The signal
function provides a simple interface for establishing
an action for a particular signal. The function and associated macros
are declared in the header file `signal.h'.
void
. So, you should define handler functions like this:
void handler (int signum
) { ... }
The name sighandler_t
for this data type is a GNU extension.
signal
function establishes action as the action for
the signal signum.
The first argument, signum, identifies the signal whose behavior you want to control, and should be a signal number. The proper way to specify a signal number is with one of the symbolic signal names described in section Standard Signals---don't use an explicit number, because the numerical code for a given kind of signal may vary from operating system to operating system.
The second argument, action, specifies the action to use for the signal signum. This can be one of the following:
SIG_DFL
SIG_DFL
specifies the default action for the particular signal.
The default actions for various kinds of signals are stated in
section Standard Signals.
SIG_IGN
SIG_IGN
specifies that the signal should be ignored.
Your program generally should not ignore signals that represent serious
events or that are normally used to request termination. You cannot
ignore the SIGKILL
or SIGSTOP
signals at all. You can
ignore program error signals like SIGSEGV
, but ignoring the error
won't enable the program to continue executing meaningfully. Ignoring
user requests such as SIGINT
, SIGQUIT
, and SIGTSTP
is unfriendly.
When you do not wish signals to be delivered during a certain part of
the program, the thing to do is to block them, not ignore them.
See section Blocking Signals.
handler
If you set the action for a signal to SIG_IGN
, or if you set it
to SIG_DFL
and the default action is to ignore that signal, then
any pending signals of that type are discarded (even if they are
blocked). Discarding the pending signals means that they will never be
delivered, not even if you subsequently specify another action and
unblock this kind of signal.
The signal
function returns the action that was previously in
effect for the specified signum. You can save this value and
restore it later by calling signal
again.
If signal
can't honor the request, it returns SIG_ERR
instead. The following errno
error conditions are defined for
this function:
EINVAL
SIGKILL
or SIGSTOP
.
Here is a simple example of setting up a handler to delete temporary files when certain fatal signals happen:
#include <signal.h> void termination_handler (int signum) { struct temp_file *p; for (p = temp_file_list; p; p = p->next) unlink (p->name); } int main (void) { ... if (signal (SIGINT, termination_handler) == SIG_IGN) signal (SIGINT, SIG_IGN); if (signal (SIGHUP, termination_handler) == SIG_IGN) signal (SIGHUP, SIG_IGN); if (signal (SIGTERM, termination_handler) == SIG_IGN) signal (SIGTERM, SIG_IGN); ... }
Note how if a given signal was previously set to be ignored, this code avoids altering that setting. This is because non-job-control shells often ignore certain signals when starting children, and it is important for the children to respect this.
We do not handle SIGQUIT
or the program error signals in this
example because these are designed to provide information for debugging
(a core dump), and the temporary files may give useful information.
ssignal
function does the same thing as signal
; it is
provided only for compatibility with SVID.
signal
to indicate an error.
Go to the first, previous, next, last section, table of contents.