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lan Hickman
introduces
aspects of
passive filter
design that are
important yet
frequently
omitted from
standard
descriptions.

any applications call for the filtering of signals, to
M pass those that are wanted and to block those that

are outside the desired passband. Sometimes digi-
tal filtering is appropriate, especially if the signals are in dig-
ital form already, but oftentimes analog filters suffice —
indeed are the only choice at rf. At lower frequencies, where
inductors would be bulky, expensive and of low Q. active fil-
ters are the usual choice Some of these are documented in
every text book, but there are some useful variations upon the
them which are less well known This article explores one or
two of these

A basic active filter

Probably the best known active filter is the Sallen and Key
second order circuit. the lowpass version of which is shown
in Figure 1 Interchanging the Cs and Rs gives 4 highpass
version There has been considerable discussion recently ot
its demnerits. both in regard to noise and distortion, from Dr
D. Ryder and others in the Letters section of this magazine,
see the November 1995 to April 1996 issues inclusive. But
for many purposes it will prove adequate. having the minor
advantage of very simpte design equations. Moreover, the
circuit is canonic - it uses just two resistors and two capaci-
tors to provide its two-pole response

Being a second order circuit, at very high frequencies the
response falls away forever at 12dB per octave, at least with
an ideal opamp In practice. opamp ouiput impedance rises at
high frequencies due to the fall in its open loop gain, resuit-
ing in the attenuation curve levelling out. or even reversing
In the maximally flar amplitude response design, at fre-
quencies above the cutoff frequency, the response approach-
es 12dB/octave asymptotically. from below At dc and well
below the cutoff frequency the response is flat being OdB
{unity gain) again a value the response approaches asymp-
totically from below The comer formed by the crossing of
these two asymptotes is often cailed. naturally enough, the
‘comer frequency . The comer or cutoff frequency f, 1s given
by £,=1/(2mV{C,C:R Ry 1) where. usually. R =R>.

The dissipation factor D=1/Q where Q:O.S\J(C]/Cz) and
for a maximally flat amplitude (Butterworth) design
D=1 414, so =2C>. The Butterworth design exhibits no
peak and is just 3dB down (ie V,,/Vy=0 707. or equal to )
at the corner frequency. It C>2C;. then there is a passband
peak in the response below the corner frequency being more
pronounced and moving nearer the comer frequency as the
ratio is made larger This permits the design of filiers with
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four or six poles, or of even higher order. consisting of sev-
eral such stages, all with the same corner frequency but each
with the appropriate value of @ : )

[t is easy to see that the low frequency gain is unity. by
simply removing the capacitors from Figure 1 for at very
low frequencies their reactance becomes so high compared (o
R|. Ry that they might as well simply not be there Atavery
high frequency. way beyond cutoff C; acts as a near short at
the non-inverting (NT) input of the opamp resulting in the
lower plate of C; being held almost at ground As € is usu-
ally greater than (. it acts in conjunction with Ry as a pas-
sive lowpass circuil well into its stopband resulting ineven
further attenuation of the input At twice this frequency, both
of these mechanisms will result in a halving of the signal
which thus fatls 1o a quarter of the previous value, ie the roll-
off rate is 20log(1/4) or —-12db/octave But what about that
peak in the passband, assuming there is one?
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Fig. 1 The Sallen and Key second order lowpass active filter. Cut-off ‘corner”
frequency is given by £,=1/(22C,C;RRy) and Q=0.5(C,/C,} and dissipation
D=1/Q. For a maximally flat amplitude {Butterworth) design, D=1 414, so C=2C5.
The Butterworth design exhibits no peak, and is just 3dB down at the corner
frequency
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Fig. 2 Breaking the loop and opening it out helps to understand the circuit action
(see text).
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Fig 3. Cascaded lowpass and highpass CR responses, and their resultant, (doited).
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The best way to approach this is to break the loop at point
X, in Figure { and consider what happens to a signal V'ip,
going round the toop, having removed the original Vip Note
that as the source in Figure 1 is assumed to have zero inter-
nal resistance, it has been replaced by a short circuit in Fig.
2. To V', €y with R, now forms a passive lead circuit -
highpass or bass-cui The resultant voltage across Ry Is
applied to (2, R2, 2 passive lag circuit —lowpass of top-cut

Each of these responses exhibits a 6dB/ociave rofloff in the
stopband, as shown in Fig. 3 Thus the voltage reaching the
NI input of the opamp at any frequency will be roughly the
sum of the attenuation of each CR section (actually rather
more, as C>R loads the output of the C R, section), as indi-
cated by the dotied line in Figure 3. At the frequency where
the highpass and lowpass curves Cross, the attenuation is a
minimum and the phase shift is zero since the lag of one sec-
tion cancels the lead of the other

If C; is now made very large, the bass cut will only appear
at very low frequencies — the highpass curve in Figure 3 will
shift bodily to the left Ifin addition, Cy is made very small,
the top cut will appear only at very high frequencies — the
lowpass curve will shift bodily to the right. Thus the curves
will cross while each still contributes very little attenuation,
so the peak of the dotted curve will not be much below 0dB,
unity gain. Consequently. at this frequency the voltage at X
is almost as large as V i, and in phase with it The circuit can
almost supply its own input. and if disturbed in any way will
respond by ringing at the frequency of the dotted peak where
the loop phase shift is zeto

But however large the ratio €1/Cy, there must always be
some attenuaiion, however small, between V', and the
opamp's NI input, so the circuit cannot oscillate, although it
can exhibit a large peak in its response. around the comer
frequency . In fact, if the peak is large enough, the response
above the comner frequency will approach the —12dB/foctave
asymptote from above, and below the corner frequency will
likewise approach the flat 0dB asymptote from above

Variations on a theme

The cutoff rate can be increased from 12dB/octave 1o
18dB/actave by the addition of just two COMponEnis; a series
R and a shunt C to ground between Viy and Ry And sucha
third order section can be cascaded with other secoand order
section{s) to make filters with 5 7.9 poles etc Normalised
capacitor values for filters from 2 to 10 poles for various

A1

Vin C1

Fig 4. The
Kundert filter, a
variant of the
Sallen and Key,
has some
advantages.

response types (Butterwosth. Chebychev with various pass-
band ripple-depths, Bessel etc } have been published in Refs
t and 2, and in many other publications as well However
these tables assume R =R ( = the extra series resistor in a
third order section). with the O being set by the ratio of the
capacitor values This results in a requiretnens for non-stan-
dard values of capacitor. which is expensive if they are spe-
cially procured, or inconvenient if made up by paraltelling
smaller values

While equal value resistors is optimum, miror variations
can be accommodated without difficulty. and this can ease
the capacitor requirements Ref 3 gives tables for the three
resistors and three capacitors used in a third order section
with the capacitors selected from the standard E3 series (1 0.
272, 47) and the resistors from the E24 series for both
Butterworth and Bessel (maximally flat delay) designs

The Kundert filter
The formula for the Q of the Sallen and Key filter is
Q=0 5V(C,/C5) so given the square root sign and the 0 5 as
well, one finishes up with rather extreme ratios of €| to Cz.
if a high Q is needed as it will be in a high order Chebychev
filter In this case. the Kundert circuit of Fig. 4 may provide
the answer The additional opamp buffers the second CR
from the first so that the attenuation at any frequency rep-
resented by the dotted curve in Figure 3 is now exactly equal
to the sum of the other two curves. Removing the loading of
3R, from C (R, removes the 0.5 from the formula, which is
now Q=\{C /1) — assuming Ri=R;. And due to the square
root sign, the reguired ratio of C, 1o for any desired value
of O is reduced by a factor of four compared to the Satlen
and Key version

A further advantage of this circuit is the complete freedom
of choice of components Instead of making R =R, and set-
ting the @ by the ratio of  to > the capacitors may be
made equal and the £ set by the ratio of Ry to Ry or both Cs
and Rs may differ. the Q being set by the ratio of (4R, to
R, Given that dual opamps are available in the same 8 pin
DIL package as single opamps. the Kundert version of the
Sallen and Key filter. with its greater freedom of choice of
component values, can come in very handy for the highest Q
stage in a high order filter

The equal C filter
In addition to filtering to remove components outside the
wanted passband. signals also frequently need amplification.
The basic Sallen and Key circuit only provides unity gain.
and with this arrangement equal resistors are optimum. For.
due to the loading of the second stage on the firsi if Ry is
increased to reduce the loading, then C; will have 1o be even
smaller, whilst if R+ is decreased 10 permil a larger vaiue of
€, the loading on € R, increases

Where additional signal amplification is needed there is no
reason why some of this should not be provided within a fit-
tering stage and Fig. 5 shows such a circuit Clearly the dc
and low frequency gain is given by (RA+RBYRB A con-
venience of this circuit is that the ratio RA 10 RB can be cho-
sen to give whatever gain is required {within reason) with
C1. Cs, Ry and R, chosen 10 give the required comer fre-
quency and @ An analysis of this most senerat form of the
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circuit can be found in Ref 4 If there were a buffer stage
petween R and R as in Figure 4, and the two CR products
were equal, then at a frequency of 1/2mCR) there would be
exactly 3dB attenuation round the loop due to each CR

So if RA were to equal RB, giving 6dB gain in the opamp
stage. there would be no net attenuation round the loop and
the ¢ would equal infinity — you have an oscillator. Without
the buffer opamp. the sums are a little more complicated due
to the second CR loading the first But the sums have all been
done, and the normalised values for B and R (values in
ohms for a cutoff frequency of 1/2ntHz, assuming C=1F) are
given in Ref 5 for filters of 1 to 9 poles, in Butterworth.
Bessel and 0 1dB- 0.5dB- and 1dB-Chebychev designs

For odd numbers of poles this reference includes an
opamp buffered single pole passive CR, rather than a three
pole version of the Sallen and Key filter, as one of the stages
To convert to a cutoff frequency of, say, 1kHz regard the
ohms figures in the tables as Mohms and the capacitors as
IpF Now divide the resistor values by 2000 As the values
are still not convenient, scale the capacitors in a given section
down by say 100 or any other convenient value, and the
resistors up by the same factor

Reference 5 also gives the noise bandwidth of each filter
type. The noise bandwidth of a given filter is the bandwidth
of a fictional ideal brick wall sided filter which fed with
wideband white noise, passes as much noise power as the
given filter Ref. 5 also gives, for the Chebychev types, the
3dB bandwidth Note that for a Chebychey filter, this is not
the same as the specified bandwidth (unless the ripple depth
is itself 3dB) For a Chebychev filier the bandwidth quoted is
the ripple bandwidth; e g. for a 0.5dB ripple lowpass filter,
the bandwidth is the highest frequency at which the attenu-
ation is 0.5dB. beyond which it descends into the stopband
passing through —3dB at a somewhat higher frequency

Other variants
In the Sallen and Key filter, the signal appears at both inputs
of the opamp. There is thus a common mode component at
the input and this can lead to distortion, due to “‘common
mode failure’, which, though small, may be unacceptable in
critical applications Also, as already mentioned, the ultimate
attenuation in the stopband will often be timited by another
non-ideal aspect of practical opamps - Trising output
impedance at high frequencies, due to the reduced gain with-
in the local NFB loop back to the opamp’s inverting terminal
Both of these possibilities are avoided by a different circuit
configuration. shown in its lowpass form, in Figure ba)
This is vartously known as the infinite gain multiple feed-
back filter, or the Rausch filter and it has the opamp’s NI ter-
minal firmly anchored to ground — good for avoiding com-
mon mode failure distortion. Another plus point is that at
very high frequencies, € short circuits the signal to ground,
while € shorts the opamp’s cutput to its inverting input —
good for maintaining high attenuation at the very highest fre-
quencies The design equations and tabulated component val-
ues are available in published sources; the filter is well

known and is shown here just as a stepping stone (o a less

well known filter section, the SAB (single active biguad)
with finite zero.

In some filtering applications, the main requirement is for
a very fast rate of cutoff, the resultant wild variations in
group delay not being important The Chebychev design pro-
vides a faster cut off than the Butterworth, the more so. the
greater ripple depth that can be tolerated in the passband But
the altenuation curve is monotonic, it just keeps on going
down at (6n)dB/octave where n is the order of the filter (the
number of poles). not reaching infinite attenuation until nfi-
nite frequency

A {aster cutoff still can be achieved by a filter incorporat-
ing one or more “finite zeros  frequencies in the stop band at
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Fig. 6a) The mixed feedback or ‘Rausch’ filter - lowpass version.
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Fig 6b). The mixed feedback or ‘Rausch’ filter - bandpass version

which the response exhibits a notch. In a design with sever-
al such notches, they can be strategically placed so that the
attenuation curve bulges back up in between them to the
same height each time Such a filter with equal depth ripples
in the passband (like a Chebychev) but additionaily with
equal returns between notches in the stop band is known as
an ‘etliptic’ or *Caur’ filter

In a multipole elliptic filter, each second order section is
designed to provide a noich but beyond the rotch the atten-
uation returns to a steady finite value, maintained up to infi-
nite frequency The nearer the notch to the cutoff frequency.
the higher the leve! to which the attennation will eventuatly
return above the notch frequency

So for the highest cutofl rates, while still maintaining a
large attenuation beyond the first notch. a large number of
poles is necessary It is common practice to include a singie
pole (eg an opamp buffered passive CR lag) to ensue that.
beyond the highest frequency notch the response dies away
to infinite attenuation at infinite frequency albeit at a leisure-
ly —-6dB/octave

The elliptic filter

The building blocks for an etliptic lowpass filter consist of
second order fowpass sections of varying ¢ each exhibiing
a notch at an appropriate frequency above the cutoff fre-
quency
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Fig. 7. The SAB circuit, with finite zero {or notch, above the passband)

A number of designs for such a section have appeared,
based on the twin-tee circuit, but they are complex, using
many components, and hence difficult to adjust An alerna-
tive is provided by the SAB section mentioned earlier. This
can be approached via the Rausch bandpass filter, which can
be seen in Figure 6b) to be & variant on the Rausch lowpass
design of Figure 6a). Clearly, due to the capacitive coupling
the circuit has infinite attemation at OHz; and at infinite fre-
quency, the capacitors effectively short the oparmnp’s invert-

Some other filter types

Simple noich filters — where the gain is unity everywhere
aither side of the notch — can be very useful eg for sup-
pressing 50Hz or 60Hz hum in measurement systems. The
passive TWIN TEE notch is well known. and can be sharp-
ened up in an active circuit so that the gain is constant, say,
below 45Hz and above 55Hz However, it is inconvenient for
tuning, due to the use of no less than six components. An
ingenious alternatived provides a design with limited notch
depth, but compensating advantages. A notch depth of 20dB
is easily achieved, and the filter can be fine tuned by means
of a single pot. The frequency adjustment is independent of
attenuation and bandwidth,

Finally. a word on linear phase (constant group delay) fil-
ters These are casily implemented in digital form, FIR filters
being inherently linear phase. But most analog fifter types,
including Butterworth. Chebychev and elliptic are anything
but linear phase Consequently, when passing pulse wave-
forms, considerable ringing is experienced on the edges,
especially with high order filters, even of the Butterworth
variety The linear phase Bessel design can be used, but this
gives only a very gradual transition from pass- to stop-band,
even for quite high orders. However. a fact that is not wide-
ty known is that it is possible to design true linear phase fil-
ters in analog technology both bandpass’ and lowpass!?
These can use passive components, or — s in Reference 10—

ing input to its output, setting the gain to zero. Either side of  active circuitry =
the peak response, the gain falls off at 6dB per octave, the
centre frequency Q) being set by the component values. If the
( is high, the centre frequency gain will be well in excess of
References

unity

Figure 7 shows the same circuit with three extra resistors
(Ry R and Rg) added. Note that an attenuated version of the
input signal is now fed to the NI input of the opamp via R2,
Ry Consequently, the cireuit will now provide finite gain
down to OHz; it has been converted into a lowpass section,
although if the ( is high there will still be a gain peak. If the
ratio of Rs to R, is made the same as R to R3, then the gain
of the opamp is set to the same as the attenuation suffered by
the signal af its NI terminal, so the overall 0Hz gain is unity.

If the other components are comectly chosen, the peak will
still be there, but at some higher frequency, the signal at the
opamp’s inverting input will be identical in phase and ampli-
tude (o that at the NI input The components thus form a
bridge which is batanced at that frequency, resulting in zero
output from the opamp, ie a notch

Figure 8 shows a five pole elliptic filter using SAB sections.
with a 0 28dB passband ripple, a —3dB point at about 3kHz
and an astenuation of 54dB at 4 SkHz and above. The design
equations for elliptic filters using SAB sections are given in
Ref 6 The design equations make use of the tabulated values
of normalised pole and zero values given in Ref 7
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Fig. 8. A five-pole efliptic filter

3kHz, approx All capacitors in brackets

C=1nF, simply scale C for other
cutoff frequencies,

with 0. 28dB passband ripple 1st STAGE :
and an attenuation of 54dB at B6k3 100k 100k
7.65 times the cutoff frequency AllCs = 1nF (75K) (47K) (47K}

and upwards. The -3dB point is Third stage values

2nd STAGE
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