PL ENGINEERING

Devised to simplify the job of connecting peripherals to a PC, the
increasingly popular universal serial bus communicates data at up to
12Mbit/s over two of its four wires. Simple connection, yes, but the
protocol needed to make the bus efficient and transparent to the PC
user is complex, as Tony Wong explains.

new generation of IBM-compatible PCs in the ‘PC 98
System Design Guide’.! It is also supported by
Windows 98.

This bus provides an easier way of connecting a PC to a
variety of peripherals via a serial bus. The universal serial bus
is a four-wire cable of which there are two wires For power
and ground — namely V},,; and Gnd —and two for data transfer,
D+ and D-

Up to 126 devices can be simultaneously connected to'a PC
via USB without the fear of running out of PC i/o addresses or
having conflicts on IRQs and DMA channels used. The bus
can also reduce cost and PCB space by removing the need for
traditional attachment ports such as keyboard connector and
serial ports.

Other benefits of USB are its low cost and that it supports
data transfer at up to 12Mbit/s in *full-speed mode This is
described in USB specification 1.0/1.1. At this speed, it is pos-
sible transfer data such as voice and compressed video signals
in real time.

U niversal serial bus, or USB, is recommended for the

~+-{upstream port)

At the end of 1999, the USB 2.0 specification will be offi-
cially released and will move the maximum transfer rate to
between 120 and 240Mbit/s. However, behind of these fea-
tures, there is a need for sophisticated USB embedded con-
trollers to handle the unique protocol and algorithm for the
data communication activities on the bus.

In this article, I present a summary of the USB protocol
format based on USB 1.1. _

As an example of how the bus is implemented, [describe the
Infineon Technologies 541U embedded USB microcon-
troller. Infineon Technologies was formerly Siemens
Microelectronics by the way.

PC

_;
il

root hub

root port ~ -
[

1 ?\M—c‘iownstream port
; upstream port

upstream port

Device

EPs A

Fig. 1. With universal serial bus, hubs can be used to expand the
system, allowing connection of up to 126 devices to one PC,

890

ELECTRONICS WORLD November 1999

Hub T 1st Hub Tier

&
Hub . 2nd Hub Tier

PC ENGINEERING

'd

= B1Ep 8} U0 Jaisuen dnusul spoddns 31 pue spod wesisumop peads-moyiny ¢ ‘Wod weansdn peads-jint 1 ey diuo BloIONON B

"$Ng {8 pUE snd [eo0| Juspuadepu| Josseaoid usamiaq efipliq B SE S108 8887 1IN oYL "sedA] Jejsuen gsn noy 1o suo Aue poddns o) pasmByuod aq uBd 43 BlEp UYoBS ‘NGO AU UIA S9I0N

SBA
NS

Q0IAGP 40} 43 BIEP Z
201AD 10) J [0IU0S |
any Joj 43 Blep |

GnY 40 3 1011800 |

BJED 10} HUISUR), JO S81AQ 8

~ dF 19102 10} anS08)
pUE JLWUSUEBJ} JO UyJBa S9)JAQ B
ZHWD

¥BE

USE|4/d 1O 2L
MmojIing

lajonuoo Y9-8 pakey SN
ZHHMB0DMHBI0IN
B|OJ0)OIN

SOA
AB'T

Sdd Blep ¢

d3 joRUOD L

d3 ydnueju) 10§ sa3iq g
d3 ¥Ing 10} se1Aq 8

SI9isuel}

OSIAINg 1o} BAj808E pUB
NWISURI |0 Yove Seig po

maind

Jajjonuos jereydiued gsn

2882.L3IN
ABojouysa), diysien

S9A

AS

Sda Elep g

d3 [eAu0d |
apol pesds-mo-
Sel3 Blep ¥

o3 j04UQ0 |
:epow paads-||ngd

sa1iq ggg 9218 Jeyng [BjoL

Sd9 eiep Jo} s8)Aq-+9 01 dn
d3 [0NU0D 104 9140 8
Jayng gsn elqembiyuon
ZHINZ L

a6z

d103M8

MO/

gsn Yim Ja|jonuos Ha-g

NSO
sojfiojouyos | uosufuj

saA S8
AGS~AO'F AG~NO'Y
s elep v sdaeepz
d3 1041U00 | d4 |e4und |

543 eep alAg-ge om 03 dn
sd3 elep 914g-g unoy 01 dn selAg g
ZHING ZHINEL
96e _ - 091
d10ANOHAT M8 d10 e
N4 Mo

SIS YN IB|[0AJUCO HG-G EISN UM J9]|0UCO NO-g

ELLPODLAD
ssaldAD Gojz

029482

ga5n yim Jejjoluod 1a-g

g8, JeAiBIsUBRI] JU|

AS'S~AS'Y abeyon dO
sd3elep ¢
d= [C00 | sjuiod puz
d4
aAle08) 10} saifg @
Hwisue Joj sejiq g Jaynd asn
ZHING Ho01D

g0z (s91id) WyH
14 (s=140) NOH
MO peeds gagn

qny yum

adA) 1onpold

F0020885M laguinu uey
Bunswes

-poddns gs) ypm siagjosuodonyw pue sdiys gsr) pajesipap awos | Aqel

‘set-Up’ trangaction. Data:

sed to perform th

©
5
2z
=
=
[0}
=
o
ko)
i
1s)
2
L
[5]
{ -
=
o
e
2
Gy
£
&
D
o5
S
D
@
@
b
o

891

November 1999 ELECTRONICS WORLD

PC ENGINEERING

D+I§ ID— (USE Tne)

"This device provides a simple solution to the USB periph-
eral implementation. Its hardware can handle the USB pro-
tocol transmissions automatically.?

USB system architecture
There are three basic hardware elements in the USB system
architecture. They are host, hubs and devices, Fig. 1.

On-chip
transceiver
Y.
upc
MU
. SIE Interface
SIE interface .
State j
rnachine . EP 3
logic coni. MMU
- buffar v = A
usB g ot 3 B
protocol adcr, 2 v i 11 -
~ buffer S - “To CPU
logie byles | | - SFR Ok intermal
Curr. EP g—q”’ — UsBvAL| M=t iaddress | i
config. data ontrol ;ponitrol % Bus
buffer - :
Setup :] —
data buffer| B
AgieMHz -{¢ .)
: Fig. 2. Block diagram of the USB module
PLL in the C541U embedded microcontrolier,
dorre B top n"ragram, together with s chip
R architecture, bottom.
ucL
Oscillator watchdog
RAM OTP memory
KTAL2 4 Oecilator & fim 2568 8Kx 8
xTaL] —H scillator & timing
ALE +— 4 f
IPSEN ¢—
fEA Emulation
RESET Programmable P s;.'l:’ppi:n
walchdog - 9
times
,,
0t
|
SSC (SPh interface *
“—— —pDE—::D
PLL |
—— 2 >
O+ » . - ; ort 2
Trans-| | ep mockile e
cever il
D- 4 ¥
. #
- e

8-bit Digit. WO * G-bit Digit. VO

The connection uses the “tiered-star’ topology and can be
connected up to five levels — ie. have five hub ters.
Normally, the host controller and root hub are implemented
via & chip set on the PC motherboard.

The host controller controls transactions over the USB sys-
tern. There are two types of hest controtler. They are the
‘open-host controller interface’, or OHCT, and the ‘universal-
host contreiler interface, which is shortened to UHCL

From an application point of view, the OHCI can support
multiple transactions for a particular device end point, or EP,
within a 1ms ‘frame’. There's more on this later. On the
other hand, the universal host controller supports one trans-
action for a particular end point in each frame, Software for
USB devices should be able to handle transactions with
either of these controllers.

A root hub acts as a port for attaching the USB device, Fig.
. A USB hub allows multiple connections to the USB sys-
tem and detects when devices are attached to or detached
from the system. It also forwards the bus iraffic between its
upstream poert and downstream ports,

Each USB device s allocated end-point numbers. End
point number EPQ is reserved for the device’s configuration
by the host. It provides a point of communication to the host
by means of EP descriptors.

End-point descriptors communicate device attributes and
characteristics to the host. According to this information, the
host configures the device and locates the USB client soft-
ware driver.

Other device end points can be considered as a function of
the device and can be separately configured for one of the
different transfer types to communicate with the host.

For example, a keyboard application, which comes under
the USB standard’s ‘human interface device, or HID, class
uses EPO for the device configuration and may use EP] as an
interrupt transfer to send the key-scanned data to the host.
More details on the EP descriptors are discussed in refer-
ences 3 and 4. : :

USB supports four types of data transfer;

® Control transfer — iransfer request commands from host to
device.

© [nterrupt transfer — data transfer from an interrupt driven
device to host.

® Buik transfer — transfer for a large amount of data.

@ Tsochronous transter - for applications requiring constant
data transfer rate.

Implementing USB

Commonly, a USB embedded microconiroller is used to
implement the USB functions. There are also other types of
USB interface chip to suit different applications.

Table 1 shows some of the examples of USB chip. Only
the USB related features are highlighted here; for details of
other on-chip featares and updated technical specification,
tefer to the corresponding company’s product home page on
the web site. .

In the Table, the first two columns show two low-speed
USB controllers with different clock frequencies and buffer
sizes. The third column shows a full-speed chip, and the next -
one is a full/low-speed chip. The fifth column shows a USB
interface chip without an integral controller and the last one
is a controller with hub function. .

Generally, a USB chip consists of a USB module in which
the serial interface engine, or SIE, plays an important role in
the USB activities. It performs all the front-end data pro-
cessing functions such as NRZI and NRZ conversion, token
packet decoding, bit stripping and bit stuffing, and cyclic

892

ELFCTRONICS WORLD Novermber 1999

Transaction

PC ENGINEERING

-— Frame length = 1 ms

Frame Transaction 1 Transaction 2 Transaction n

Handshake

Token packet packet

Token . .
packet Syne PID Device addr. Endpoint # CRC EOP
Data
packet
Fig. 3. Elements of a USB
transaction. There can be a number
Handshake
a;acket Sync | PID ECP of such transactions within a 1ms
USB “frame’,
Far full-speed mode, each transaction starfs with an SOF packet.
Start of
frame Sync | SOF Frame # CRGC ECP
packet

Table 2: Packet transmission between host and device in full-speed mode.

Fi]c-ENURATE.USB, recorded using CATC Tnspector USB Analyzer S/W Version 2.10, packets G-
377.
Packetd
1
| RESET(109.46 milliseconds)
|

0

109, | 8yne(COG0C001) SOF(0xAS) Frame #(0x075) CRC5¢0x15) Idlef 11964)
|

110__{ Syne(0000000F) SOF(DXAS) Frame #(0x0E3) CRCS(0X0C) Ldle(S)
T lﬁ: Syact0Nb00001) SETUP(OxB4) ADDR(0x00) ENDP(0x0) CRC5(0x08) [dle(3)
112_: Sync(00000001) DATAO(OXC3) DATA(S0 06 00 01 00 00 40 00)
___ICRCI60xBB29) Idle(s)

1 13ﬁ: Sync(00000001 Y ACK(0x4B) Idle(11801)

i I4__; Syne(@0000001) SOF(0xA5) Frame #(0x0E4) CRC5(0x 12) [die(5)

I 157: Sync(000000O 1) IN(X96) ADDR(0x00) ENDP(UX0) CRC5(0x08) Idle(d)
116__!i Sync(00000001) DATAI(0xD2) DATA(L2 01 00 01 00 00 00 08)

.| CRCIS(0CSET) Idlel6) .

;17_: Sync(00000001) ACK(0x4B) Idie(11799)

1 18___: Syac(0B000001) SOF(0xAS) Frame #{Ux0ES) CRCS(0x0D) Idle([1964)

1 19_: Sync(06000001) SOF(0xAS) Frame #(0x0E6) CRCHOx0F) Idle(5)

lZDﬁ: Sync(00000001) OUT(0x87) ADDR(0x00; ENDP(0x0) CRCS(0x08) Idle(3)
iZI_: Sync(0000000T) DATAL(0xDZ) DATA{) CRCL6(0x0000) Idle()

122 ; Syne{D0CO0001) ACK(0x48) Idie(11866)

123 I-Sync(ﬂ(}OOOO()]) SOF(0xAS5) Frame #(0x0E7) CRC5(0x 10} llle(1697)
!

124, | RESET(Start of Reset)
|

redundancy generation and checking,

Figure 2 shows the biock diagram of the USB module in
the C541U controller chip from Infineon, and also the fune-
tional block diagram of the chip. More details of the opera-
ticn of the USB module can be found in reference 5.

USB communication structure

Communication over the universal serial bus is performed
with a series of frames. Within a frame, which is 1ms long,
there can be a number of transactions.

The number of transactions depends on the number of
attached USBE devices and how often the host needs to com-
municate with these devices. A transaction can be viewed as
a transfer of data. It consists of three phases.

Figure 3 shows the elements forming a packet phase. A
token-packet phase comprises commands sent from host to a
device and has four possible packet identifiers, known as
PIDs. They are SOF, IN, OUT and SETUP.

Data is transferred during the data-packet phase. Two PID
types are available for this, namely DATAQ and DATAL.
This allows a data toggling mechanism, which is used to syn-
chronise the transmitter and receiver of a transfer.

Acknowledgement of the data packet transfer is carried out
during the handshake packet phase. Tt carries one of these
PID codes, ACK, NACK or STALL, representing the current
data receiving status.

Under the USB communication protocol, two kinds of con-
trol transfer can be performed. Figure 4 shows the sequence
of the communication for a three-stage control transfer
involving a ‘get descriptor’ command transaction and a
‘setup’ token. Three-stage control transfer consists of a setup
stage, a data stage and a status stage. It is mainly performed
by the host to get information from the device.

Figure 5 shows a two-stage control transfer. Such transfers
are uscd by the host to assign data to the device. For exam-
ple, the host sets an address number fo the device using the
‘set descriptor’ command as shown. Note that there is no data
stage for the device to send back data information. The
device only performs the ‘status’ stage to acknowledge the
host by sending a zero-length data packet.

In addition to the two control-transter formats, USB pro-
vides another data transfer format that is used to perform
interrupt, ISO and bulk transfer types.

Figure 6 shows the data wransfer procedure with two exam-
ples, namely “interrupt” and *ISQ’ transfers. For the interrupt
transfer, the host keeps polling the bus by sending out ‘in’
tokens to the particular device.

The time interval for polling end-point for data transfer is
user defined between | and 255ms. If the device has data to
be sent, it will transmit the daga packets to the host following
the “in’ token. If not, it will send out an NAK response,
which represents ‘negative acknowledge’,

For an ISO transfer, which involves real-fime data trans-
mission, the “in’ token should be sent to the device every
Ims. ’

In order to illustrate the protocel involved in a real appli-
cation more clearly, we used a monitor system called a
CATC USB Inspector. It was set up to capture data transfers
between a UHCI host and C54 U device controller.

Figure 7 shows the test set-ups involved. The host was run-
ning Windows 98 and the device chip contained source code
with USB keyboard function.

Test set-up *A’ captures the USB traffic between host and
device directly. A full-speed hub and low-speed device are
included in the test set-up “B’. This second set-up can mon-
itor the combined transmissions of full and low-speed pack-
ets on the bus at the same time.

894

ELECTRONICS WORLD November 1999

PC ENGIMEERING

Example of a setup/get-device descriptor command.

1. Set up stage

Set up foken

Data packet l-’

L Handshake packet

from device)

{from hést) (frorﬁ host)
2. Data stage
In token E ' Data packet l. ‘ Handshake packet

{from host)

3. Status stage

{from device) . (fro.m“ ﬁost)

Handshake :
Out token ; Data pécket (0 fength) packet
(from host) {from host) {from device) o

Fig. 4. In the USB protocol, two types of control transfer are possible. This diagram

represents a three-stage control fransfer, mainly used by the host to get information

from a connected device.

Fig. 5. Two-
stage control
transfers are
mainly used by
the host to
assign data fo
the device. In
this case, the
device is being
assigned an
address.

Example of a setup/set-address command transfer.

1. Set up stage

Set up loken r L Data packet r

L Handshake packet "

(fror;1 host) (from host) {from device)

2. Status stage

Handshake

1
In token packet

I: 1 Data packet (0 length} } I

y

{from host) (from devicey (from host)

File LS-1.USB, r
vackets 0-394.

Table 3: Packet transmissions in low-speed mode.

ecorded using CATC Inspector USB aAnalyzer S/W Version 2.2,

Packet$

{
18 EOP{ } Idle{1497)
19 EOP({) Idle{l14)
20 { Sync (__000001) SETUP{0xB4} ADDR(0Ox00) ENDP{0x0) CRCS5{0x08) Idle(d)
21%% Sync (00000001) DATAO(O0xC3} DATA(80 06 00 0% 00 OO 40 00)

CRCLG6{0xB8829} Idle(6)

22 ____] Sync{00000001) ACK(0x4B) Idle{l3}
23____ | Sync{00000G01) IN{Ox96} ADDR{0x00} ENDP(0x0) CRCS5(0x08) Idle(5)
24 Sync (G0000001) NAK(CxS5A) Idle(ll)
25 Syne (00000001) IN(0x96) ADDR(0x00) ENDP{0x0} CRCS(0x08) Tdie(5}
25_: Syne {00000001) DATAL(0xD2) DATA{l2 CL 00 01 00 00 GO 08 }

| CRC16(0xCBE7} Idle(6)
2.7 F Sync (00000001} ACK{0x4AB) Idle(4)}
28___]‘ Sync {0C00C001) OUT{0x87) ADDR(0x00) EMNDP{0x0) CRCS(0x08) Tdle(4)
29 l Sync(00080001) DATAL(OxDZ) DATA(} CRCL6{0xJ000) Idle(§)
307} Syne(00000001) ACK(0x4B) Idle(887)
31_} EOP({) 1Idle(238}
32 ;RESET(Start of VResel:)

\

Example of an interrupt data transfer.

Data stage

In token

l ' Data packet i r Handshake packet

{from host) {from device)

Exampie of an isochronous data transfer.

Data stage
In token | , Data packet —[
{from host) {fram device)

{from host)

Fig. 6. Two examples of USB data transfer siructures.The
main difference is that interrupt transier is polled and the

isochronous transfer is real time.

Host PC 3
Test = B e Test
setup B : : setup A
Bus & :
mentior £

System setup i i Bus
for monitoring the : monitor B System selup
full-speed mode + B Pot for monitoring
of hub and low- Hub . the full- of low-
speed mode of B E : speed .mode

device " device
B USB device [}
USB device ||

Fig. 7. Sef-ups used to analyse USB communications. In this

case the host is a UHCI and the device a C541U.

17-ttar-99
4;34?32 - <+— dirgction of data flow
1 i I opt D+
i) Y ”‘a/‘”’"i ek N . N
1 Ks EJ
1,808 Y E
1 -l i
LJ oy e M
0 o L o e o
2 ps
1.1 v DC§
*1 M 588 #5/s
5 v D — 1 ncesav
4.2 v ooy O STBPRED

Fig. 8. USB signal, encoded in inverted non-return lo zero
form during sending of a negative-acknowledge NAK

response fo a host at full speed.

Snap-Shot of the USB Protocol

Table 2 shows part of the enumeration process of the device
in full-speed mode. Enumeration is a procedure that allows a
device to be recognised by the host and for setting up a com-
munication pipe between them.

Packets 110 to 122 show a three-stage control transfer
involving a ‘get-descriptor’ command. Packets 110 to 113
form the set-up stage, packets 114 o 117 form a data stage
and packets 119 to 122 form a status stage.

Note that packets 110 to 113 are within one frame time, {.e,
Ims, Since there is only one device cotinected to the host,

896

ELECTRONICS WORLD November 1999

Fig. 7 test set-up “A’, the transactions cam not use up the
whole time frame, resulting in an idle time of 11801 bit
times.

For full-speed mode, the data transfer rate is 12Mbit/s. By
counting the number of bits in each packet as shown in Table
2, it cant be worked out that there’s around 12K bits within a
1ms time frame. The table below shows the number of bits
used for different tokens in the packet.

Field name No. of bits
Sync 8
ADDR 7
SOF 8
ENDP 4
Frame # 8
DATAD 8
CRC5/CRC16 516
DATA contents 64
SETUP 8
ACK 8

Low-speed mode

The captured packets transferred on the bus in low-speed
mode are shown in Table 3. You can see that there is no
start-of-frame SOF token. The time frame in this case is
defined as being between ‘end-of-packet’” EOP tokens.
Packets #20 to #31 are located within one frame.

Packets #23 and #24 show a negative-acknowledge NAK
response issued by device to indicate that it is not available to
respond to the ‘in’ packet from the host at that time. The
descriptions on the packets are as follows:

® Three-stage control transfer with 8-byte data length:
Packets #20 ~ #22, setup stage
get-descriptor command
Packets #25 ~ #27, data stage.
Packets #28 ~ #30, status stage.

Full-speed and low-speed signals on the bus

This section looks at how full-speed and low-speed modes
can operate simultaneousty. Assume fest set-up ‘B’ in Fig. 7.
The USB bus between host and hub is in full-speed mode but

The zoomed view of this part is
shown as in lower waveform.

/

PC ENGINEERING

Table 4. The Low-speed packet transmission on Full-speed transactions.

File PRE-1.U8B, reccrded using CATC Inspector USB Analyzer 5/W Version 2.2, packets
0-840.
packat# Idle(10654)

777 Sync (00000001) IN(9x96) ADDR(0x02) ENDP{0x0} CRC5(0x15} Idle(5]
778___| Sync(__000001) DATAL(0xD2) DATA{03 03 00 00 } CRC1E(0xFOF2) Idle(T)
779 gync (00000001) ACK(0x4B) Idle{42)
780, Sync {00000001) OUT(0x87) ADDR{Dx02) ENDP{0x0) CRCS(0x15) Tdle{d)
781 sync!_0000001) DATAL{0xD2) DATA({)} CRC16{0x0000) Idle(S)
782 Sync{__000001) ACK(0x4B) Idle{765)
763___ | Syne(00000001) SOF(0xAS) Frame #{0x270] CRCS(0x0E) Idle(5078)
784 Sync {00000001) PRE(0x3C) Sync{00000001) SETUP(0xB1) ADDR{0x0C}
ENDP{0x0} CRC5(0xC8) Idle(l0)
785 Sync{00000001) PRE{0x3C) Sync (00000001} DATAO (0xC3)
DATA80 06 00 01 00 08 40 00 } CRC16(0xBE29] Idle(48)
786 gync (00000001) ACK(0x4B) Tdle(87)
787 Sync {00000601) PRE(0x3C) Sync (00000001} IN(0xP6) ADDR(0x00) ENDP{0x0)
CRCS5(0x08) Idle{40)
788 Sync{00000001) NAK(0x5Aa) Idle(73}
789__ Sync{00000601) PRE(0x3C) Sync (00000001} IN(0x96) ADDR{GxQ0) ENDP{0x0}
CRC5(0x08} IGle(38)
795_ | Sync(000000801) DATAL(GxD2)} DATA{12 01 00 01 00 00 GO C8)
CRC16 {(0xC8E7) Idle(26)
791____| Sync(00000001) PRE(Ox3C) Sync{00000001) ACK(0x4B) Idle(10)
!
792 | Symc (00000001} PRE({0x3C) Sync(00000001) OUT (0x87) ADDR(0x0C) ENDE{0x0)
[creS (0x08) 1dle(ll)
|
793____| Sync{0000D001) FRE{0x3C) Sync(08000081) DATAL(0xD2) DATAL)
| CrRC16(0x0000) Idle{48}
|
794 | Sync(00060001) ACK{Ox4B! Idle(2865)
]
795, | Sync(bOOOCOOL) SOF[0xAS) Frame #(0x271) CRCS5(0x11) Idle{1851%;
] .

The: zoomed view of this part is
showt as in the lower waveform.

o

/

. - 3. 1 ™
L~ q DJHODMEOO)P}‘J_,OBD 1,01 0,10 11 g0 1pa. 0100\
T T i—D-
} I O LR L e
'ERVRVRY AW AR WAV SEIRVEI VIR RN
‘\ 0 zps 1.88v || 2ps L.68Y cop B zys1gav Syne \ Bawsimy oop
; Sync A NAK ' eriod(BY ML 278.8 ns NAK
pericdti) 1A 271.7 ns pe -
widthtf) Ra 113.7 ns width(B) 146.7 ns
riseCq) Rl 6.5 ns rise(B) IUL 18.9 ns
FslitA) M 17.2 ns Falt(By il 19.2 ns
delay 8. 7488 ys detay (B> §.B856 ps
O SToRPED

0 STOPPED

Fig. 9. Signal on USB D+ data line showing the sync, NAK
and EOP data formats.

Eig. 70. Signal on USB D- daia line showing the sync, NAK and EOP data
formats. |

November 1999 ELECTRONICS WORLD

897

PC ENGIMEERING

The zoomed view of this part is
shown as in the lower waveform.

Iﬂﬂni/

Y
4., AT K| HI
" -+ f
!_11(1 0 &G0 ,_Lljl 0 1]0 0 \
I |—D-
[I =
JU‘ H !}
] t W, 1 A
2 ps 108 Y Zps Ly
B 2= 148 Sync ng EoP
period(B) AL 270.8 ns
width{B) nn 146.7 ns
rise(By 13.8 ns
FalliB) an 18.2 ns
delay(B) 8 _BEBG ps
: 0 STORPED

Fig. 18. Signal on USB D- data fine showing the sync, NAK and FOP data

formats.
()
Actual data 0
Transmitted data (NRZI)| 1] 1 0 1 0 1 G ¢
N/
last bit of pravious
packet
. “8Bync” data 1D
)
Actual data o ,0 0 0 0 o} o 1
Transmitted data (NRZ1)| 1 07 1 0 10 1 0
"NAK" data iD
(©)
Actual data 0 1 0 1 1 0 1 4
Transmitted data (NRZ%)| © 1 1 c G Q 1 1 o]

Fig.
points of USB signals
generated by the on-

chip differential

Fig. 11. Decoding the inverted non-return to zero signal from the bus.

17~-Mar-99

3-82:85 +—— direction of signal flow

L

o

]

B:2 T
58 ns x
1.9 v A N P et st 5

T~ D

-1
58 ns
1.0a ¥

|
A

[t

12, Crogsoirer

W

transceiver.

«

0 5
0 &
[

e &

Lo ol

b a3 PO B
RO T

1 0OC 3.80 %

588 M5/
0 STOPPED

the bus between hub and device is in low-speed mode since
the device is low-speed.
We used the bus menitor {o observe how the device pack-

ets are transmitted on a full-speed bus. Table 4 shows part of

the packet sequences. Packets #777 to #782 are the data and
status stages of communication between host and hub using
the normat full-speed transfer format.

Packets #784 to #794 perform three-stage control transfer
between host and the low-speed device through the full-speed
hub. In order to differentiate the low-speed signals from the
high-speed for the hub to broadcast them to the downstream
ports, a preamble (PRE) packet is required as shown.

Packets following the PRE (0x3C) are the low-speed data.
Packets #784 and #785 are the get-descriptor command from
host to the device, and packet #786 is the ACK from device.

How USB signals are transmitted

USB protocol involves non-retum to zero, inverted, or NRZI,
encoding to encode the data before transmitting onto the bus.
This encoding method does not need a separate clock signal.
In NRZI encoding, a transition between two consecutive data
bits represents logic *0* while no transition represents logic
1.

Figure 8 shows a serial data stream transmitted on the USB
bus, encoded in NRZI format. The waveform was captured at
the host side by probing on the data lines, D+ and D— while
the device was sending an NAK response to the host in fall-
speed mode.

Logic bits for the D+ signal arc shown in bold. For clarity,
the D+ and D signals are separated as in Figs 9 and 10
respectively.

The upper waveform in Fig. 9 shows two packet transac-
tions and the bottormn waveform shows the magnified view of
the last part of data transfer, | is casy to work out the actual
data value from the waveform. Figure 11 shows the trans-
mitted NRZI data from Fig. 9. '

The left-most bit *1” in the table of Fig. 11a) represents the
last bit transferred from the previous packet. This bit is used
to decode the following 8 data bits. The second NRZI bit is
0. The change from 1’ to *0’ is a transition, so the first bit
of actual data is logic “0°.

In Fig. 11b), logic ‘1" in the actual data row indicates that
there is no data transition between the previous NRZI bit, in
this case ‘0". Following the same procedure for the rest of
NRZI bits, the 8-bit actual data decodes as 00000004, which
is a specific synchronisation data pattern.

[T-Mar-98
4:49:84 D+

E:} ﬂ\A "“"}{T’j f“‘“ﬂ[’ww{ |
D(¥ /’\\ B

b

pd

4t

Fig. 13. Full-speed USRB signals captured at the device side of
the bus during sending of a negative-acknowledge NAK signal
to the host.

898

2 ps
1.1 ¥ 0C3%
B.1 v g BEQ MS/e
iﬁ ¥ DC — 1 OC 6.88 ¥
2

[0 sTorpED

ELECTRONICS WORLD November 1999 -

Control

oo

PC ENGINEERING

PG host

USB cable connection Device

m regula!or b

1.5k

Gnd

Vec(in) ©558 Vee(out)

541

Fig. 15. Power switch
control circuit used fo
switch off high-
current circuitry
during standby mode.

and device.

Fig. 14. USB connection detail for a
full-speed mode link between a host

In Fig. 11c), the next 8-bit NRZI data stream is 11000110,,
50 the decoded actual data will be 01011010 which is an
negative-acknowledge NAK signal.

The three bit times at the end of the waveform in Fig. 9
indicate the erd-of-packet (EOP). Both data lines D+/D- are
driven low for two bit times and back to high again at the
third bit time for D+. The D line stays low after the EOP as
shown in Fig. 10. Some more NRZI examples are shown
below:

Name Actual data NRZI code

{packet ID}) (hex} :

Datat D2 00110110
SOF A5 01101100
ACK 4B 11011000
IN 98 g1001110
Setup B4 01110010

The two data lines should be overlapped in order to show the
cross-over point. Figure 12 shows a close-up view of the
waveform of Fig. 8. The cross-over voltage point is about
1.7V and the maximum signal level is about 3.3V.

Signal quality issues

When measuring signals at the devxce side, a different signal
quality can be obtained. The signal shown in Fig. 13 was
captured at the device side while the device was driving
NAK to the host.

The shape of waveform is not very smooth at the cross-
over points; this is due to impedance mismatch. The signal
sent out from the device is partially reflected at the host side
and back to the device. This makes it confusing for engineers
measuring the signal quality as required in the USB
Compliance checklist.

The signals should be captured at the host side when mea-
suring the device transmission signal quality, and captured at
the device side when the receiving signal quality is required.
According to the USB specification, the rise/fall times for-the
transmitted signal should be both less than 20ns and 30ns for
the received signals.

Power management

A pull-up resistor connected at the downstream end of the
cable is used to determine the operating speed of the device.
D+ is pulled high for full-speed mode, as shown in Fig. 14,
while D is pulled high for low-speed mode.

When a device is attachad to the host or hub, there is a
puli-down terminator with resistance of 15k€2 at the host/hub
side to form a complete loop.

It follows that there is a constant current of about 200pA
flowing from the pull-up resistor, through the USB cable and
to the pull-down resistor, This current needs to be taken into

account when designing USB equipment.

Current consumed by a USB device is an important issue
for designers trying to meet the USB specification. This is
especially true where devices are involved that obtain power
from the host/hub through the Vi, power line of USB cable.

To avoid overloading the host or hub, a current of less than
100mA shouid be drawn by each attached device during nor-
mal operation, It should be less than 500pA. in suspend mode.

Suspend mode and power down mode in the device and
USB controller chip are interpreted differently. During sus-
pend mode, the device should be able to receive the wake-up
signal from the host so that it can resume normal operation.

This can be done by turning on the signal receiving circuit
of the transceiver, which is normally an embedded on-chip
module. The rest of the on-chip modules can then be set to
power-down mode in order to reduce power consumption.

However, the constant current through the pull-up, and the
current consumed by the transceiver in suspend mode result
int less of the 300pA current being available to support other
hardware in the device. For this reason, it is recommended to
power-down the external hardware circuits to meet the spec-
ification. A simple power-control switch circuit is introduced,
Fig. 14, to switch off the high-current components in the
device while in suspend mode.

This circuit can be controlled by an or/off signal from the
controller. It also provides a “soft-turn-on” function that pre-
vents excessive surge current drawn from the V¢ by all
components at the same time during power on. There is a
commercial chip, Infineon’s BCR 48 PN, that can provide a
similar function.

In summary

More details on the USB HID class device,b such as a key-
board interface, can be found in the application note men-
tioned in reference 7.

The introduction of the USB 1.1 standard provides an easy
way for the connection of PC peripherals and more and more
peripherals are being embedded with USB. Dedicated USB
controllers play an important role in USB products.

The imminent USB 2.0 specification will enhance the capa-
bility of USB for transmitting multi-media signals. Its high-
er bandwidth provides a wider range of applications to the
next-generation peripherals. u

References

1. ‘PC 98 System Design Guide’, Intel Corporation and Microsoft

Corporation.

2, ‘An Embedded Chip for USB Applications: from the architecture
to implementation’, Proc. of 1999 International IC Conference &
Exhibition, p. 1, Apr. 1999,

3, Don Anderson, ‘Universal Serial Bus System Architecture’,
MindShare Inc., 1997

4. *USB 1.1 Specification’, hitp://www.usb.org/

5. *CS41U User's Manual’, 64.99, http:/fwww.infineon.com/

6. ‘USB Device Class Definition for Human Interface Devices’,
hitp:/fwrww.usb.org/

7. ‘USB Device Enumeration Using C3541 MCU”, Application note
#AP0833-01, Infineon Technology, July 99.

900

ELECTRONICS WORLD November 1999

