT Specifies the format of the archived logs. You should use
the same format setting used in the primary initialization
parameter file.

Table 19–2 Auxiliary Initialization Parameters (Cont.)

Parameter Purpose

Restoring and Recovering the Auxiliary Database: Basic Steps

19-10 Backup and Recovery Advanced User’s Guide

Restoring and Recovering the Auxiliary Database: Basic Steps
The procedure for restore and recovery of the auxiliary database differs depending
on whether the auxiliary database is on the same host as the primary database. The
examples in this section assume:

■ You are performing TSPITR on production database called prod1 located on
host prim_host.

■ The recovery set tablespaces are users and tools. Tablespace users contains
datafile /oracle/oradata/users01.dbf and tablespace tools contains
datafile /fs2/tools01.dbf.

■ The auxiliary set contains the SYSTEM tablespace datafile
/oracle/oradata/system.dbf, the undo tablespace datafile
/oracle/oradata/undo01.dbf, and the control file
/oracle/oradata/control01.dbf.

■ The online redo logs are named /oracle/oradata/redo01.log and
/oracle/oradata/redo02.log.

■ All the primary database files are contained in /oracle/oradata

The different cases are described in the following sections:

■ Restoring and Recovering the Auxiliary Database on the Same Host

■ Restoring the Auxiliary Database on a Different Host with the Same Path
Names

■ Restoring the Auxiliary Database on a Different Host with Different Path
Names

Restoring and Recovering the Auxiliary Database on the Same Host
The following examples assume the case in which you restore the auxiliary
database to the same host as the primary database. In this scenario, all of the
primary database files are contained in /oracle/oradata, and you want to
restore the auxiliary database to /oracle/oradata/aux. So, you set DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_CONVERT to convert the filenames from
/oracle/oradata to /oracle/oradata/aux.

Perform the following tasks to restore and recover the auxiliary database:

1. Restore the auxiliary set and the recovery set to a location different from that of
the primary database. For example, assume that the auxiliary set consists of the
following files:

Restoring and Recovering the Auxiliary Database: Basic Steps

Performing User-Managed TSPITR 19-11

/oracle/oradata/control01.dbf # control file
/oracle/oradata/undo01.dbf # datafile in undo tablespace
/oracle/oradata/system.dbf # datafile in SYSTEM tablespace

And the recovery set consists of the following datafiles:

/oracle/oradata/users01.dbf # datafile in users tablespace
/oracle/oradata/tools01.dbf # datafile in tools tablespace

You can restore backups of the auxiliary set files and recovery set files to a new
location as follows:

cp /backup/control01.dbf /oracle/oradata/aux/control01.dbf
cp /backup/undo01.dbf /oracle/oradata/aux/undo01.dbf
cp /backup/system.dbf /oracle/oradata/aux/system.dbf
cp /backup/users01.dbf /oracle/oradata/aux/users01.dbf
cp /backup/tools01.dbf /oracle/oradata/aux/tools01.dbf

2. Start the auxiliary database without mounting it, specifying the initialization
parameter file if necessary. For example, enter:

STARTUP NOMOUNT PFILE=/aux/initAUX.ora

3. Mount the auxiliary database, specifying the CLONE keyword:

ALTER DATABASE MOUNT CLONE DATABASE;

The CLONE keyword causes Oracle to take all datafiles offline automatically.

4. Manually rename all auxiliary database files to reflect their new locations only if
these files are not renamed by DB_FILE_NAME_CONVERT and LOG_FILE_
NAME_CONVERT. In our scenario, all datafiles and online redo logs are renamed
by initialization parameters, so no manual renaming is necessary.

5. Run the following SQL script on the auxiliary database to ensure that all
datafiles are named correctly:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE
/

If not, then rename the files manually as in the previous step.

Restoring and Recovering the Auxiliary Database: Basic Steps

19-12 Backup and Recovery Advanced User’s Guide

6. Bring only the datafiles in the auxiliary and recovery set tablespaces online. For
example, bring the four datafiles in the recovery and auxiliary sets online:

ALTER DATABASE DATAFILE /oracle/oradata/aux/system.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/aux/users01.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/aux/tools01.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/aux/undo01.dbf ONLINE;

At this point, the auxiliary database is mounted and ready for media recovery.

7. Recover the auxiliary database to the specified point in time with the USING
BACKUP CONTROLFILE option. Use any form of incomplete recovery. The
following example uses cancel-based incomplete recovery:

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

8. Open the auxiliary database with the RESETLOGS option using the following
statement:

ALTER DATABASE OPEN RESETLOGS;

Restoring the Auxiliary Database on a Different Host with the Same Path Names
The following example assumes that you create the auxiliary database on a different
host called aux_host. The auxiliary host has the same path names as the primary
host. Hence, you do not need to rename the auxiliary database datafiles. So, you do
not need to set DB_FILE_NAME_CONVERT, although you should set LOG_FILE_
NAME_CONVERT.

To restore and recover the auxiliary database:

1. Restore the auxiliary set and the recovery set to the auxiliary host. For example,
assume that the auxiliary set consists of the following files:

/oracle/oradata/control01.dbf # control file
/oracle/oradata/undo01.dbf # datafile in undo tablespace
/oracle/oradata/system.dbf # datafile in SYSTEM tablespace

And the recovery set consists of the following datafiles:

/oracle/oradata/users01.dbf # 1st datafile in users tablespace
/oracle/oradata/tools01.dbf # 2nd datafile in tools tablespace

Note: The export phase of TSPITR will not work if all the files of
each recovery set tablespace are not online.

Restoring and Recovering the Auxiliary Database: Basic Steps

Performing User-Managed TSPITR 19-13

These files will occupy the same locations in the auxiliary host.

2. Start the auxiliary database without mounting it, specifying the initialization
parameter file if necessary. For example, enter:

STARTUP NOMOUNT PFILE=/aux/initAUX.ora

3. Mount the auxiliary database, specifying the CLONE keyword:

ALTER DATABASE MOUNT CLONE DATABASE;

The CLONE keyword causes Oracle to take all datafiles offline automatically.

4. Rename all auxiliary database files to reflect their new locations only if these
files are not renamed by DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT. In our scenario, the datafiles do not require renaming, and the logs
are converted with LOG_FILE_NAME_CONVERT. So, no manual renaming is
necessary.

5. Run the following script in SQL*Plus on the auxiliary database to ensure that all
datafiles are named correctly.

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE
;

If not, then rename them manually as in the previous step.

6. Bring all datafiles in the auxiliary and recovery set tablespaces online. For
example, bring the four datafiles in the recovery and auxiliary sets online:

ALTER DATABASE DATAFILE /oracle/oradata/system.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/users01.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/tools01.dbf ONLINE;
ALTER DATABASE DATAFILE /oracle/oradata/undo01.dbf ONLINE;

At this point, the auxiliary database is mounted and ready for media recovery.

Note: The export phase of TSPITR will not work if all the files of
each recovery set tablespace are not online.

Performing TSPITR with Transportable Tablespaces

19-14 Backup and Recovery Advanced User’s Guide

7. Recover the auxiliary database to the specified point in time with the USING
BACKUP CONTROLFILE option. Use any form of incomplete recovery. The
following example uses cancel-based incomplete recovery:

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

8. Open the auxiliary database with the RESETLOGS option using the following
statement:

ALTER DATABASE OPEN RESETLOGS;

Restoring the Auxiliary Database on a Different Host with Different Path Names
This case should be treated exactly like "Restoring and Recovering the Auxiliary
Database on the Same Host" on page 19-10. The same guidelines for renaming files
apply in both cases.

Performing TSPITR with Transportable Tablespaces
After you have completed the preparation stage, begin the actual TSPITR procedure
as described in Oracle Database Administrator's Guide. The procedure occurs in the
following steps:

■ Step 1: Unplugging the Tablespaces from the Auxiliary Database

■ Step 2: Transporting the Tablespaces into the Primary Database

Step 1: Unplugging the Tablespaces from the Auxiliary Database
In this step, you recover the auxiliary database to the desired past time, then unplug
the desired tablespaces.

To unplug the auxiliary database tablespaces:

1. Connect SQL*Plus to the auxiliary database with administrator privileges. For
example:

% sqlplus ’SYS/oracle@aux AS SYSDBA’
2. Make the tablespaces in the recovery set read-only by running the ALTER

TABLESPACE ... READ ONLY statement. For example, make users and tools
read-only as follows:

ALTER TABLESPACE users READ ONLY;
ALTER TABLESPACE tools READ ONLY;

Performing TSPITR with Transportable Tablespaces

Performing User-Managed TSPITR 19-15

3. Ensure that the recovery set is self-contained. For example:

EXECUTE SYS.DBMS_TTS.TRANSPORT_SET_CHECK(’users,tools’,TRUE,TRUE);

4. Query the transportable tablespace violations table to manage any
dependencies. For example:

SELECT * FROM SYS.TRANSPORT_SET_VIOLATIONS;

This query should return no rows after all dependencies are managed. Refer to
Oracle Database Administrator's Guide for more information about this table.

5. Generate the transportable set by running the Export utility as described in
Oracle Database Administrator's Guide. Include all tablespaces in the recovery set,
as in the following example:

% exp SYS/oracle TRANSPORT_TABLESPACE=y TABLESPACES=(users,tools) \
TTS_FULL_CHECK=y

This command generates an export file named expdat.dmp.

Step 2: Transporting the Tablespaces into the Primary Database
In this step, you transport the recovery set tablespaces into the primary database.

To plug the recovery set tablespaces into the primary database:

1. Connect SQL*Plus to the primary database (not the auxiliary database). For
example:

% sqlplus ’SYS/oracle@primary AS SYSDBA’

2. Drop the tablespaces in the recovery set with the DROP TABLESPACE statement.
For example:

DROP TABLESPACE users INCLUDING CONTENTS;
DROP TABLESPACE tools INCLUDING CONTENTS;

3. Restore the recovery set datafiles from the auxiliary database to the recovery set
file locations in the primary database. For example:

% cp /net/aux_host/aux/users01.dbf \
> /net/primary_host/oracle/oradata/users01.dbf
% cp /net/aux_host/aux/tools01.dbf \
> /net/primary_host/oracle/oradata/tools01.dbf

Performing Partial TSPITR of Partitioned Tables

19-16 Backup and Recovery Advanced User’s Guide

4. Move the export file expdat.dmp to the primary host. For example, enter:

% cp /net/aux_host/aux/expdat.dmp \
> /net/primary_host/oracle/oradata/expdat.dmp

5. Plug in the transportable set into the primary database by running Import as
described in Oracle Database Administrator's Guide. For example:

% imp SYS/oracle TRANSPORT_TABLESPACE=y FILE=expat.dmp
 DATAFILES=(’/oracle/oradata/users01.dbf’,’/oracle/oradata/tools01.dbf’)

6. Make the recovered tablespaces read/write by executing the ALTER
TABLESPACE READ WRITE statement. For example:

ALTER TABLESPACE users READ WRITE;
ALTER TABLESPACE tools READ WRITE;

7. Back up the recovered tablespaces with an operating system utility.

Performing Partial TSPITR of Partitioned Tables
Partitioned tables can span multiple tablespaces. Follow this procedure only if the
recovery set does not fully contain all of the partitions.

This section describes how to perform partial TSPITR of partitioned tables that have
a range that has not changed or expanded, and includes the following steps:

■ Step 1: Create a Table on the Primary Database for Each Partition Being
Recovered

■ Step 2: Drop the Indexes on the Partition Being Recovered

■ Step 3: Exchange Partitions with Standalone Tables

■ Step 4: Drop the Recovery Set Tablespace

■ Step 5: Create Tables at Auxiliary Database

■ Step 6: Drop Indexes on Partitions Being Recovered

Caution: You must back up the tablespace because otherwise you
might lose it. For example, a media failure occurs, but the archived
logs from the last backup of the database do not logically link to the
recovered tablespaces. If you attempt to recover any recovery set
tablespaces from a backup taken before TSPITR, then recovery fails.

Performing Partial TSPITR of Partitioned Tables

Performing User-Managed TSPITR 19-17

■ Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database

■ Step 8: Transport the Recovery Set Tablespaces

■ Step 9: Exchange Partitions with Standalone Tables on the Primary Database

■ Step 10: Back Up the Recovered Tablespaces in the Primary Database

Step 1: Create a Table on the Primary Database for Each Partition Being Recovered
This table should have the exact same column names and column datatypes as the
partitioned table you are recovering. Create the table using the following template:

CREATE TABLE new_table AS
 SELECT * FROM partitioned_table
 WHERE 1=2;

These tables are used to swap each recovery set partition (see "Step 3: Exchange
Partitions with Standalone Tables" on page 19-17).

Step 2: Drop the Indexes on the Partition Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,
nonpartitioned indexes that exist on the partition you wish to recover. If you drop
the indexes on the partition being recovered, then you need to drop them on the
auxiliary database (see "Step 6: Drop Indexes on Partitions Being Recovered" on
page 19-18). Rebuild the indexes after TSPITR is complete.

Step 3: Exchange Partitions with Standalone Tables
Exchange each partition in the recovery set with its associated standalone table
(created in "Step 1: Create a Table on the Primary Database for Each Partition Being
Recovered" on page 19-17) by issuing the following statement, replacing the
variables with the names of the appropriate objects:

Note: Often you have to recover the dropped partition along with
recovering a partition whose range has expanded. Refer to
"Performing TSPITR of Partitioned Tables When a Partition Has
Been Dropped" on page 19-19.

Note: The table and the partition must belong to the same schema.

Performing Partial TSPITR of Partitioned Tables

19-18 Backup and Recovery Advanced User’s Guide

ALTER TABLE table_name EXCHANGE PARTITION partition_name WITH TABLE table_name;

Step 4: Drop the Recovery Set Tablespace
On the primary database, drop each tablespace in the recovery set. For example,
enter the following, replacing tablespace_name with the name of the tablespace:

DROP TABLESPACE tablespace_name INCLUDING CONTENTS;

Step 5: Create Tables at Auxiliary Database
After recovering the auxiliary database and opening it with the RESETLOGS option,
create a table in the SYSTEM tablespace that has the same column names and
column data types as the partitioned table you are recovering. You must create the
table in the SYSTEM tablespace: otherwise, Oracle issues the ORA-01552 error.

Create a table for each partition you wish to recover. These tables are used later to
swap each recovery set partition.

Step 6: Drop Indexes on Partitions Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,
non-partitioned indexes that exist on the partition you wish to recover (on the table
created in "Step 1: Create a Table on the Primary Database for Each Partition Being
Recovered" on page 19-17).

Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database
For each partition in the auxiliary database recovery set, exchange the partitions
with the standalone tables (created in "Step 5: Create Tables at Auxiliary Database"
on page 19-18) by executing the following SQL script, replacing the variables with
the appropriate object names:

ALTER TABLE partitioned_table_name
EXCHANGE PARTITION partition_name
WITH TABLE table_name;

Note: The table and the partition must belong to the same schema.

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped

Performing User-Managed TSPITR 19-19

Step 8: Transport the Recovery Set Tablespaces
Export the recovery set tablespaces from the auxiliary database and then import
them into the primary database as described in "Performing TSPITR with
Transportable Tablespaces" on page 19-14.

Step 9: Exchange Partitions with Standalone Tables on the Primary Database
For each recovered partition on the primary database, swap its associated
standalone table with the following statement, replacing the variables with the
appropriate object names:

ALTER TABLE table_name EXCHANGE PARTITION partition_name WITH TABLE table_name;

If the associated indexes have been dropped, then re-create them.

Step 10: Back Up the Recovered Tablespaces in the Primary Database
Back up the recovered tablespaces on the primary database. Failure to do so results
in loss of data in the event of media failure.

Performing TSPITR of Partitioned Tables When a Partition Has Been
Dropped

This section describes how to perform TSPITR on partitioned tables when a
partition has been dropped, and includes the following steps:

■ Step 1: Find the Low and High Range of the Partition that Was Dropped

■ Step 2: Create a Temporary Table

■ Step 3: Delete Records From the Partitioned Table

■ Step 4: Drop the Recovery Set Tablespace

■ Step 5: Create Tables at the Auxiliary Database

■ Step 6: Drop Indexes on Partitions Being Recovered

■ Step 7: Exchange Partitions with Standalone Tables

■ Step 8: Transport the Recovery Set Tablespaces

■ Step 9: Insert Standalone Tables into Partitioned Tables

■ Step 10: Back Up the Recovered Tablespaces in the Primary Database

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped

19-20 Backup and Recovery Advanced User’s Guide

Step 1: Find the Low and High Range of the Partition that Was Dropped
When a partition is dropped, the range of the partition preceding it expands
downwards. Therefore, there may be records in the preceding partition that should
actually be in the dropped partition after it has been recovered. To ascertain this,
run the following SQL script at the primary database, replacing the variables with
the appropriate values:

SELECT * FROM partitioned_table
 WHERE relevant_key
 BETWEEN low_range_of_partition_that_was_dropped
 AND high_range_of_partition_that_was_dropped;

Step 2: Create a Temporary Table
If any records are returned, then create a temporary table in which to store these
records so that if necessary they can be inserted into the recovered partition later.

Step 3: Delete Records From the Partitioned Table
Delete all the records stored in the temporary table from the partitioned table.

DELETE FROM partitioned_table
 WHERE relevant_key
 BETWEEN low_range_of_partition_that_was_dropped
 AND high_range_of_partition_that_was_dropped;

Step 4: Drop the Recovery Set Tablespace
On the primary database, drop each tablespace in the recovery set. For example,
enter the following, replacing tablespace_name with the name of the tablespace:

DROP TABLESPACE tablespace_name INCLUDING CONTENTS;

Step 5: Create Tables at the Auxiliary Database
After opening the auxiliary database with the RESETLOGS option, create a table in
the SYSTEM tablespace that has the same column names and column data types as
the partitioned table you are recovering. You must create the table in the SYSTEM
tablespace: otherwise, Oracle issues the ORA-01552 error. Create a table for each
partition that you want to recover. These tables will be used later to swap each
recovery set partition.

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped

Performing User-Managed TSPITR 19-21

Step 6: Drop Indexes on Partitions Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,
nonpartitioned indexes that exist on the partition you wish to recover.

Step 7: Exchange Partitions with Standalone Tables
For each partition in the auxiliary recovery set, exchange the partitions into the
standalone tables created in "Step 5: Create Tables at the Auxiliary Database" on
page 19-20 by issuing the following statement, replacing the variables with the
appropriate values:

ALTER TABLE partitioned_table_name
EXCHANGE PARTITION partition_name
WITH TABLE table_name;

Step 8: Transport the Recovery Set Tablespaces
Export the recovery set tablespaces from the auxiliary database and then import
them into the primary database as described in "Performing TSPITR with
Transportable Tablespaces" on page 19-14.

Step 9: Insert Standalone Tables into Partitioned Tables
At this point you must insert the standalone tables into the partitioned tables; you
can do this by first issuing the following statement, replacing the variables with the
appropriate values:

ALTER TABLE table_name
 SPLIT PARTITION partition_name AT (key_value)
 INTO
 (PARTITION partition_1_name TABLESPACE tablespace_name,
 PARTITION partition_2_name TABLESPACE tablespace_name);

Aat this point, partition 2 is empty because keys in that range have already been
deleted from the table.

Issue the following statement to swap the standalone table into the partition,
replacing the variables with the appropriate values:

ALTER TABLE EXCHANGE PARTITION partition_name WITH TABLE table_name;

Now insert the records saved in "Step 2: Create a Temporary Table" on page 19-20
into the recovered partition (if desired).

Performing TSPITR of Partitioned Tables When a Partition Has Split

19-22 Backup and Recovery Advanced User’s Guide

Step 10: Back Up the Recovered Tablespaces in the Primary Database
Back up the recovered tablespaces in the primary database. Failure to do so results
in loss of data in the event of media failure.

Performing TSPITR of Partitioned Tables When a Partition Has Split
This section describes how to recover partitioned tables when a partition has been
split, and includes the following sections:

■ Step 1: Drop the Lower of the Two Partitions at the Primary Database

■ Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces

Step 1: Drop the Lower of the Two Partitions at the Primary Database
For each partition you wish to recover whose range has been split, drop the lower
of the two partitions so that the higher expands downwards. In other words, the
higher partition has the same range as before the split. For example, if P1 was split
into partitions P1A and P1B, then P1B must be dropped, meaning that partition P1A
now has the same range as P1.

For each partition that you wish to recover whose range has split, create a table that
has exactly the same column names and column datatypes as the partitioned table
you are recovering. For example, execute the following, replacing the variables with
the appropriate values:

CREATE TABLE new_table
AS
(
 SELECT *
 FROM partitioned_table
 WHERE 1=2
);

These tables will be used to exchange each recovery set partition in "Step 3:
Exchange Partitions with Standalone Tables" on page 19-17.

Note: If the partition that has been dropped is the last partition in
the table, then add it with the ALTER TABLE ADD PARTITION
statement.

Performing TSPITR of Partitioned Tables When a Partition Has Split

Performing User-Managed TSPITR 19-23

Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces
Follow the same procedure as for "Performing Partial TSPITR of Partitioned Tables"
on page 19-16, but skip the first step of this procedure: "Step 1: Create a Table on the
Primary Database for Each Partition Being Recovered" on page 19-17. In other
words, start with "Step 2: Drop the Indexes on the Partition Being Recovered" on
page 19-17 and follow all subsequent steps.

Performing TSPITR of Partitioned Tables When a Partition Has Split

19-24 Backup and Recovery Advanced User’s Guide

Troubleshooting User-Managed Media Recovery 20-1

20
Troubleshooting User-Managed Media

Recovery

This chapter describes how to troubleshoot user-managed media recovery, and
includes the following topics:

■ About User-Managed Media Recovery Problems

■ Investigating the Media Recovery Problem: Phase 1

■ Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

■ Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3

■ Allowing Recovery to Corrupt Blocks: Phase 4

■ Performing Trial Recovery

About User-Managed Media Recovery Problems

20-2 Backup and Recovery Advanced User’s Guide

About User-Managed Media Recovery Problems
Table 20–1 describes potential problems that can occur during media recovery.

Table 20–1 Media Recovery Problems

Problem Description

Missing or misnamed
archived log

Recovery stops because the database cannot find the archived log recorded in the
control file.

When you attempt to open
the database, error
ORA-1113 indicates that a
datafile needs media
recovery

This error commonly occurs because:

■ You are performing incomplete recovery but failed to restore all needed
datafile backups.

■ Incomplete recovery stopped before datafiles reached a consistent SCN.

■ You are recovering datafiles from an online backup, but not enough redo
was applied to make the datafiles consistent.

■ You are performing recovery with a backup control file, and did not specify
the location of a needed online redo log.

■ A datafile is undergoing media recovery when you attempt to open the
database.

■ Datafiles needing recovery were not brought online before executing
RECOVER DATABASE, and so were not recovered.

Redo record problems Two possible cases are as follows:

■ Recovery stops because of failed consistency checks, a problem called stuck
recovery. Stuck recovery can occur when an underlying operating system or
storage system loses a write issued by the database during normal
operation.

■ The database signals an internal error when applying the redo. This
problem can be caused by an Oracle bug. If checksums are not being used, it
can also be caused by corruptions to the redo or data blocks.

Corrupted archived logs Logs may be corrupted while they are stored on or copied between storage
systems. If DB_BLOCK_CHECKSUM is enabled, then the database usually signals
checksum errors. If checksumming is not on, then log corruption may appear as
a problem with redo.

About User-Managed Media Recovery Problems

Troubleshooting User-Managed Media Recovery 20-3

The symptoms of media recovery problems are usually external or internal errors
signaled during recovery. For example, an external error indicates that a redo block
or a data block has failed checksum verification checks. Internal errors can be
caused by either bugs in the database or errors arising from the underlying
operating system and hardware.

If media recovery encounters a problem while recovering a database backup,
whether it is a stuck recovery problem or a problem during redo application, the
database always stops and leaves the datafiles undergoing recovery in a consistent
state, that is, at a consistent SCN preceding the failure. You can then do one of the
following:

■ Open the database read-only to investigate the problem.

■ Open the database with the RESETLOGS option, as long as the requirements for
opening RESETLOGS have been met. Note that the RESETLOGS restrictions
apply to opening the standby database as well, because a standby database is
updated by a form of media recovery.

In general, opening the database read-only or opening with the RESETLOGS option
require all online datafiles to be recovered to the same SCN. If this requirement is
not met, then the database may signal ORA-1113 or other errors when you attempt
to open. Some common causes of ORA-1113 are described in Table 20–1.

The basic methodology for responding to media recovery problems occurs in the
following phases:

1. Try to identify the cause of the problem. Run a trial recovery if needed.

Archived logs with
incompatible parallel redo
format

If you enable the parallel redo feature, then the database generates redo logs in a
new format. Prior releases of Oracle are unable to apply parallel redo logs.
However, releases prior to Oracle9i Release 2 (9.2) can detect the parallel redo
format and indicate the inconsistency with the following error message:
External error 00303, 00000, "cannot process Parallel Redo".

See Also: Oracle Database Performance Tuning Guide to learn about the parallel
redo feature

Corrupted data blocks A datafile backup may have contained a corrupted data block, or the data block
may become corrupted either during recovery or when it was copied to the
backup. If checksums are being used, then the database signals a checksum error.
Otherwise, the problem may also appear as a redo corruption.

Random problems Memory corruptions and other transient problems can occur during recovery.

Table 20–1 Media Recovery Problems (Cont.)

Problem Description

Investigating the Media Recovery Problem: Phase 1

20-4 Backup and Recovery Advanced User’s Guide

2. If the problem is related to missing redo logs or you suspect there is a redo log,
memory, or data block corruption, then try to resolve it using the methods
described in Table 20–2.

3. If you cannot resolve the problem using the methods described in Table 20–2,
then do one of the following:

– Open the database with the RESETLOGS option if you are recovering a
whole database backup. If you have performed serial media recovery, then
the database contains all the changes up to but not including the changes at
the SCN where the corruption occurred. No changes from this SCN onward
are in the recovered part of the database. If you have restored online
backups, then opening RESETLOGS succeeds only if you have recovered
through all the ALTER ... END BACKUP operations in the redo stream.

– Proceed with recovery by allowing media recovery to corrupt data blocks.
After media recovery completes, try performing block media recovery
using RMAN.

– Call Oracle Support Services as a last resort.

Investigating the Media Recovery Problem: Phase 1
If media recovery encounters a problem, then obtain as much information as
possible after recovery halts. You do not want to waste time fixing the wrong
problem, which may in fact make matters worse.

The goal of this initial investigation is to determine whether the problem is caused
by incorrect setup, corrupted redo logs, corrupted data blocks, memory corruption,
or other problems. If you see a checksum error on a data block, then the data block
is corrupted. If you see a checksum error on a redo log block, then the redo log is
corrupted.

Sometimes the cause of a recovery problem can be difficult to determine.
Nevertheless, the methods in this chapter allow you to quickly recover a database
even when you do not completely understand the cause of the problem.

To investigate media recovery problems:

1. Examine the alert.log to see whether the error messages give general
information about the nature of the problem. For example, does the alert_

See Also: "Performing Block Media Recovery with RMAN" on
page 8-21 to learn about block media recovery

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

Troubleshooting User-Managed Media Recovery 20-5

SID.log indicate any checksum failures? Does the alert_SID.log indicate
that media recovery may have to corrupt data blocks in order to continue?

2. Check the trace file generated by the Oracle process during recovery. It may
contain additional error information.

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
Depending on the type of media recovery problem you suspect, you have different
solutions at your disposal. You can try one or a combination of the methods
described in Table 20–2. Note that these methods are fairly safe: in almost all cases,
they should not cause any damage to the database.

Table 20–2 Media Recovery Solutions

If you suspect . . . Then . . .

Missing/misnamed
archived logs

Determine whether you entered the correct filename. If you did, then check to see
whether the log is missing from the operating system. If it is missing, and you have a
backup, then restore the backup and apply the log. If you do not have a backup, then
if possible perform incomplete recovery up to the point of the missing log.

ORA-1113 for ALTER
DATABASE OPEN

Review the causes of this error in Table 20–1. Make sure that all read/write datafiles
requiring recovery are online. If you use a backup control file for recovery, then the
control file and datafiles must be at a consistent SCN for the database to be opened. If
you do not have the necessary redo, then you must re-create the control file.

Corrupt archived logs The log is corrupted if the checksum verification on the log redo block fails. If DB_
BLOCK_CHECKSUM is not enabled either during the recovery session or when the
database generated the redo, then recovery problems may be caused by corrupted
logs. If the log is corrupt and an alternate copy of the corrupt log is available, then try
to apply it and see whether this tactic fixes the problem.

The DB_BLOCK_CHECKSUM initialization parameter determines whether checksums
are computed for redo log and data blocks.

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

20-6 Backup and Recovery Advanced User’s Guide

If you cannot fix the problem with the methods described in Table 20–2, then there
may be no easy way to fix the problem without losing data. You have these options:

■ Open the database with the RESETLOGS option (for whole database recovery).
This solution discards all changes after the point where the redo problem
occurred, but guarantees a logically consistent database.

■ Allow media recovery to corrupt one or more data blocks and proceed with
media recovery. This option will only succeed if the alert_SID.log indicates
that recovery can continue if it is allowed to corrupt a data block, which should
be the case for most recovery problems. This option is best if it is important to
bring up the database quickly and recover all changes. If you are contemplating
this option as a last resort, then proceed to "Deciding Whether to Allow
Recovery to Corrupt Blocks: Phase 3" on page 20-7.

Archived logs with
incompatible parallel
redo format

If you are running an Oracle release prior to Oracle9i Release 2, and if you are
attempting to apply redo logs created with the parallel redo format, then you must
do the following steps:

1. Upgrade the database to a later release.

2. Perform media recovery.

3. Shut down the database consistently and back up the database.

4. Downgrade the database to the original release.

See Also: Oracle Database Performance Tuning Guide to learn about the parallel redo
feature

Memory corruption or
transient problems

You may be able to fix the problem by shutting down the database and restarting
recovery. The databse should be left in a consistent state if the second attempt also
fails.

Corrupt data blocks Restore and recover the datafile again with user-managed methods, or restore and
recover individual data blocks with the RMAN BLOCKRECOVER command. This
tactic may fix the problem.

A data block is corrupted if the checksum verification on the block fails. If DB_
BLOCK_CHECKING is disabled, a corrupted data block problem may appear as a redo
problem. If you must proceed with recovery, then you may want to corrupt the block
now and continue recovery, and use RMAN to perform block media recovery later.

See Also: "Performing Block Media Recovery with RMAN" on
page 8-21 to learn how to perform block media recovery with the
BLOCKRECOVER command

Table 20–2 Media Recovery Solutions (Cont.)

If you suspect . . . Then . . .

Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3

Troubleshooting User-Managed Media Recovery 20-7

Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3
When media recovery encounters a problem, the alert_SID.log may indicate
that recovery can continue if it is allowed to corrupt the data block causing the
problem. The alert_SID.log always contains information about the block: its
block type, block address, the tablespace it belongs to, and so forth. For blocks
containing user data, the alert log may also report the data object number.

In this case, the database can proceed with recovery if it is allowed to mark the
problem block as corrupt. Nevertheless, this response is not always advisable. For
example, if the block is an important block in the SYSTEM tablespace, marking the
block as corrupt can eventually prevent you from opening the recovered database.
Another consideration is whether the recovery problem is isolated. If this problem
is followed immediately by many other problems in the redo stream, then you may
want to open the database with the RESETLOGS option.

For a block containing user data, you can usually query the database to find out
which object or table owns this block. If the database is not open, then you should
be able to open the database read-only, even if you are recovering a whole database
backup. The following example cancels recovery and opens read-only:

CANCEL
ALTER DATABASE OPEN READ ONLY;

Assume that the data object number reported in the alert_SID.log is 8031. You
can determine the owner, object name, and object type by issuing this query:

SELECT OWNER, OBJECT_NAME, SUBOBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
WHERE DATA_OBJECT_ID = 8031;

To determine whether a recovery problem is isolated, you can run a diagnostic trial
recovery, which scans the redo stream for problems but does not actually make any
changes to the recovered database. If a trial recovery discovers any recovery
problems, it reports them in the alert_SID.log. You can use the RECOVER ...
TEST statement to invoke trial recovery.

After you have done these investigations, you can follow the guidelines in
Table 20–3 to decide whether to allow recovery to corrupt blocks.

See Also: "Performing Trial Recovery" on page 20-9

Allowing Recovery to Corrupt Blocks: Phase 4

20-8 Backup and Recovery Advanced User’s Guide

Allowing Recovery to Corrupt Blocks: Phase 4
If you decide to allow recovery to proceed in spite of block corruptions, then run
the RECOVER command with the ALLOW n CORRUPTION clause, where n is the
number of allowable corrupt blocks.

To allow recovery to corrupt blocks:

1. Ensure that all normal recovery preconditions are met. For example, if the
database is open, then take tablespaces offline before attempting recovery.

Table 20–3 Guidelines for Allowing Recovery to Permit Corruption

If the problem is . . . and the block is . . . Then . . .

not isolated n/a You should probably open the database with the RESETLOGS
option. This response is important for stuck recovery
problems, because stuck recovery can be caused by the
operating system or a storage system losing writes. If an
operating system or storage system suddenly fails, it can cause
stuck recovery problems on several blocks.

isolated in the SYSTEM
tablespace

Do not corrupt the block, because it may eventually prevent
you from opening the database. However, sometimes data in
the SYSTEM tablespace is unimportant. If you must corrupt a
SYSTEM block and recover all changes, contact Oracle Support.

isolated index data Consider corrupting index blocks because the index can be
rebuilt later after the database has been recovered.

isolated user data Decide based on the importance of the data. If you continue
with datafile recovery and corrupt a block, you lose data in the
block. However, you can use RMAN to perform block media
recovery later after datafile recovery completes. If you open
RESETLOGS, then the database is consistent but loses any
changes made after the point where recovery was stopped.

isolated rollback or undo data Consider corrupting the rollback or undo block because it
does not harm the database if the transactions that generated
the undo are never rolled back. However, if those transactions
are rolled back, then corrupting the undo block can cause
problems. If you are unsure, then call Oracle Support.

See Also: "Performing Trial Recovery" on page 20-9 to learn how
to perform trial recovery, and "Allowing Recovery to Corrupt
Blocks: Phase 4" on page 20-8 if you decide to corrupt blocks

Performing Trial Recovery

Troubleshooting User-Managed Media Recovery 20-9

2. Run the RECOVER command, allowing a single corruption, repeating as
necessary for each corruption to be made. The following statements shows a
valid example:

RECOVER DATABASE ALLOW 1 CORRUPTION

Performing Trial Recovery
When problems such as stuck recovery occur, you have a difficult choice. If the
block is relatively unimportant, and if the problem is isolated, then it is better to
corrupt the block. But if the problem is not isolated, then it may be better to open
the database with the RESETLOGS option.

Because of this situation, the Oracle database supports trial recovery. A trial
recovery applies redo in a way similar to normal media recovery, but it never writes
its changes to disk and it always rolls back its changes. Trial recovery occurs only in
memory.

How Trial Recovery Works
By default, if a trial recovery encounters a stuck recovery or similar problem, then it
always marks the data block as corrupt in memory when this action can allow
recovery to proceed. The database writes errors generated during trial recovery to
alert files. These errors are clearly marked as test run errors.

Like normal media recovery, trial recovery can prompt you for archived log
filenames and ask you to apply them. Trial recovery ends when:

■ The database runs out of the maximum number of buffers in memory that trial
recovery is permitted to use

■ An unrecoverable error is signaled, that is, an error that cannot be resolved by
corrupting a data block

■ You cancel or interrupt the recovery session

■ The next redo record in the redo stream changes the control file

■ All requested redo has been applied

When trial recovery ends, the database removes all effects of the test run from the
system—except the possible error messages in the alert files. If the instance fails

See Also: "Allowing Recovery to Corrupt Blocks: Phase 4" on
page 20-8

Performing Trial Recovery

20-10 Backup and Recovery Advanced User’s Guide

during trial recovery, then the database removes all effects of trial recovery from the
system because trial recovery never writes changes to disk.

Trial recovery lets you foresee what problems might occur if you were to continue
with normal recovery. For problems caused by ongoing memory corruption, trial
recovery and normal recovery can encounter different errors.

Executing the RECOVER ... TEST Statement
You can use the TEST option for any RECOVER command. For example, you can
start SQL*Plus and then issue any of the following commands:

RECOVER DATABASE TEST
RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL TEST
RECOVER TABLESPACE users TEST
RECOVER DATABASE UNTIL CANCEL TEST

By default, trial recovery always attempts to corrupt blocks in memory if this action
allows trial recovery to proceed. In other words, trial recovery by default can
corrupt an unlimited number of data blocks. You can specify the ALLOW n
CORRUPTION clause on the RECOVER ... TEST statement to limit the number of
data blocks trial recovery can corrupt in memory.

A trial recovery command is usable in any scenario in which a normal recovery
command is usable. Nevertheless, you should only need to run trial recovery when
recovery runs into problems.

Index-1

Index
A
ABORT option

SHUTDOWN statement, 17-8, 17-9, 17-28,
17-37, 17-38

active online redo log
loss of group, 18-14, 18-15

alert log, 18-18
checking after RESETLOGS, 17-36
useful for RMAN, 15-2

ALLOW ... CORRUPTION clause
RECOVER command, 20-8

ALTER DATABASE statement
BACKUP CONTROLFILE clause, 16-14

TO TRACE option, 16-14
CLEAR LOGFILE clause, 18-13
END BACKUP clause, 16-11
NORESETLOGS option, 17-35
OPEN RESETLOGS clause, 13-9
RECOVER clause, 17-7, 17-19
RESETLOGS option, 17-35, 17-37, 17-39

ALTER SYSTEM statement
KILL SESSION clause, 15-13
RESUME clause, 16-20
SUSPEND clause, 16-19

ALTER TABLESPACE statement
BEGIN BACKUP clause, 16-6, 16-9
END BACKUP option, 16-9

archived redo logs
applying during media recovery, 17-14
automating application, 17-16
backing up, 7-17
cataloging, 13-7
changing default location, 17-18

corrupted, 20-2
deleting after recovery, 17-7
deletion after backup, 2-15, 4-22
deletion after restore, 3-8
errors during recovery, 17-20
incompatible format, 20-3
location during recovery, 17-14
loss of, 18-15
restoring, 17-6
RMAN fails to delete, 15-27
using for recovery

in default location, 17-17
in nondefault location, 17-19

ARCHIVELOG mode
datafile loss in, 18-2

AS SELECT clause
CREATE TABLE statement, 18-6

autobackups
control file, 2-38, 2-40
server parameter file, 2-38

automatic channels, 2-2
allocation, 2-2
configuring, 6-12, 6-16, 7-2
generic

configuring, 2-7, 6-13
definition, 6-13

naming conventions, 2-6
overriding, 6-12
parallelism, 6-12
specific configurations, 2-8

AUTORECOVERY option
SET statement, 17-15

Index-2

B
BACKUP command, 7-26

BACKUPSET option, 2-22, 7-7
DELETE INPUT option, 4-23
FORMAT parameter, 2-25
KEEP option, 2-47
NOT BACKED UP SINCE clause, 2-54, 7-8
PROXY ONLY option, 2-14
PROXY option, 2-14
SKIP OFFLINE option, 7-12
VALIDATE option, 2-60

BACKUP CONTROLFILE clause
of ALTER DATABASE, 16-2

BACKUP CONTROLFILE TO TRACE clause
of ALTER DATABASE, 16-2, 16-14

BACKUP COPIES parameter
CONFIGURE command, 6-22

backup mode
ending with ALTER DATABASE END

BACKUP, 16-11
for online user-managed backups, 16-7
instance failure, 16-10

backup optimization
configuring, 6-21
definition, 2-49, 7-8
disabling, 2-51, 6-21
enabling, 2-51, 6-21
recovery window and, 2-52
redundancy and, 2-53
retention policies and, 2-52

BACKUP OPTIMIZATION option
of CONFIGURE, 7-9

backup retention policy
definition, 2-41

backup sets
backing up, 2-22, 7-7
configuring maximum size, 6-20
crosschecking, 4-8
duplexing, 7-3
errors during creation, 2-57
failover during backups, 2-24
how RMAN generates, 2-30
limiting size, 2-30
multiplexing, 2-16

naming, 2-25
specifying maximum size (in bytes), 2-28
specifying number of, 2-30

Backup Solutions Program (BSP), 1-12
backups

archived redo logs, 7-17
deletion after backing up, 4-22

availability
altering with CHANGE command, 4-24

backup sets, 7-7
backups of, 2-22
closed, 16-4
consistent, 16-4
control file

using for recovery, 8-7
control files, 16-14

binary, 16-14
trace files, 16-14

correlating RMAN channels with, 4-11, 4-12
cumulative incremental, 2-36, 3-7, 3-15, 7-19
datafile

using RMAN, 7-7, 7-8, 7-9, 7-10
DBVERIFY utility, 16-25
deleting, 4-20
determining datafile status, 16-3
duplexing, 6-22, 7-3
excluding tablespaces from backups, 6-24
failed RMAN, 15-27
failover during BACKUP BACKUPSET, 2-24
hung, 15-19
image copies, 2-12
inconsistent, 16-4
incremental, 2-33, 7-19

differential, 2-35
using RMAN, 7-4, 7-5

interrupted, 7-8
keeping, 7-22
keeping records, 16-27
limiting I/O rate, 2-31
listing files needed, 16-2
logical, 16-26
long-term, 2-47

changing status, 4-24
multiple copies, 6-22
NOARCHIVELOG mode, in, 7-20

Index-3

obsolete
batch deletes, 2-46

offline datafiles, 16-5
offline tablespaces, 16-5
optimizing, 2-49
read-only tablespaces, 16-12
recovering pre-RESETLOGS, 8-4
recovery catalog, 1-9, 13-22
restartable, 2-54, 7-8
restoring user-managed, 17-3
RMAN error handling, 7-26
specifying number of files in a backup set, 2-30
split mirror, 2-13

using RMAN, 7-5
stored scripts, 13-15
tablespace, 16-8

using RMAN, 7-7, 7-8, 7-9, 7-10
tags, 2-26
testing RMAN, 2-60, 7-10

using media manager, 6-10
troubleshooting failed RMAN, 15-17, 15-21,

15-25
types, 2-32
user-managed

restoring, 17-6
validating, 7-10
verifying, 16-25
whole database

preparing for, 16-4
BEGIN BACKUP clause

ALTER TABLESPACE statement, 16-6
block corruptions

stored in V$DATABASE_BLOCK_
CORRUPTION, 7-10

block media recovery, 8-21
guidelines, 3-11
overview, 3-10

BLOCKRECOVER command, 3-10, 8-21
BSP. See Backup Solutions Program (BSP)

C
cancel-based media recovery

procedures, 17-25, 17-32
canceling RMAN commands, 15-13

CATALOG command, 13-7
cataloging

archived redo logs, 13-7
datafiles, 13-7
operating system copies, 7-21

catalog.sql script, 13-4
catproc.sql script, 13-4
CHANGE command, 4-7

AVAILABLE option, 4-24
KEEP option, 4-24

change-based media recovery
coordinated in distributed databases, 18-18

channels
allocating manually for backups, 7-2
configuring automatic, 6-12
configuring for backups, 7-2
control options, 2-10
definition, 2-2
difference between manual and automatic, 2-3
generic configurations, 2-7
overriding automatic, 6-12
parallelism for manual channels, 2-9
preconfigured disk, 6-12
Recovery Manager, 2-2
RMAN naming conventions, 2-6
specific configurations, 2-8

circular reuse records, 1-10
CLEAR LOGFILE clause

of ALTER DATABASE, 18-13
clearing RMAN configuration, 2-8, 6-19
clone databases

preparing for TSPITR, 19-10, 19-12
preparing parameter files for, 19-7

cold failover cluster
definition, 16-10

command files
Recovery Manager, 1-4

command interface
RMAN, 1-3

commands, Recovery Manager
BACKUP, 7-26

PROXY ONLY option, 2-14
PROXY option, 2-14
SKIP OFFLINE option, 7-12

batch execution, 1-4

Index-4

CATALOG, 13-7
CHANGE, 4-7
CONFIGURE, 2-7, 2-8
DELETE, 4-20
DROP CATALOG, 13-34
DUPLICATE, 3-13
EXECUTE SCRIPT, 13-15
how RMAN interprets, 1-3
interactive, 1-4
LIST, 4-2

INCARNATION option, 13-9
piping, 1-6
RECOVER, 3-5
RESET DATABASE

INCARNATION option, 13-9
RESYNC CATALOG, 13-11

FROM CONTROLFILECOPY option, 13-25
SET

MAXCORRUPT option, 7-26
SHOW, 2-5, 4-7
standalone, 1-5
terminating, 15-13
UPGRADE CATALOG, 13-33

commands, SQL
ALTER DATABASE, 17-7, 17-19

commands, SQL*Plus
RECOVER

UNTIL TIME option, 17-32
SET, 17-7, 17-15, 17-19

compatibility
recovery catalog, 1-9

compilation
and execution of RMAN commands, 1-3

complete recovery
procedures, 17-21

CONFIGURE command
BACKUP OPTIMIZATION option, 6-21
CHANNEL option, 2-7
CLEAR option, 2-8, 6-19
DEFAULT DEVICE TYPE clause, 2-5
DEVICE TYPE clause, 2-4
EXCLUDE option, 6-24
RETENTION POLICY clause, 2-41, 2-42

configuring
media manager

installing, 6-5
prerequisites, 6-5

media managers for use with RMAN, 6-7
Recovery Manager

autobackups, 2-38
automatic channels, 6-12, 6-13
backup optimization, 6-21
backup set size, 6-20
clearing, 2-8, 6-19
default device types, 2-5
device types, 2-4
parallelism, 2-4
shared server, 6-29
SHOW command, 4-7
snapshot control file location, 6-26
specific channels, 6-16
tablespace exclusion for backups, 6-24

consistent backups
whole database, 16-4

control file autobackups
after structural changes to database, 2-38
configuring, 2-38
default format, 2-39
restoring, 2-39

control files
automatic backups, 2-40

configuring, 2-38
backing up to trace file, 16-15
backup and recovery, 8-7
backups, 16-2, 16-14

binary, 16-14
recovery using, 8-6
trace files, 16-14

creating, 17-13
duplicate database, 11-5
finding filenames, 16-2
loss of

all copies, 17-12
multiplexed

loss of, 17-8
restoring

to default location, 17-8
to nondefault location, 17-9
using SET DBID, 8-25

snapshot

Index-5

specifying location of, 6-26
time-based recovery, 17-28
types of records, 1-10
using instead of a recovery catalog, 1-10

CONTROL_FILES initialization parameter, 10-24,
17-9

coordinated time-based recovery
distributed databases, 18-18

COPIES option
of BACKUP, 7-4

corrupt datafile blocks, 2-59
detecting, 2-59
records in control file, 2-58
recovering, 8-23
RMAN and, 2-57
setting maximum for backup, 7-26

corruption detection, 2-59
CREATE DATAFILE clause

of ALTER DATABASE, 18-4
CREATE TABLE statement

AS SELECT clause, 18-6
CREATE TABLESPACE statement, 18-3
creating

test databases, 3-13
crosschecking

definition, 4-7
recovery catalog with the media manager, 4-8

cumulative incremental backups, 2-36, 7-19

D
data blocks

corrupted, 20-3
data dictionary views, 16-5, 16-7, 16-13
Data Pump Export utility, 16-26

backups, 16-26
Data Pump Import utility, 16-26
database connections

Recovery Manager
auxiliary database, 5-4
hiding passwords, 5-5

database incarnation, 17-33
database point-in-time recovery (DBPITR)

definition, 8-2
user-managed, 17-27

databases
listing for backups, 16-2
media recovery procedures, 17-1 to ??
media recovery scenarios, 18-1
recovery

after control file damage, 17-8, 17-9
registering in recovery catalog, 13-5, 13-6
suspending, 16-18
unregistering in recovery catalog, 13-8

datafile recovery
definition, 3-5

datafiles
backing up

offline, 16-5
using Recovery Manager, 7-7, 7-8, 7-9, 7-10

cataloging, 13-7
determining status, 16-3
duplicate database, 11-6
listing

for backup, 16-2
losing, 18-2

in ARCHIVELOG mode, 18-2
in NOARCHIVELOG mode, 18-2

recovery
basic steps, 3-5
determining when necessary, 4-17
without backup, 18-4

re-creating, 18-4
renaming

after recovery, 18-4
restoring, 3-2, 17-6

to default location, 17-6
db identifier

problems registering copied database, 13-7
setting during disaster recovery, 8-9
setting with DBNEWID, 13-8

DB_FILE_NAME_CONVERT initialization
parameter, 10-24, 19-9

using with RMAN DUPLICATE
command, 11-8

DB_NAME initialization parameter, 10-23
DBA_DATA_FILES view, 16-5, 16-7, 16-13
DBMS_PIPE package, 1-6

using with RMAN, 5-7
DBNEWID utility, 13-8

Index-6

DBVERIFY utility, 16-25
DELETE command, 4-20

OBSOLETE option, 2-46
deleting

expired backups, 4-21
files after backups, 4-23
obsolete backups, 4-21
using RMAN, 4-19

device types
configuring in RMAN, 6-12

differential incremental backups, 2-35
disk API, 6-7
disk channels

preconfigured, 6-12
distributed databases

change-based recovery, 18-18
coordinated time-based recovery, 18-18
recovery, 18-17

dropping the recovery catalog, 13-34
dummy API, 6-7
duplexing

backup sets, 2-20, 6-22, 7-3
DUPLICATE command, 3-13
duplicate databases

creating, 3-13
on local host, 11-19
on remote host with different file

system, 11-14
on remote host with same file system, 11-13
past point-in-time, 11-23
using CONFIGURE AUXNAME, 11-17
using init.ora parameter and

LOGFILE, 11-15
using SET NEWNAME, 11-16

datafiles, 11-6
excluding tablespaces, 3-14, 11-4
failed creation, 15-30
generating control files, 11-5
generating filenames, 11-5
how RMAN creates, 11-3
NOFILENAMECHECK option, 11-7
online redo logs, 11-5
preparing for duplication, 11-9
skipping offline normal tablespaces, 11-8
skipping read-only tablespaces, 11-7

duplicating a database, 3-13
troubleshooting, 15-30

E
environment, Recovery Manager

definition, 1-2
error codes

media manager, 15-4
RMAN, 15-2, 15-3

message numbers, 15-4
error messages

Recovery Manager
interpreting, 15-7

error stacks
interpreting, 15-7

errors
during RMAN backups, 7-26

EXCLUDE option
of CONFIGURE, 6-24

expired backups
deleting, 4-21

F
features, new, i-xxxiii to ??
filenames

listing for backup, 16-2
flashback table

using, 9-4, 9-5
FLASHBACK TABLE statement, 9-4, 9-5
flashback transaction query, 9-3
flashback undrop

about, 9-6
querying recycle bin, 9-8
recycle bin, 9-6
renaming tables for recycle bin, 9-7
restoring objects, 9-10

FORCE option
DELETE command, 4-22

fractured blocks
definition, 2-60
detection, 2-60

Index-7

G
generic channels

definition, 6-13
groups

archived redo log, 18-10, 18-11
online redo log, 18-10, 18-11

H
hot backup mode

for online user-managed backups, 16-8
hot backups

failed, 16-10
ending with ALTER DATABASE END

BACKUP, 16-11

I
image copies, 2-12
inactive online redo log

loss of, 18-12
INCARNATION option

of LIST, 13-9
of RESET DATABASE, 13-9

incomplete media recovery, 17-27
in Oracle Real Application Clusters

configuration, 17-17
time-based, 17-32
with backup control file, 17-17

incomplete recovery
overview, 3-9
time-based, 8-3
using RMAN, 8-2
with current control file, 8-3

incremental backups, 7-19
differential, 2-35
how RMAN applies, 3-7
using RMAN, 7-4, 7-5

initialization parameter file, 3-5
initialization parameters

CONTROL_FILES, 17-9
DB_FILE_NAME_CONVERT, 10-24
DB_NAME, 10-23
LARGE_POOL_SIZE, 14-10
LOCK_NAME_SPACE, 10-23

LOG_ARCHIVE_DEST_n, 17-18
LOG_ARCHIVE_FORMAT, 17-17
LOG_FILE_NAME_CONVERT, 10-23
RECOVERY_PARALLELISM, 17-40

instance failures
in backup mode, 16-10

integrity checks, 2-58
interpreting RMAN error stacks, 15-7
interrupting media recovery, 17-20
I/O errors

effect on backups, 2-57
ignoring during deletions, 4-22

J
jobs

RMAN
monitoring performance, 4-17
monitoring progress, 4-13

K
KEEP option

of BACKUP, 2-47
of CHANGE, 4-24

L
LARGE_POOL_SIZE initialization

parameter, 14-10
level 0 incremental backups, 2-34
LIST command, 4-2

INCARNATION option, 13-9
LOCK_NAME_SPACE initialization

parameter, 10-23
log sequence numbers

requested during recovery, 17-14
log switches

recovery catalog records, 13-22
LOG_ARCHIVE_DEST_n initialization

parameter, 17-18, 19-9
LOG_ARCHIVE_FORMAT initialization

parameter, 17-17, 19-9
LOG_FILE_NAME_CONVERT initialization

parameter, 10-23, 19-9

Index-8

logical backups, 16-26
LOGSOURCE variable

SET statement, 17-7, 17-19
long waits

definition of, 14-12
long-term backups

changing status, 4-24
definition, 2-47

loss of
inactive log group, 18-12

M
managing RMAN metadata, 11-1, 13-1
MAXPIECESIZE parameter

SET command, 6-8
MAXSETSIZE parameter

BACKUP command, 6-20
CONFIGURE command, 6-20

MAXSIZE parameter
RECOVER command, 3-9

mean time to recovery (MTTR)
definition, 3-10

media failures
archived redo log file loss, 18-15
complete recovery, 17-21 to 17-27, 17-27
control file loss, 17-12
datafile loss, 18-2
NOARCHIVELOG mode, 17-37
online redo log group loss, 18-11
online redo log loss, 18-10
online redo log member loss, 18-10
recovery, 17-21 to ??

distributed databases, 18-17
recovery procedures

examples, 18-2
media management

backing up files, 1-11
Backup Solutions Program, 1-12
crosschecking, 4-7
error codes, 15-4
linking to software, 6-6
sbttest program, 15-10
testing the API, 15-10

media managers

configuring for use with RMAN, 6-7
installing, 6-5
linking

testing, 6-7
prerequisites for configuring, 6-5
testing, 6-7
testing backups, 6-10
troubleshooting, 6-10

media recovery, 17-1 to ??
ADD DATAFILE operation, 18-3
after control file damage, 17-8, 17-9
applying archived redo logs, 17-14
cancel-based, 17-25, 17-27, 17-32
change-based, 17-27
complete, 17-21 to 17-27, 17-27

closed database, 17-21
corruption

allowing to occur, 20-7
datafiles

basic steps, 3-5
without backup, 18-4

distributed databases, 18-17
coordinated time-based, 18-18

errors, 17-20, 20-3
incomplete, 17-27
interrupting, 17-20
lost files

lost archived redo log files, 18-15
lost datafiles, 18-2
lost mirrored control files, 17-8

NOARCHIVELOG mode, 17-37
offline tablespaces in open database, 17-24
online redo log files, 18-9
opening database after, 17-33, 17-35
parallel, 17-39
problems, 20-2, 20-3

fixing, 20-5
investigating, 20-4

restarting, 17-20
restoring

archived redo log files, 17-6
whole database backups, 17-37

resuming after interruption, 17-20
roll forward phase, 17-14
scenarios, 18-1

Index-9

time-based, 17-27
transportable tablespaces, 18-8
trial, 20-9

explanation, 20-9
overview, 20-9

troubleshooting, 20-2
basic methodology, 20-3

types
distributed databases, 18-17

undamaged tablespaces online, 17-24
unsuccessfully applied redo logs, 17-20
using Recovery Manager, 3-5

metadata
managing RMAN, 1-7, 11-1, 13-1
querying RMAN, 4-2
storing in control file, 1-10

mirrored files
online redo log

loss of, 18-10
splitting, 16-18

suspend/resume mode, 16-18
using RMAN, 7-5

mirroring
backups using, 7-5

modes
NOARCHIVELOG

recovery from failure, 17-37
monitoring RMAN, 4-9
MOUNT option

STARTUP statement, 17-29, 17-31
multiplexed files

control files
loss of, 17-8

multiplexing
datafiles with Recovery Manager, 2-16

N
naming backup sets, 2-25
new features, i-xxxiii to ??
NOARCHIVELOG mode

backing up, 7-20
datafile loss in, 18-2
disadvantages, 17-37
recovery, 17-37

noncircular reuse records, 1-10
NOT BACKED UP SINCE clause

BACKUP command, 7-8

O
obsolete backups

deleting, 2-46, 4-21
different from expired backups, 2-42
reporting, 4-4

online redo logs, 18-12
active group, 18-10, 18-11
applying during media recovery, 17-14
archived group, 18-10, 18-11
clearing

failure, 18-13
clearing inactive logs

archived, 18-12
unarchived, 18-13

current group, 18-10, 18-11
determining active logs, 18-11
duplicate database, 11-5
inactive group, 18-10, 18-11
listing log files for backup, 16-2
loss of

active group, 18-14, 18-15
all members, 18-11
group, 18-11
mirrored members, 18-10
recovery, 18-9

multiple group loss, 18-15
replacing damaged member, 18-10
status of members, 18-10, 18-11

OPEN RESETLOGS clause
ALTER DATABASE statement, 13-9

operating system copies
definition, 2-13

operating system utilities
copying files with, 7-21

ORA-01578 error message, 18-6
orphaned backups

reports, 4-5

Index-10

P
packages

DBMS_PIPE, 1-6, 5-7
parallel block recovery

definition, 17-39
parallel recovery, 17-40
parallelism

backups, 2-18
configuring RMAN, 2-4, 6-12
manually allocated RMAN channels, 2-9

partitioned tables
dropped partitions, 19-19
performing partial TSPITR, 19-16
split partitions, 19-22

password files
connecting to Recovery Manager with, 5-2

passwords
connecting to RMAN, 5-5

pipe interface, 1-6
pipes

using to run RMAN commands, 5-7
point of recoverability

recovery window, 2-43
point-in-time recovery, 17-27

tablespace, 10-1 to ??, 10-4 to ??, 10-5 to ??,
19-1 to 19-16

PROXY ONLY option
of BACKUP, 2-14

PROXY option
of BACKUP, 2-14

R
RATE option

of ALLOCATE CHANNEL, 2-31
of CONFIGURE CHANNEL, 2-31

raw devices
backing up to, 16-20
restoring to, 17-6
UNIX backups, 16-21
Windows backups, 16-23

read-only tablespaces
backing up, 7-12
backups, 16-12

RECOVER clause
of ALTER DATABASE, 17-7, 17-19

RECOVER command, 3-5, 3-9
PARALLEL option, 17-39
unrecoverable objects and standby

databases, 18-6
UNTIL TIME option, 17-32
USING BACKUP CONTROLFILE clause, 18-6

recovery
ADD DATAFILE operation, 18-3
automatically applying archived logs, 17-15
cancel-based, 17-25, 17-32
complete, 17-21 to 17-27

closed database, 17-21
offline tablespaces, 17-24

corruption
intentionally allowing, 20-7

data blocks, 3-10, 8-21
guidelines, 3-11

database
in NOARCHIVELOG mode, 8-27

database files
how RMAN applies changes, 3-7
overview, 3-5

datafile without a backup, 8-28
datafiles, 18-2

ARCHIVELOG mode, 18-2
NOARCHIVELOG mode, 18-2

determining files needing recovery, 4-17, 17-4
disaster using RMAN, 8-18
dropped table, 18-17
errors, 20-3
incomplete, 8-2
interrupting, 17-20
media, 17-1, 18-1, 20-1
multiple redo threads, 17-17
of lost or damaged recovery catalog, 13-25
online redo logs, 18-9

losing member, 18-10
loss of group, 18-11

opening database after, 17-33
parallel, 17-39
parallel processes for, 17-40
problems, 20-2

fixing, 20-5

Index-11

investigating, 20-4
responding to unsuccessful, 17-20
setting number of processes to use, 17-40
stuck, 20-2
time-based, 8-3, 17-32
transportable tablespaces, 18-8
trial, 20-9

explanation, 20-9
overview, 20-9

troubleshooting, 20-2
user errors, 18-16
user-managed, 17-1, 18-1, 20-1
using backup control file, 8-6, 8-7

with recovery catalog, 8-7
without recovery catalog, 8-8

using logs in a nondefault location, 17-18
using logs in default location, 17-17
using logs in nondefault location, 17-19
whole database

using backup control file, 8-7
without a recovery catalog, 1-10

recovery catalog, 1-7
availability, 13-28
backing up, 1-9, 13-22
compatibility, 1-9
contents, 1-8
crosschecking, 4-8
db identifier problems, 13-7
dropping, 13-34
incomplete recovery using, 8-3
log switch record, 13-22
managing size of, 13-21
moving to new database, 13-26
operating with, 1-7
operating without, 1-10
recovery of, 13-25
refreshing, 13-11
registering target databases, 1-8, 13-5, 13-6
resynchronizing, 13-11
snapshot control file, 1-8
space requirements, 13-3
stored scripts

creating, 13-16
synchronization, 1-8
UNKNOWN database name, 15-32

unregistering databases, 13-8
updating

after schema changes, 13-14
upgrading, 13-33
views

querying, 13-29
Recovery Manager

allocating channels, 14-8
allocating disk buffers, 14-2
allocating tape buffers, 14-3
backup sets

backing up, 7-7
backup types

duplexed backup sets, 2-20
backups

backing up, 2-22
batch deletion of obsolete, 2-46
control file autobackups, 2-40
datafile, 7-7, 7-8, 7-9, 7-10
image copy, 2-12
incremental, 7-4, 7-5
long-term, 2-47
optimization, 2-49
restartable, 2-54
tablespace, 7-7, 7-8, 7-9, 7-10
testing, 2-60, 7-10
types, 2-32
using tags, 2-26
validating, 7-10

channels, 2-2
generic configurations, 2-7
naming conventions, 2-6
specific configurations, 2-8

commands
BACKUP, 2-14, 7-26
CATALOG, 13-7
CHANGE, 4-7
EXECUTE SCRIPT, 13-15
interactive use of, 1-4
LIST, 13-9
RESYNC CATALOG, 13-25
standalone commands, 1-5
using command files, 1-4

compilation and execution of commands, 1-3
configuring

Index-12

default device types, 2-5
device types, 2-4
showing, 4-7

corrupt datafile blocks, 2-59
handling I/O errors and, 2-57

crosschecking recovery catalog, 4-8
database connections

auxiliary database, 5-4
duplicate database, 5-4
hiding passwords, 5-5
with password files, 5-2

DBMS_PIPE package, 5-7
duplicate databases

how created, 11-3
environment

definition, 1-2
error codes

message numbers, 15-4
errors, 15-2, 15-3

interpreting, 15-7
file deletion

overview, 4-19
fractured block detection in, 2-60
hanging backups, 15-19
image copy backups, 2-12
incomplete recovery

with current control file, 8-3
incremental backups

cumulative, 2-36
differential, 2-35
level 0, 2-34

integrity checking, 2-58
interactive use of commands, 1-4
jobs

monitoring progress, 4-13
media management

backing up files, 1-11
Backup Solutions Program (BSP), 1-12
crosschecking, 4-7
media manager, linking with a, 6-6

metadata, 1-7, 11-1, 13-1
storing in control file, 1-10

monitoring, 4-9, 4-17
multiplexing

datafiles, 2-16

overview, 1-3
performance, 14-8

monitoring, 4-9
pipe interface, 1-6
recovery

after total media failure, 8-18
incomplete, 8-2
using backup control file, 8-7

recovery catalog, 1-7
availability, 13-28
backing up, 13-22
compatibility, 1-9
contents, 1-8
crosschecking, 4-8
managing the size of, 13-21
moving to new database, 13-26
operating with, 1-7
operating without, 1-10
recovering, 13-25
registration of target databases, 1-8, 13-6
resynchronizing, 13-11
snapshot control file, 1-8
synchronization, 1-8
updating after schema changes, 13-14
upgrading, 13-33

reports, 4-2
overview, 4-3

restoring
datafiles, 3-2
to new host, 8-11

return codes, 15-10
RPC calls and, 15-20
snapshot control file location, 6-26
standby databases

creating, 3-15
starting, 5-2
stored scripts, 1-5
synchronous and asynchronous I/O, 14-4
tablespace point-in-time recovery, 3-10
tags for backups, 2-26
terminating commands, 15-13
test disk API, 6-7
types of backups, 2-12
using incremental backups, 14-8
using RMAN commands, 1-3

Index-13

using with a pipe, 5-7
recovery window

point of recoverability, 2-43
recovery windows

backup optimization and, 2-52
definition, 2-43

RECOVERY_PARALLELISM initialization
parameter, 17-40

recycle bin
about, 9-6
renamed objects, 9-7
restoring objects from, 9-10
viewing, 9-8

redo logs
incompatible format, 20-3
listing files for backup, 16-2
naming, 17-17
parallel redo, 20-3

redo records
problems when applying, 20-2

REGISTER command, 13-6
REPORT OBSOLETE command, 2-46
reports, 4-2

obsolete backups, 4-4
orphaned backups, 4-5
overview, 4-3

repository
RMAN, 1-7

RESET DATABASE command
INCARNATION option, 13-9

RESETLOGS operation
when necessary, 17-34

RESETLOGS option
of ALTER DATABASE, 17-33, 17-35, 17-37,

17-39
restartable backups

definition, 2-54, 7-8
restarting RMAN backups, 7-8
RESTORE command, 3-2

FORCE option, 3-5
restore optimization, 3-5
restoring

archived redo logs, 17-6
backup control file

using SET DBID, 8-25

control files
to default location, 17-8
to nondefault location, 17-9

database
to default location, 17-37
to new host, 8-11
to new location, 17-38

database files, 3-2
how RMAN chooses, 3-3
mechanics, 3-2
restore optimization, 3-5

datafiles
to default location, 17-6

to raw devices, 17-6
user-managed backups, 17-3

keeping records, 16-27
RESUME clause

ALTER SYSTEM statement, 16-20
resuming recovery after interruption, 17-20
RESYNC CATALOG command, 13-11

FROM CONTROLFILECOPY option, 13-25
resynchronizing the recovery catalog, 13-11
retention policies

affect on backup optimization, 2-52
definition, 2-41
disabling, 2-42
exempt backups, 2-47
recovery window, 2-42
redundancy, 2-42, 2-45

return codes
RMAN, 15-10

RMAN. See Recovery Manager

S
sbtio.log

and RMAN, 15-3
sbttest program, 15-10
scenarios, Recovery Manager

backing up archived redo logs, 7-17
cataloging operating system copies, 7-21
duplexing backup sets, 7-3
handling backup errors, 7-26
incremental backups, 7-19
incremental cumulative backups, 7-19

Index-14

maintaining backups and copies, 7-22
NOARCHIVELOG backups, 7-20
recovering pre-resetlogs backup, 8-4, 8-27
recovery after total media failure, 8-18
setting size of backup sets, 7-15

schemas
changes

updating recovery catalog, 13-14
SCN (system change number)

use in distributed recovery, 18-19
server parameter files

autobackups, 2-38
configuring autobackups, 2-38

server sessions
Recovery Manager, 1-3

session architecture
Recovery Manager, 1-3

SET command
MAXCORRUPT option, 7-26

SET statement
AUTORECOVERY option, 17-15
LOGSOURCE variable, 17-7, 17-19

shared server
configuring for use with RMAN, 6-29

short waits
definition of, 14-12

SHOW command, 2-5, 4-7
SHUTDOWN statement

ABORT option, 17-8, 17-9, 17-28, 17-37, 17-38
size of backup sets

setting, 2-28
SKIP OFFLINE option

of BACKUP, 7-12
SKIP READONLY option

of BACKUP, 7-12
snapshot control files, 1-8

specifying location, 6-26
split mirrors

using as backups, 7-5
splitting mirrors

suspend/resume mode, 16-18
standalone Recovery Manager commands, 1-5
standby databases

creating using RMAN, 3-15
starting RMAN

without connecting to a database, 5-2
STARTUP statement

MOUNT option, 17-29, 17-31
stored scripts

creating RMAN, 13-16
deleting, 13-19
managing, 13-15
Recovery Manager, 1-5

stuck recovery
definition, 20-2

SUSPEND clause
ALTER SYSTEM statement, 16-19

suspending a database, 16-18
suspend/resume mode, 16-18
system time

changing
effect on recovery, 17-28

T
tables

FLASHBACK TABLE statement, 9-4
flashback transaction query, 9-3
recovery of dropped, 18-17

tablespace backups
using RMAN, 7-7, 7-8, 7-9, 7-10

tablespace point-in-time recovery
clone database, 19-2
introduction, 19-2
methods, 19-3
performing, 19-1 to 19-16
planning for, 19-4
procedures for using transportable tablespace

feature, 19-14, 19-15
requirements, 19-5
terminology, 19-2
transportable tablespace method, 19-3
user-managed, 19-3
using RMAN, 3-10

basic steps, 10-4
introduction, 10-1
planning, 10-6
preparing the auxiliary instance, 10-22
restrictions, 10-6
why perform, 10-4

Index-15

tablespaces
backups, 16-8

offline, 16-5
online, 16-8

excluding from RMAN backups, 6-24
read-only

backing up, 7-12, 16-13
read/write

backing up, 16-7
recovering offline in open database, 17-24
transporting RMAN backups, 8-29

tags, 2-26
terminating RMAN commands, 15-13
test databases, creating, 3-13
test disk API, 6-7
testing RMAN

backups, 2-60, 7-10
with media management API, 15-10

time format
RECOVER DATABASE UNTIL TIME

statement, 17-32
time-based recovery, 17-32

coordinated in distributed databases, 18-18
trace files

and RMAN, 15-2
backing up control file, 16-15
control file backups to, 16-14

transportable tablespaces, 8-29
recovery, 18-8
TSPITR and, 19-3

transporting tablespaces between databases, 8-29
trial recovery

explanation, 20-9
overview, 20-9

TSPITR. See tablespace point-in-time recovery
tuning

Recovery Manager
V$ views, 4-9

U
UNAVAILABLE option

of CHANGE, 4-24
unrecoverable objects

and RECOVER operation, 18-6

recovery
unrecoverable objects and, 18-6

unregistering a database from the recovery
catalog, 13-8

UNTIL TIME option
RECOVER command, 17-32

upgrading the recovery catalog, 13-33
user errors

recovery from, 18-16
user-managed backups, 16-4

backup mode, 16-10
control files, 16-14

binary, 16-14
trace files, 16-14

determining datafile status, 16-3
hot backups, 16-11
listing files before, 16-2
offline datafiles, 16-5
offline tablespaces, 16-5
read-only tablespaces, 16-12
restoring, 17-6
tablespace, 16-8
verifying, 16-25
whole database, 16-4

user-managed recovery, 17-27
ADD DATAFILE operation, 18-3
applying archived redo logs, 17-14
complete, 17-21
incomplete, 17-27
interrupting, 17-20
opening database after, 17-33
scenarios, 18-1

user-managed restore operations, 17-3
USING BACKUP CONTROLFILE option

RECOVER command, 17-31
utilities

operating system, using to make copies, 7-21

V
V$ARCHIVED_LOG view, 3-8

listing all archived logs, 16-17
V$BACKUP view, 16-3
V$BACKUP_ASYNC_IO, 4-10
V$BACKUP_CORRUPTION view, 2-58

Index-16

V$BACKUP_SYNC_IO, 4-10
V$COPY_CORRUPTION view, 2-58
V$DATABASE_BLOCK_CORRUPTION

view, 7-10, 8-23
V$DATAFILE view, 16-2

listing files for backups, 16-2
V$LOG_HISTORY view

listing all archived logs, 17-7
V$LOGFILE view, 18-10, 18-11

listing files for backups, 16-2
listing online redo logs, 16-2

V$PROCESS view, 4-9
V$RECOVER_FILE view, 4-9, 17-4
V$RECOVERY_LOG view

listing logs needed for recovery, 17-7
V$RMAN_OUTPUT view, 4-9
V$RMAN_STATUS view, 4-9
V$SESSION view, 4-9
V$SESSION_LONGOPS view, 4-9
V$SESSION_WAIT view, 4-10
V$TABLESPACE view, 16-2
validating

backups, 7-10
views

recovery catalog, 13-29

W
whole database backups

ARCHIVELOG mode, 16-4
inconsistent, 16-4
NOARCHIVELOG mode, 16-4
preparing for, 16-4

	Contents
	Send Us Your Comments
	Preface
	What’s New in Backup and Recovery?
	Part I� Recovery Manager Advanced Architecture and Concepts
	1 Recovery Manager Architecture
	About the RMAN Environment
	RMAN Session Architecture

	RMAN Command Line Client
	How RMAN Compiles and Executes Commands
	Compilation Phase
	Execution Phase

	Issuing RMAN Commands
	Entering Commands at the RMAN Prompt
	Using RMAN with Command Files
	Stored Scripts
	Commands Valid Only in RUN Blocks
	Commands Not Valid in RUN Blocks
	Controlling RMAN Output

	RMAN Pipe Interface

	RMAN Repository
	Storage of the RMAN Repository in the Recovery Catalog
	Registration of Databases in the Recovery Catalog
	Contents of the Recovery Catalog
	Resynchronization of the Recovery Catalog
	Snapshot Control File

	Backups of the Recovery Catalog
	Compatibility of the Recovery Catalog

	Storage of the RMAN Repository in the Control File
	Types of Records in the Control File
	Circular Reuse Records
	Noncircular Reuse Records

	Recovery Without a Recovery catalog

	Media Management
	Performing Backup and Restore with a Media Manager
	Backup Solutions Program

	2 RMAN Backups Concepts
	About RMAN Channels
	Automatic and Manual Channel Allocation
	Automatic Channel Device Configuration and Parallelism
	Automatic Channel Default Device Types
	Automatic Channel Naming Conventions
	Automatic Channel Generic Configurations
	Automatic Channel-Specific Configurations
	Clearing Automatic Channel Settings
	Determining Channel Parallelism to Match Hardware Devices
	Channel Control Options for Manual and Automatic Channels
	Channel Failover

	About RMAN Backups
	About Image Copies
	Using RMAN-Created Image Copies
	User-Managed Image Copies

	About Proxy Copies
	Storage of Backups on Disk and Tape
	Backups of Archived Logs
	Deletion of Archived Logs After Backups
	Backup Failover for Archived Redo Logs

	Multiplexed Backup Sets
	Algorithm for Multiplexed Backups

	Multiplexing by the Media Manager
	Manual Parallelization of Backups

	Multiple Copies of RMAN Backups
	Duplexed Backup Sets
	Backups of Backup Sets
	Uses for Backups of Backup Sets
	Backup Optimization When Backing Up Backup Sets
	Backup Failover When Backing Up Backup Sets

	Backups of Image Copies

	RMAN Backup Options: Naming, Sizing, and Speed
	Filenames for Backup Pieces
	Filenames for Image Copies
	Tags for RMAN Backups
	Default RMAN Backup Tag Format
	How Tags Are Applied
	Uniqueness of Backup Tags

	Size of Backup Pieces
	Number and Size of Backup Sets
	Factors Affecting the Number and Size of Backup Sets
	Overview of the MAXSETSIZE Parameter
	Specifying MAXSETSIZE: Example

	I/O Read Rate of Backups

	RMAN Backup Types
	Incremental Backups
	Incremental Backup Algorithm
	Multilevel Incremental Backups
	Differential Incremental Backups
	Cumulative Incremental Backups
	Planning an Incremental Backup Strategy

	Control File and Server Parameter File Autobackups
	How RMAN Performs Control File Autobackups
	When RMAN Performs Control File Autobackups
	Control File Autobackups After Backup Acivities
	Control File Autobackups After Database Structural Changes

	Backup Retention Policies
	Recovery Window
	Backup Redundancy
	Batch Deletes of Obsolete Backups
	Exempting Backups from the Retention Policy
	Relationship Between Retention Policy and Flash Recovery Area Rules

	Backup Optimization
	Backup Optimization Algorithm
	Requirements for Enabling and Disabling Backup Optimization
	Effect of Retention Policies on Backup Optimization
	Backup Optimization and a Recovery Window
	Backup Optimization and Redundancy

	Restartable Backups
	Managing Backup Windows and Performance: BACKUP... DURATION
	Controlling RMAN Behavior when Backup Window Ends with PARTIAL
	Managing Backup Performance with MINIMIZE TIME and MINIMIZE LOAD

	RMAN Backup Errors
	Tests and Integrity Checks for Backups
	Detecting Physical and Logical Block Corruption
	Detection of Logical Block Corruption
	Detection of Fractured Blocks During Open Backups
	Backup Validation with RMAN

	3 RMAN Recovery Concepts
	Restoring Files with RMAN
	Mechanics of Restore Operations
	File Selection in Restore Operations
	Restore Failover
	Restore Optimization

	Datafile Media Recovery with RMAN
	RMAN Media Recovery: Basic Steps
	Mechanics of Recovery: Incremental Backups and Redo Logs
	How RMAN Searches for Archived Redo Logs During Recovery
	RMAN Behavior When the Repository Is Not Synchronized

	Incomplete Recovery
	Tablespace Point-in-Time Recovery

	Block Media Recovery with RMAN
	When Block Media Recovery Should Be Used
	Block Media Recovery When Redo Is Missing

	Database Duplication with RMAN
	Physical Standby Database Creation with RMAN

	4 RMAN Maintenance Concepts
	RMAN Reporting
	Using the RMAN LIST Command
	RMAN Reports
	Reports of Obsolete Backups
	Reports of Orphaned Backups
	Understanding Database Incarnations

	SHOW Command Output

	Crosschecks of RMAN Backups
	Monitoring RMAN Through V$ Views
	Correlating Server Sessions with RMAN Channels
	Matching Server Sessions with Channels When One RMAN Session Is Active
	Matching Server Sessions with Channels in Multiple RMAN Sessions
	Obtaining the Channel ID from the RMAN Output
	Correlating Server Sessions with Channels by Using SET COMMAND ID

	Monitoring RMAN Job Progress
	Monitoring RMAN Interaction with the Media Manager
	Monitoring RMAN Job Performance
	Determining Which Datafiles Require Recovery

	Deletion of RMAN Backups
	Summary of RMAN Deletion Methods
	Removal of Backups with the DELETE Command
	Advantage of Using DELETE Instead of Operating System Commands
	Deletion of Obsolete Backups
	Deletion of Expired Backups
	Deletion of Archived Redo Logs That Are Already Backed Up

	Behavior of DELETE Command When the Repository and Media Do Not Correspond
	Removal of Backups with the BACKUP ... DELETE INPUT Command

	CHANGE AVAILABLE and CHANGE UNAVAILABLE with RMAN Backups
	Changing Retention Policy Status of RMAN Backups

	Part II� Performing Advanced RMAN Backup and Recovery
	5 Connecting to Databases with RMAN
	Starting RMAN Without Connecting to a Database
	Connecting to a Target Database and a Recovery Catalog
	Connecting to the Target Database and Recovery Catalog from the Command Line
	Connecting to the Target Database and Recovery Catalog from the RMAN Prompt

	Connecting to an Auxiliary Database
	Connecting to an Auxiliary Database from the Command Line
	Connecting to an Auxiliary Database from the RMAN Prompt

	Diagnosing Connection Problems
	Diagnosing Target and Auxiliary Database Connection Problems
	Diagnosing Recovery Catalog Connection Problems

	Hiding Passwords When Connecting to Databases
	Sending RMAN Output Simultaneously to the Terminal and a Log File
	Executing RMAN Commands Through a Pipe
	Executing Multiple RMAN Commands In Succession Through a Pipe: Example
	Executing RMAN Commands In a Single Job Through a Pipe: Example

	6 Configuring the RMAN Environment: Advanced Topics
	Configuring the Flash Recovery Area: Advanced Topics
	Configuring Online Redo Log Creation in the Flash Recovery Area
	Configuring Control File Creation in the Flash Recovery Area
	Archived Redo Log Creation in the Flash Recovery Area
	Rules for Initialization Parameters Affecting Redo Log File Destinations
	Filenames for Archived Redo Log Files in the Flash Recovery Area

	RMAN File Creation in the Flash Recovery Area

	Configuring RMAN to Make Backups to a Media Manager
	Prerequisites for Using a Media Manager with RMAN
	Locating the Media Management Library: The SBT_LIBRARY Parameter
	Testing Whether the Media Manager Library Is Integrated Correctly
	Configuring Media Management Software for RMAN Backups
	Configuring Backup Piece Names and Sizes for a Media Manager
	Configuring Backup Piece Names for RMAN Backups to a Media Manager
	Configuring Backup Piece Sizes for RMAN Backups to a Media Manager

	Testing ALLOCATE CHANNEL on the Media Manager
	Testing a Backup to the Media Manager

	Configuring Automatic Channels for Use with a Media Manager

	Configuring Automatic Channels
	Configuring Parallelism for Automatic Channels
	Configuring a Generic Automatic Channel for a Device Type
	Configured Channels and the Default Device Type

	Showing the Automatic Channel Configuration Settings
	Showing the Automatic Channel Settings
	Showing the Configured Device Types
	Showing the Default Device Type
	Manually Overriding Configured Channels

	Configuring a Specific Channel for a Device Type
	Configuring Specific Channels: Examples
	Mixing Generic and Specific Channels
	Relationship Between CONFIGURE CHANNEL and Parallelism Setting

	Clearing Channel and Device Settings

	Configuring the Maximum Size of Backup Sets and Pieces
	Showing the Default Maximum Size of Backup Sets: SHOW MAXSETSIZE

	Configuring Backup Optimization
	Displaying Backup Optimization Setting: SHOW BACKUP OPTIMIZATION

	Configuring Backup Duplexing: CONFIGURE... BACKUP COPIES
	Showing the Configured Degree of Duplexing: SHOW... BACKUP COPIES

	Configuring Tablespaces for Exclusion from Whole Database Backups
	Showing the Tablespaces Excluded from Backups

	Configuring Auxiliary Instance Datafile Names: CONFIGURE AUXNAME
	Showing the Default Filenames Configured for Auxiliary Channels

	Setting the Snapshot Control File Location
	Default Location of the Snapshot Control File
	Viewing the Configured Location of the Snapshot Control File
	Setting the Location of the Snapshot Control File
	Showing the Current Snapshot Control File Name

	Setting Up RMAN for Use with a Shared Server

	7 Making Backups with RMAN: Advanced Topics
	Configuring and Allocating Channels for Use in Backups
	Configuring the Default Backup Type for Disk
	Duplexing Backup Sets
	Duplexing Backup Sets with CONFIGURE BACKUP COPIES
	Duplexing Backupsets with BACKUP... COPIES

	Making Split Mirror Backups with RMAN
	Backing Up Backup Sets with RMAN
	Backing Up Image Copies with RMAN
	Restarting and Optimizing RMAN Backups
	Backing Up Files Using Backup Optimization
	Restarting a Backup After It Partially Completes

	Validating Backups with RMAN
	RMAN Backup Examples
	Specifying the Device Type on the BACKUP Command: Example
	Skipping Tablespaces when Backing Up a Database: Example
	Restarting a Backup: Example
	Spreading a Backup Across Multiple Disk Drives: Example
	Backing Up a Large Database to Multiple File Systems: Example
	Specifying the Size of Backup Sets: Example
	Limiting the Size of Backup Pieces: Example
	Backing Up Archived Redo Logs in a Failover Scenario: Example
	Backing Up Archived Logs Needed to Recover an Online Backup: Example
	Backing Up and Deleting Multiple Copies of an Archived Redo Log: Example
	Performing Differential Incremental Backups: Example
	Performing Cumulative Incremental Backups: Example
	Determining How Channels Distribute a Backup Workload: Example
	Backing Up in NOARCHIVELOG Mode: Example
	Cataloging User-Managed Datafile Copies: Example
	Keeping a Long-Term Backup: Example
	Optimizing Backups: Examples
	Optimizing a Database Backup: Example
	Optimizing a Daily Archived Log Backup to a Single Tape: Example
	Optimizing a Daily Archived Log Backup to Multiple Tapes: Example
	Creating a Weekly Secondary Backup of Archived Logs: Example

	Handling Errors During Backups: Example

	8 Advanced RMAN Recovery Techniques
	Performing Database Point-In-Time Recovery
	Performing Point-in-Time Recovery with a Current Control File
	Point-in-Time Recovery to a Previous Incarnation

	Performing Recovery with a Backup Control File
	Performing Recovery with a Backup Control File and a Recovery Catalog
	Performing Recovery with a Backup Control File and No Recovery Catalog

	Restoring the Database to a New Host
	Specifying Filenames When Restoring to a New Host
	Determining the SCN for Incomplete Recovery After Restore
	Testing the Restore of a Database to a New Host: Scenario

	Performing Disaster Recovery
	Performing Block Media Recovery with RMAN
	Recovering Datablocks By Using All Available Backups
	Recovering Datablocks By Using Selected Backups
	Recovering Blocks Listed in V$DATABASE_BLOCK_CORRUPTION

	RMAN Restore and Recovery Examples
	Restoring Datafile Copies to a New Host: Example
	Restoring When Multiple Databases in the Catalog Share the Same Name: Example
	Obtaining the DBID of a Database That You Need to Restore
	Restoring a Backup Control File By Using the DBID

	Recovering a Database in NOARCHIVELOG Mode: Example
	Recovering a Lost Datafile Without a Backup: Example
	Transporting a Tablespace to a Different Database on the Same Platform: Example

	9 Flashback Technology: Recovering from Logical Corruptions
	Oracle Flashback Technology: Overview
	Oracle Flashback Query: Recovering at the Row Level
	Oracle Flashback Table: Returning Individual Tables to Past States
	Prerequisites for Using Flashback Table
	Performing Flashback Table

	Oracle Flashback Drop: Undo a DROP TABLE Operation
	What is the Recycle Bin?
	How Tables and Other Objects Are Placed in the Recycle Bin
	Naming Convention for Objects in the Recycle Bin
	Viewing and Querying Objects in the Recycle Bin
	Recycle Bin Capacity and Space Pressure
	Understanding Space Pressure
	How the Database Responds to Space Pressure
	Recycle Bin Objects and Segments

	Performing Flashback Drop on Tables in the Recycle Bin
	Flashback Drop of Multiple Objects With the Same Original Name

	Purging Objects from the Recycle Bin
	PURGE TABLE: Purging a Table and Dependent Objects
	PURGE INDEX: Freeing Space in the Recycle Bin
	PURGE TABLESPACE: Purging All Objects in a Tablespace
	PURGE RECYCLEBIN: Purging All Objects in a User’s Recycle Bin
	PURGE DBA_RECYCLEBIN: Purging All Recycle Bin Objects
	Dropping a Tablespace, Cluster, User or Type and the Recycle Bin

	Privileges and Security
	Limitations and Restrictions on Flashback Drop

	Oracle Flashback Database: Alternative to Point-In-Time Recovery
	Limitations of Flashback Database
	Requirements for Flashback Database
	Enabling Flashback Database
	Sizing the Flash Recovery Area for Flashback Logs
	Estimating Flashback Database Storage Requirements

	Determining the Current Flashback Database Window
	Performance Tuning for Flashback Database
	Monitoring Flashback Database
	Running the FLASHBACK DATABASE Command from RMAN
	Running the FLASHBACK DATABASE Command from SQL*Plus

	Using Oracle Flashback Features Together in Data Recovery: Scenario

	10 RMAN Tablespace Point-in-Time Recovery (TSPITR)
	Understanding RMAN TSPITR
	RMAN TSPITR Concepts
	How TSPITR Works With an RMAN-Managed Auxiliary Instance

	Deciding When to Use TSPITR
	Limitations of TSPITR
	Limitations of TSPITR Without a Recovery Catalog

	Planning and Preparing for TSPITR
	Choosing the Right Target Time for TSPITR
	Determining the Recovery Set: Analyzing Data Relationships
	Identifying and Resolving Dependencies on the Primary Database

	Identifying and Preserving Objects That Will Be Lost After TSPITR

	Performing Basic RMAN TSPITR
	Fully Automated RMAN TSPITR
	Using an Auxiliary Destination
	Performing Fully Automated RMAN TSPITR
	Tasks to Perform After Successful TSPITR
	Backing Up Recovered Tablespaces After TSPITR

	Handling Errors in Automated TSPITR

	Performing Customized RMAN TSPITR with an RMAN-Managed Auxiliary Instance
	Renaming TSPITR Recovery Set Datafiles with SET NEWNAME
	Renaming TSPITR Auxiliary Set Datafiles
	Renaming TSPITR Auxiliary Set Datafiles with SET NEWNAME
	Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles
	Order of Precedence Among File Renaming Methods
	Specifying Auxiliary Instance Control File Location
	Specifying Auxiliary Instance Online Log Location

	Using Image Copies for Faster TSPITR Performance
	Using CONFIGURE AUXNAME With Recovery Set Image Copies
	SET NEWNAME and CONFIGURE AUXNAME With Auxiliary Set Image Copies
	TSPITR With CONFIGURE AUXNAME and Image Copies: Scenario

	Customizing Initialization Parameters for the Automatic Auxiliary Instance

	Performing RMAN TSPITR Using Your Own Auxiliary Instance
	Preparing Your Own Auxiliary Instance for RMAN TSPITR
	Step 1: Create an Oracle Password File for the Auxiliary Instance
	Step 2: Create an Initialization Parameter File for the Auxiliary Instance
	Step 3: Check Oracle Net Connectivity to the Auxiliary Instance

	Preparing RMAN Commands for TSPITR with Your Own Auxiliary Instance
	Planning Channels for TSPITR with Your Own Auxiliary Instance
	Planning Datafile Names with Your Own Auxiliary Instance: SET NEWNAME

	Executing TSPITR with Your Own Auxiliary Instance
	Step 1: Start the Auxiliary Instance in NOMOUNT Mode
	Step 2: Connect the RMAN Client to Target and Auxiliary Instances
	Step 3: Execute the RECOVER TABLESPACE Command
	Using a Command File for TSPITR

	Executing TSPITR With Your Own Auxiliary Instance: Scenario

	Troubleshooting RMAN TSPITR
	Troubleshooting TSPITR Example: Filename Conflicts
	Troubleshooting TSPITR Example: Insufficient Sort Space during Export
	Troubleshooting: Restarting Manual Auxiliary Instance After TSPITR Failure

	11 Duplicating a Database with Recovery Manager
	Creating a Duplicate Database: Overview
	How Recovery Manager Duplicates a Database
	Database Duplication Options
	Duplicating a Database: Prerequisites and Restrictions

	Generating Files for the Duplicate Database
	Creating the Duplicate Control Files
	Creating the Duplicate Online Redo Logs
	Renaming Datafiles When Duplicating a Database
	Preventing Filename Checking

	Skipping Read-Only Tablespaces When Duplicating a Database
	Skipping OFFLINE NORMAL Tablespaces When Duplicating a Database

	Preparing the Auxiliary Instance for Duplication: Basic Steps
	Task 1: Create an Oracle Password File for the Auxiliary Instance
	Task 2: Ensure Oracle Net Connectivity to the Auxiliary Instance
	Task 3: Create an Initialization Parameter File for the Auxiliary Instance
	Task 4: Start the Auxiliary Instance
	Task 5: Mount or Open the Target Database
	Task 6: Make Sure You Have the Necessary Backups and Archived Redo Logs
	Task 7: Allocate Auxiliary Channels if Automatic Channels Are Not Configured

	Creating a Duplicate Database on a Local or Remote Host
	Duplicating a Database on a Remote Host with the Same Directory Structure
	Duplicating a Database on a Remote Host with a Different Directory Structure
	Converting Filenames with Only Initialization Parameters
	Converting Filenames with Only DUPLICATE Parameters
	Converting Filenames with SET NEWNAME
	Converting Filenames with CONFIGURE AUXNAME

	Creating a Duplicate Database on the Local Host
	Duplicating a Database to an Automatic Storage Management Environment

	Database Duplication Examples
	Duplicating When the Datafiles Use Inconsistent Paths: Example
	Resynchronizing the Duplicate Database with the Target Database: Example
	Creating Duplicate of the Database at a Past Point in Time: Example
	Duplicating with a Client-Side Parameter File: Example
	Running RMAN from host_dup
	Running RMAN from host_tar
	Copying the Parameter File from host_dup to host_tar
	Mounting the host_dup File System on host_tar

	12 Migrating Databases To and From ASM with Recovery Manager
	Migrating a Database into ASM
	Limitation on ASM Migration with Transportable Tablespaces
	Preparing to Migrate a Database to ASM
	Determine Your DBID
	Determine Names of Database Files
	Generate RMAN Command File to Undo ASM Migration

	Disk-Based Migration of a Database to ASM
	Cleanup of Non-ASM Files After ASM Migration

	Using Tape Backups to Migrate a Database to ASM
	Performing Migration of a Database to ASM Storage using RMAN Tape Backup

	Migrating the Flash Recovery Area to ASM
	Migrating a Database from ASM to Non-ASM Storage
	PL/SQL Scripts Used in Migrating to ASM Storage
	Generating ASM-to-Non-ASM Storage Migration Script
	Migrating Online Redo Logs to ASM Storage
	Migrating Standby Online Redo Log Files to ASM Storage

	13 Managing the Recovery Catalog
	Creating a Recovery Catalog
	Configuring the Recovery Catalog Database
	Planning the Size of the Recovery Catalog Schema
	Allocating Disk Space for the Recovery Catalog Database

	Creating the Recovery Catalog Owner
	Creating the Recovery Catalog

	Managing Target Database Records in the Recovery Catalog
	Registering a Database in the Recovery Catalog
	Cataloging Older Files in the Recovery Catalog
	Cataloging Oracle7 Datafile Copies in the Recovery Catalog

	Registering Multiple Databases in a Recovery Catalog

	Unregistering a Target Database from the Recovery Catalog
	Resetting a Database Incarnation in the Recovery Catalog
	Removing Recovery Catalog Records with Status DELETED

	Resynchronizing the Recovery Catalog
	Types of Records That Are Resynchronized
	Full and Partial Resynchronization
	When Should You Resynchronize?
	Resynchronizing When the Recovery Catalog is Unavailable
	Resynchronizing in ARCHIVELOG Mode When You Back Up Infrequently
	Resynchronizing After Physical Database Changes

	Forcing a Full Resynchronization of the Recovery Catalog
	Resynchronizing the Recovery Catalog and CONTROLFILE_RECORD_KEEP_TIME

	Working with RMAN Stored Scripts in the Recovery Catalog
	Creating Stored Scripts: CREATE SCRIPT
	Running Stored Scripts: EXECUTE SCRIPT
	Displaying a Stored Script: PRINT SCRIPT
	Listing Stored Scripts: LIST SCRIPT NAMES
	Updating Stored Scripts: REPLACE SCRIPT
	Deleting Stored Scripts: DELETE SCRIPT
	Starting the RMAN Client and Running a Stored Script
	Restrictions on Stored Script Names

	Managing the Control File When You Use a Recovery Catalog
	Backing Up and Recovering the Recovery Catalog
	Backing Up the Recovery Catalog
	Back Up the Recovery Catalog Often
	Choosing the Appropriate Method for Physical Backups
	Storing the Recovery Catalog in an Appropriate Place

	Restoring and Recovering the Recovery Catalog from Backup
	Re-Creating the Recovery Catalog

	Exporting and Importing the Recovery Catalog
	Considerations When Moving Catalog Data
	Exporting the Recovery Catalog
	Importing the Recovery Catalog

	Increasing Availability of the Recovery Catalog
	Querying the Recovery Catalog Views
	Distinguishing a Database in the Catalog Views
	Distinguishing a Database Object in the Catalog Views
	Querying Catalog Views for the Target DB_KEY or DBID Values

	Determining the Schema Version of the Recovery Catalog
	Upgrading the Recovery Catalog
	Dropping the Recovery Catalog

	14 Tuning Backup and Recovery
	Tuning Recovery Manager: Overview
	I/O Buffer Allocation
	Allocation for Disk Buffers
	Allocation of Tape Buffers

	Synchronous and Asynchronous I/O
	Synchronous I/O: Example

	Factors Affecting Backup Speed to Tape
	Native Transfer Rate
	Tape Compression
	Tape Streaming
	Physical Tape Block Size

	Features and Options Used to Tune RMAN Performance
	Using the RATE Parameter to Control Disk Bandwidth Usage

	Tuning RMAN Backup Performance: Examples
	Step 1: Remove RATE Parameters from Configured and Allocated Channels
	Step 2: If You Use Synchronous Disk I/O, Set DBWR_IO_SLAVES
	Step 3: If You Fail to Allocate Shared Memory, Set LARGE_POOL_SIZE
	Step 4: Determine Whether Files Are Empty or Contain Few Changes
	Step 5: Query V$ Views to Identify Bottlenecks
	Identifying Bottlenecks with Synchronous I/O
	Identifying Bottlenecks with Asynchronous I/O

	Instance Recovery Performance Tuning: FAST_START_MTTR_TARGET
	Understanding Instance Recovery
	Cache Recovery (Rolling Forward)
	Transaction Recovery (Rolling Back)

	Checkpointing and Cache Recovery
	How Checkpoints Affect Performance
	Fast Cache Recovery Trade-offs

	Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET
	Practical Values for FAST_START_MTTR_TARGET
	Reducing Checkpoint Frequency to Optimize Runtime Performance
	Monitoring Cache Recovery with V$INSTANCE_RECOVERY

	Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor
	Calibrate the FAST_START_MTTR_TARGET
	Determine the Practical Range for FAST_START_MTTR_TARGET
	Determining Lower Bound for FAST_START_MTTR_TARGET: Scenario
	Determining Upper Bound for FAST_START_MTTR_TARGET
	Selecting Preliminary Value for FAST_START_MTTR_TARGET

	Evaluate Different Target Values with MTTR Advisor
	Enabling MTTR Advisor
	Using MTTR Advisor
	Viewing MTTR Advisor Results: V$MTTR_TARGET_ADVICE

	Determine Optimal Size for Redo Logs

	15 Recovery Manager Troubleshooting
	Interpreting RMAN Message Output
	Identifying Types of Message Output
	Recognizing RMAN Error Message Stacks
	Identifying Error Codes
	RMAN Error Message Numbers
	ORA-19511: Media Manager Errors

	Interpreting RMAN Error Stacks
	Interpreting RMAN Errors: Example
	Interpreting Server Errors: Example
	Interpreting SBT 2.0 Media Management Errors: Example
	Interpreting SBT 1.1 Media Management Errors: Example

	Identifying RMAN Return Codes

	Testing the Media Management API
	Obtaining the sbttest Utility
	Obtaining Online Documentation for the sbttest Utility
	Using the sbttest Utility

	Terminating an RMAN Command
	Terminating the Session with ALTER SYSTEM KILL SESSION
	Terminating the Session at the Operating System Level
	Terminating an RMAN Session That Is Hung in the Media Manager
	Components of an RMAN Session
	Process Behavior During a Hung Job
	Terminating an RMAN Session: Basic Steps

	RMAN Troubleshooting Scenarios
	After Installation of Media Manager, RMAN Channel Allocation Fails: Scenario
	After Installation of Media Manager, RMAN Channel Allocation Fails: Diagnosis
	After Installation of Media Manager, RMAN Channel Allocation Fails: Solution

	Backup Job Is Hanging: Scenario
	Backup Job Is Hanging: Diagnosis
	Backup Job Is Hanging: Solution

	RMAN Fails to Start RPC Call: Scenario
	RMAN Fails to Start RPC Call: Diagnosis

	Backup Fails with Invalid RECID Error: Scenario
	Backup Fails with Invalid RECID Error: Diagnosis
	Backup Fails with Invalid RECID Error: Solution 1
	Backup Fails with Invalid RECID Error: Solution 2

	Backup Fails Because of Control File Enqueue: Scenario
	Backup Fails Because of Control File Enqueue: Diagnosis
	Backup Fails Because of Control File Enqueue: Solution

	RMAN Fails to Delete All Archived Logs: Scenario
	RMAN Fails to Delete All Archived Logs: Diagnosis
	RMAN Fails to Delete All Archived Logs: Solution

	Backup Fails Because RMAN Cannot Locate an Archived Log: Scenario
	Backup Fails Because RMAN Cannot Locate an Archived Log: Diagnosis
	Backup Fails Because RMAN Cannot Locate an Archived Log: Solution

	RMAN Does Not Recognize Character Set Name: Scenario
	RMAN Does Not Recognize Character Set Name: Diagnosis
	RMAN Does Not Recognize Character Set Name: Solution

	RMAN Denies Logon to Target Database: Scenario
	RMAN Denies Logon to Target Database: Diagnosis
	RMAN Denies Logon to Target Database: Solution

	Database Duplication Fails Because of Missing Log: Scenario
	Database Duplication Fails Because of Missing Log: Diagnosis
	Database Duplication Fails Because of Missing Log: Solution

	Duplication Fails with Multiple RMAN-06023 Errors: Scenario
	Duplication Fails with Multiple RMAN-06023 Errors: Diagnosis
	Duplication Fails with Multiple RMAN-06023 Errors: Solution

	UNKNOWN Database Name Appears in Recovery Catalog: Scenario
	UNKNOWN Database Name Appears in Recovery Catalog: Diagnosis
	UNKNOWN Database Name Appears in Recovery Catalog: Solution

	Part III� Performing User-Managed Backup and Recovery
	16 Making User-Managed Backups
	Querying V$ Views to Obtain Backup Information
	Listing Database Files Before a Backup
	Determining Datafile Status for Online Tablespace Backups

	Making User-Managed Backups of the Whole Database
	Making Consistent Whole Database Backups

	Making User-Managed Backups of Offline Tablespaces and Datafiles
	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces
	Making Multiple User-Managed Backups of Online Read/Write Tablespaces
	Backing Up Online Tablespaces in Parallel
	Backing Up Online Tablespaces Serially

	Ending a Backup After an Instance Failure or SHUTDOWN ABORT
	Ending Backup Mode with the ALTER DATABASE END BACKUP Statement
	Ending Backup Mode with the SQL*Plus RECOVER Command

	Making User-Managed Backups of Read-Only Tablespaces

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File
	Backing Up the Control File to a Trace File
	Backing Up the Control File to a Trace File: Example

	Making User-Managed Backups of Archived Redo Logs
	Making User-Managed Backups in SUSPEND Mode
	About the Suspend/Resume Feature
	Making Backups in a Suspended Database

	Making User-Managed Backups to Raw Devices
	Backing Up to Raw Devices on UNIX
	Backing Up with the dd utility on UNIX: Examples

	Backing Up to Raw Devices on Windows
	Backing Up with OCOPY: Example
	Specifying the -b and -r Options for OCOPY: Example

	Verifying User-Managed Backups
	Testing the Restore of Backups
	Running the DBVERIFY Utility

	Making Logical Backups with Oracle Export Utilities
	Making User-Managed Backups of Miscellaneous Oracle Files
	Keeping Records of Current and Backup Database Files
	Recording the Locations of Datafiles, Control Files, and Online Redo Logs
	Recording the Locations of Archived Redo Logs
	Recording the Locations and Dates of Backup Files

	17 Performing User-Managed Database Flashback and Recovery
	User-Managed Backup and Flashback Features of Oracle
	Performing Flashback Database with SQL*Plus

	About User-Managed Restore Operations
	Determining Which Datafiles Require Recovery
	Restoring Datafiles and Archived Redo Logs
	Restoring Datafiles with Operating System Utilities
	Restoring Archived Redo Logs with Operating System Utilities

	Restoring Control Files
	Losing a Member of a Multiplexed Control File
	Copying a Multiplexed Control File to a Default Location
	Copying a Multiplexed Control File to a Nondefault Location

	Losing All Current Control Files When a Backup Is Available
	Restoring a Backup Control File to the Default Location
	Restoring a Backup Control File to a Nondefault Location

	Losing All Current and Backup Control Files

	About User-Managed Media Recovery
	Preconditions of Performing User-Managed Recovery
	Applying Logs Automatically with the RECOVER Command
	Automating Recovery with SET AUTORECOVERY
	Automating Recovery with the AUTOMATIC Option of the RECOVER Command

	Recovering When Archived Logs Are in the Default Location
	Recovering When Archived Logs Are in a Nondefault Location
	Resetting the Archived Log Destination
	Overriding the Archived Log Destination
	Responding to Unsuccessful Application of Redo Logs
	Interrupting User-Managed Media Recovery

	Performing Complete User-Managed Media Recovery
	Performing Closed Database Recovery
	Preparing for Closed Database Recovery
	Restoring Backups of the Damaged or Missing Files
	Recovering the Database

	Performing Datafile Recovery in an Open Database
	Preparing for Open Database Recovery
	Restoring Backups of the Inaccessible Datafiles
	Recovering Offline Tablespaces in an Open Database

	Performing Incomplete User-Managed Media Recovery
	Preparing for Incomplete Recovery
	Restoring Datafiles Before Performing Incomplete Recovery
	Performing Cancel-Based Incomplete Recovery
	Performing Time-Based or Change-Based Incomplete Recovery

	Opening the Database with the RESETLOGS Option
	About Opening with the RESETLOGS Option
	Executing the ALTER DATABASE OPEN Statements
	Checking the Alert Log After a RESETLOGS Operation

	Recovering a Database in NOARCHIVELOG Mode
	Restoring a NOARCHIVELOG Database to its Default Location
	Restoring a NOARCHIVELOG Database to a New Location

	Performing Media Recovery in Parallel

	18 Advanced User-Managed Recovery Scenarios
	Recovering After the Loss of Datafiles: Scenarios
	Losing Datafiles in NOARCHIVELOG Mode
	Losing Datafiles in ARCHIVELOG Mode

	Recovering Through an Added Datafile with a Backup Control File: Scenario
	Re-Creating Datafiles When Backups Are Unavailable: Scenario
	Recovering Through RESETLOGS with Created Control File: Scenario
	Recovering NOLOGGING Tables and Indexes: Scenario
	Recovering Read-Only Tablespaces with a Backup Control File: Scenario
	Recovery of Read-Only or Slow Media with a Backup Control File
	Recovery of Read-Only Files with a Re-Created Control File

	Recovering Transportable Tablespaces: Scenario
	Recovering After the Loss of Online Redo Log Files: Scenarios
	Recovering After Losing a Member of a Multiplexed Online Redo Log Group
	Recovering After the Loss of All Members of an Online Redo Log Group
	Losing an Inactive Online Redo Log Group
	Clearing Inactive, Archived Redo
	Clearing Inactive, Not-Yet-Archived Redo
	Failure of CLEAR LOGFILE Operation

	Losing an Active Online Redo Log Group
	Loss of Multiple Redo Log Groups

	Recovering After the Loss of Archived Redo Log Files: Scenario
	Recovering from a Dropped Table: Scenario
	Performing Media Recovery in a Distributed Environment: Scenario
	Coordinating Time-Based and Change-Based Distributed Database Recovery

	Dropping a Database with SQL*Plus

	19 Performing User-Managed TSPITR
	Introduction to User-Managed Tablespace Point-in-Time Recovery
	TSPITR Terminology
	TSPITR Methods

	Preparing for Tablespace Point-in-Time Recovery: Basic Steps
	Step 1: Review TSPITR Requirements
	Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces
	Step 3: Determine Whether Objects Will Be Lost
	Step 4: Choose a Method for Connecting to the Auxiliary Instance
	Step 5: Create an Oracle Password File for the Auxiliary Instance
	Step 6: Create the Initialization Parameter File for the Auxiliary Instance

	Restoring and Recovering the Auxiliary Database: Basic Steps
	Restoring and Recovering the Auxiliary Database on the Same Host
	Restoring the Auxiliary Database on a Different Host with the Same Path Names
	Restoring the Auxiliary Database on a Different Host with Different Path Names

	Performing TSPITR with Transportable Tablespaces
	Step 1: Unplugging the Tablespaces from the Auxiliary Database
	Step 2: Transporting the Tablespaces into the Primary Database

	Performing Partial TSPITR of Partitioned Tables
	Step 1: Create a Table on the Primary Database for Each Partition Being Recovered
	Step 2: Drop the Indexes on the Partition Being Recovered
	Step 3: Exchange Partitions with Standalone Tables
	Step 4: Drop the Recovery Set Tablespace
	Step 5: Create Tables at Auxiliary Database
	Step 6: Drop Indexes on Partitions Being Recovered
	Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database
	Step 8: Transport the Recovery Set Tablespaces
	Step 9: Exchange Partitions with Standalone Tables on the Primary Database
	Step 10: Back Up the Recovered Tablespaces in the Primary Database

	Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped
	Step 1: Find the Low and High Range of the Partition that Was Dropped
	Step 2: Create a Temporary Table
	Step 3: Delete Records From the Partitioned Table
	Step 4: Drop the Recovery Set Tablespace
	Step 5: Create Tables at the Auxiliary Database
	Step 6: Drop Indexes on Partitions Being Recovered
	Step 7: Exchange Partitions with Standalone Tables
	Step 8: Transport the Recovery Set Tablespaces
	Step 9: Insert Standalone Tables into Partitioned Tables
	Step 10: Back Up the Recovered Tablespaces in the Primary Database

	Performing TSPITR of Partitioned Tables When a Partition Has Split
	Step 1: Drop the Lower of the Two Partitions at the Primary Database
	Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces

	20 Troubleshooting User-Managed Media Recovery
	About User-Managed Media Recovery Problems
	Investigating the Media Recovery Problem: Phase 1
	Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
	Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3
	Allowing Recovery to Corrupt Blocks: Phase 4
	Performing Trial Recovery
	How Trial Recovery Works
	Executing the RECOVER ... TEST Statement

	Index

