CONTROL ELECTRONICS

Cho

For very little outlay,

Ed Buckley’s atomic clock
interface takes the rather
unfriendly serial data
from an MSF receiver
module and turns it into
an R5232 time and data
stream using a Basic
Stamp. Output is a bed
data stream containing
year, month, date, day,
hour and minutes.

Fig. 1. Complete circuit for receiving the MSF
data stream, demodulating to raw data then
furning the raw data inte R§232 format hcd
time information, Status leds indicate

n

times

programme microcontrofler As well as

a stand alone unit the Stamp is also a
very handy interface device- reading in non-
standard data, performing some manipulation
and then passing the data on in a more usable
format, . .

The following design iltustrates this function
by combining a Stamp I module with a readi-
ly available atomic clock module. To finish
up, I will then describe how you can have
your cake and eat it too — achieve low soft-
ware developmient time by using the Stampi
and low production costs by using a standard
PIC.

T he Basic Stamp is a versatile, easy 1o

Design overview
We recently needed to fit a data Togger to a
series of truck-trailers. The datd needed time
stamping — no pun intended — but there was a
serious risk of interruption of power to the
real-time clock module.

The obvious solution was to incorporate an
operator keypad to allow for clock resetting
As well as being expensive, this solution
allowed the opportunity for operator error.

So we decided to look for a different solu-
tion After looking at the atomic clock module

T +5-‘i 2V

now available, we decided to go down this
route. Costs would be about the same as a
keypad interface, but this alternative has the
advantage that it is fully automatic.

Atomic clock : summary
Atomic clock modulés were featured in
Electronics World March 1996 Here [WIH
summarise the important features

The off-air data stredin is repeated every
minute. High speed data is sent in the first 17
seconds, followed by null data that can be dis-
carded. Next, low speed data is transmitted at
1bitfs. There is always a unique data format at
the end of the minute period, which is
01111110, Data timing js shown in Fig. 1
and the minute’s data format in Table 1.

The circuit diagram with Stamp/Clock hook-
up is shown in Fig. 2.

Writing the software
For our application, we require a burst of cor-
rect time data at 2400baud once a mimute. The
main system processor — a Stamp 2 in this
case — polls the signal line from the Stamp 1
clock module If valid data is present, it up-
dates the system real-time clock

The Stamp I interfacing with the atomic
clock is dedicated to reading and checking the
validity of the incoming radio data. It only
transmits the data if it proves valid.

We envisaged that the main problem would

availability of good data, loss of MSF signal Programming be loss of radio signal as the trailer moved
and one or zero daia level. port around, For this reason the software always
counts the number of data bits received from
470 1k 2400baud the last required data set until the unique for-
i +5V & signal mat byte is received — in ou case seven. If the
+_L1ou av 380k 3 counter is anything but seven, then a bit has
LPg LP, ’I 2 been lost or found, the data is suspect and
Lp)] there is no transmission to the main system
3 , Stus List T is the program listing The inpur and
LRy ! 1 > ¥F WP s output pins are allocated names to ease pro-
LPg LP, 1 Stamp 1 gramme tracing and ram space allocated to the
470 programme variables. The Stamp I has up to
Clock 14 bytes of ram which may be addressed as
Antenna maodule bytes, for example by or by, or words, as wy or
748 FLECTRONICS WORLD September 1997

w3, where wy=bg+b,; Further, two bytes may
be addressed by their individual bits, that is
bytes by and by provide bits bity to bit 5

The dirs statement sets the pins to either
input if zero or output if logic one; the msb
comes first.

We 1mtlally look for the 011 111102 81gna-
ture by reading the individuat data bits using
the Get_bit routine into the variable signal
The variable counter is incremented every
time a new bit is.read

Once the signature has been received we
now-know where we are and proceed to ‘con-
tinue’ where the good_data flag is set to false.
Here we check to see if we have a good data
set by looking at counter I counter is does
not hold seven, then the data is bad. If the
counter does hold seven then the data is goed
and the good_data flag is set to ttue . This con-
dition allows transmission of the time data ten
times during the fast data period at the begin-
ning of the minute period.

Now begins the slow speed data section.
The first 16 seconds are unused and discarded
Next we log the year, month, day of month,
day of week - which we discard — hour of day
and minute.

Now the program returns to the beginning.
If all is well the next eight data bits should be
the unique signature and counter should return
seven to allow transmission.

Most of the grunt work is handled by two
subroutines — Get_bit and Read_convert.

Get-Bit. Get_bit decodes the data from the
atomic clock module -

‘The data falling edge is first detected. Once
detected, the programme pauses for 150ms
before reading the data — if logic ome is
retirned the data is zero and if zero, a one is
refurned. Note that the clock gives inverted
data, which we correct in the line bitO=clk+1
The program then waits a further 200ms to
ensure the clock data is in the stable high por-
tion of its cycle before continuing.

Read_convert. At the end of each chunk of
received data we take the opportunity to con-
vert it into a decimal and then a binary-coded
decimal format for easy reading by the system
processor. Our main systemn clock uses bed
format so using bed minimises the calculations
later on.

Rounding up

To aid fault finding and add value, we includ-
ed several leds — the ifo pins were there
unused so why not spend 15p? The three leds
have the following functions.

® Sync_flag led is on when the good data
flag is set, ie the previous minute’s data was
good.

@ Bit_read flashes every two seconds — a sta-
ble on or off here indicates loss of incoming
signal.

® Data_bit indicates whether the data bit
received was a one or zero data:

Check_sum is a byte variable. It is cleared
every minute and all data is added to give a

CONTROL ELECTRONICS

—y

o

100 i ' g
1 N
ms 1_00ms_ _ %

Falling
edge

150ms . o
Sam pje Fig. 2. Format of slow-speed data from the
fime Ru_'gby MSF transmitier.

September 1997 ELECTRONICS WORLD

749

CONTROL ELECTRONICS

resulting checksum which is used to detect
errors between-the Stamp I and the main
system processor — unsophisticated but
works

What about the cake?
We have demonstrated the versatility of the

If the application only requires a small num-
ber of vnits the Stamp is fine, either in its IC
or discrete chip set format. For larger numbers
however, the costs start to look a little heavy

Realising this, Parallax, the manufaciurers
of the Basic Stamp has recently introduced a
neat solution for Stamp I users By uvsing the

interpreter and your programme. This gives
low-cost development coupled with low cost
production,)

This system only works with the Stamp 1,
16C38 and Parallax’s programmer, but it is a
very useful tool for those quickie pro-
grammes that will fit into a Stamp 7.~ ®

Stamp 1 as an interface. The Stamp scores
over 1aw PICs in terms of speed of producing
and debugging a simple programme .

latest Stamp 1 software and the Parallax PIC
programmer, it is possible to programme a
standard PICI6C58 with both the Stamp

Galleon, distributor of the clock modules, can
be reached on 0121 352 0981

List 1. Stamp 1 program to read and decode the Rughy MSF time clock. gosub read_convert

MSFCLCK, BAS b2=b10 result in bl0 written to b2
Milford Instruments Qriginal version dated March 1997 checksum=checksun+b2
Stamp decodes the one sacond pulses using Get_bit and g:f499t the Month
* keeps adding them to signal until the sync byte is received -ub a "
First 17 seconds are ignored and remainder are clocked into gofblorea _conver. 1t in blo it to b3
relevant bytes Results are converted to BCD format before i' coumecheck Eifu m written to
storing in bytes. Time is only transmitted at the start of checksum=chacksume
the minute - if data is judged tc ke OK. Program counter a c th
holding number of seconds from last valid time data Now get day ol mon
. . . b8=5
until sync byte is received.. should be 7
gosub read_convert
Symbol clk =pin? ‘¢lock signal on pin 7 b§=bi0 —check ;:ifult in bl0 written te bd
symbol rs232 =6 ‘rs232 signal or pin & checksum=checksumn
symbol signal =bl ‘byte to receive data
symbol counter =b11 ‘general counter variable Egﬁzget the day of the week - and discard
symbol good data =bitl good time message flag O=false _ub a
symbol checksum =b7 “data checksum variable gos read_convert
symbol synce flag =pin3 in sync led | . of D
symbol bit_read =2 ‘data bit received led ggf; oi Day
symbol data_bit =pinl ‘data bit rec. led, on for leg. 1 -
gosub read_convert
dirs=%01001110 set up the pin directions p5=b10 result in b10 written to bS
checksum=checksum+bb
‘First look for the 01111110 signature .
sﬁart- T the signatu And the Minute reading
i b8=6
counter=0 gosguly read_convert
signal=0 - . .
logz- b6=b10 ‘result in bl0 written to bé

go and get a bit checksum=checksum+b6

signal=signal*2+bit0 add it to signal
if signal=%01111110 then continue Sync byte recelved?
continue if not and increase counter by one
counter=counter+1

gosub get_bit

goto start ‘return for the next minute

Sub-Routine

te retrieve a bit

goto loop o ne te retrieve a
continue: - sync byte now received bi

good_data=0 reset valid data flag geti 1t:

if counter<>7 then skipl ‘check that we've kept in ste arrer: . :
if good data captured ihen set flag ? g if clk=0 then read bit ‘detect falling

edge

good _data=1

skipl: goto marker

counter=0 4 pit

flag=good_dat i i led read_bit: - ‘

sync_flag=good_data light the in_sync le pause 150 it until the

migdle of the A bit
toggle bit_read
bitd=clk+1l

clk into bit0
data_bit=bit0
pause 200

return

Now send the good data transmission whilst waiting te get
‘past the fast code secticn at the start of the minute

Total lecop period approximately 1.4s

for counter=1 to 10 *send the good data at min.start
if good_data<»>1 then loop2 “check for good data flag
‘Transmit if good data

serout rs232.n2400. (*T* .b2 .b3 b4,b5,b6,07)

loop2: if not jump to here
bit3=goecd_data+l
bo9:=bit3*35+100
pause b%

next

“read the value on

. [———

get past the fast data section
Read_convert:

bo=0

for counter= b8 to 0 step-1l

gosub get_bit

lookup counter, {1 2.4 .8 10 20.40 80) .bl0
appropriate scalar
b9=b10*bit0+b9

next

b10=b5/10*16
becd- first the high byte
bl10=k%//10+bl0

return

Clear b9

. . . : bit time
now -discard the first 16 seconds of info one bit at a

for counter=1 tc 16
gosub get_bit
next

Get the

Convert to true decimal

Wow start to read wanted data
‘Reset the checksum variable
checksum=0

Now read the year data

b8=7

now convert to

‘now add the low byte

750 ELECTRONICS WORLD September 1997

