HANDLE PL /SQL ERRORS

5-2 Handle PL/SQL Errors Develop Applications with PL/SQL (Version 2.0)

SECTION OBJECTIVES

At the end of this section, you should be able to:
1 Identify the two types of exception handling within PL/SQL.
2 Identify the functions supplied by PL/SQL that provide error information.

3 Write a PL/SQL block containing PL /SQL exception handling features that satisfies

a given scenario.

Develop Applications with PL/SQL (Version 2.0) Handle PL/SQL Errors .5-3

HANDLE PL/SQL ERRORS: OVERVIEW

EXCEPTION .

54 Handle PL/SQL Errors Develop Applications with PL/SQL {(Version 2.0)

Handle PL/SQL Errors: Overview—cont'd

In PL/SQL, errors are called exceptions. When an exception is raised,
processing jumps to the exception handlers.

An exception handler is a sequence of statements to be processed
-when a certain exception occurs. When an exception handler is
complete, processing of the block terminates

Types of Exceptions
- Pre-defined Internal Exceptions
Correspond to approximately 20 common ORACLE errors
Raised automatically by PL/SQL in response to an ORACLE error
- User-defined Exceptions
Must be declared
Must be RAISEd explicitly

For further information on the subject see:
78 Technical Reference Appendix, pages 3 through 7
PL{SQL User’s Guide and Reference Version 1.0, 800-20

Q)

Develop Applications with PL/SQL (Version 2.0) Handle PL/SQL Emors 5-5

PREDEFINED INTERNAL EXCEPTIONS

Any ORACLE error raises an exception automatically; some of
the more common ones have names.

Examples

TOO_MANY ROWS . (ORA-01427)
— & single row SELECT returned more than one row

NO_DATA FOUND {ORA-01403)
— a single row SELECT returned no data

INVALID CURSOR {ORA-01001)
— an illegal cursor operation occurred

VALUE_ERROR (ORA-06502) :

— arithmetic, conversicn, truncation, or constraint error i
occurred !
INVALID NUMBER (ORA-01722)
- conversion of a character string to & number fails in a2 SQL f
statement I
!
ZERO _DIVIDE {ORA-01476)

— attempted to divide by zero

DUP_VAL ON_INDEX {ORA-00001)
— attempted to insert a duplicate value intc a column that has a

unique indexz specified

CURSOR ALREADY OFEN (ORA-06511)
! — attempted to open an already open cursor

OTHER S y
- t2sEr ?é 5”%£¢£ #efﬁ‘

5-6 Handle PL /SQL Errors Develop Applications with PL/SQL (Version 2.0)

DECLARE EXCEPTION HANDLERS

Syntax

i

: WHEN <exception name> | OR <exception name> ...] THEN
<seguence of statements>

% (WHEN OTHERS THEEN -= if used, must be last handler

<sequence of statements>]

Example

DECLARE
employvee num emp.empno%TYPE;

BEGIN
SELECT empno INTO employee num FROM emp
WHERE ename = "BLAKE':;
INSERT INTO temp (coll, message)
VALUES (employee_num, 'Blake''s employee number.');
DELETE FROM emp WHERE ename = 'BLAKE';

EXCEPTION
WHEN NO_DATA_FOUND THEN
ROLLBACK:;
INSERT INTQO temp (message}
VALUES ("BLAKE not found.’);
COMMIT;
WHEN TOO_MANY ROWS THEN
ROLLBACK;
INSERT INTO temp (message)
VALUES ('More than one BLAKE found.'):;
COMMIT:;
WHEN OTHERS THEN
ROLLBACK;

END;

Develop Appiications with PL/SQL (Version 2.0} Handle PL/SQL Erors

DECLARE USER-DEFINED EXCEPTIONS

Define and explicitly raise User-defined exceptions.

Examples

| DECLaRE '
% " NUMBER; A
{ my_exception EXCEPTION; -- a new object type :
RAISE your exception

RAISE my exception;

Quick Notes

» Once an exception is RAISEd manually, it is treated exactly
the same as if it were a predefined internal exception.

« Declared exceptions are scoped just like variables.

« A user-defined exception is checked for manually and then
RAISEd, if appropriate.

5-8 Handle PL/SQL Errors Develop Applications with PL/SQL (Version 2.0)

Declare User-defined Exceptions—cont'd

Example

DECLARE

: my_ename emp.ename%TYPE := 'BLAKE';
assigned projects NUMBER;

too_few pfojects | EXCEPTION;

BEGIN i
L

" -= get number of projects assigned to BLAKE

IF assigned projects < 3 THEN
RAISE toc_few _projects:

END IF;

EXCEEPTION -—-- begin the exception handlers
WHEN toé_few_p:ojects THEN
INSERT INTO temp
VALUES (my_ename, assigned projects,

"TLESS THAN 3 PROJECTS!'):;

COMMIT; |

END;

Develop Applications with PL/SQL (Version 2.0) Handle PL/SQL Errors 59

EXCEPTION PROPAGATION

Propagation Steps
1 The current block is searched for a handler. If not found, go to step 2.
2 If anenclosing block is found, it is searched for a handler.

3 Steps 1 and 2are repéated until either there are no more enclosing blocks, ora han-
dler is found.

~« If there are no more enclosing blocks, the exception is passed back to the
calling environment (SQL*Plus, SQL*Forms, a pre-compiled program, and
so on).

» If a handler is found, it is executed. When done, the block in which the
handler was found is terminated, and control is passed to the enclosing
block (if one exists), or to the environment (if there is no enclosing block).

Quick Notes
- Only one handler per block may be active at a time.

- If an exception is raised in a handler, the search for a han-
dler for the new exception begins in the enclosing block of
the current block.

5-10 Handle PL/SQL Errors Develop Applications with PL/SQL (Version 2.0)

Exception Propagation—cont'd

Example

BEGIN

BEGIN

IF X = 1 THEN
RAISE A;

ELSIF X = 2 THEN
RAISE B;

ELSE
RATSE C;

EXCEPTION

WHEN A THEN

END:;

Exception A is handled locally
and execution resumes in the
outer block

g

EXCEPTION

WHEN B THEN

END;

Develop Applications with PL/SQL (Version 2.0)

Handle PL/3QL Errors 5-11

Exception Propagation——cont'd

Example

BEGIN

BEGIN

IF X 1 THEN
RAISE A;

ELSIF X 2 THEN
RAISE B;

ELSE
RAISE C;

EXCEPTION

WHEN A THEN

END;

Exception B PROPOGATES
to the first outer block with an
appropriate handler

EXCEPTION

WHEN B THEN

LR

END;

Exception B is handled and
control is passed back to the
calling environment.

512

Handle PL/5QL Errors

~

Develop Appilications with PL/SQL (Version 2.0)

Exception Propagation——c:ont'd

Example

BEGIN

" BEGIN

IF X = 1 THEN
RAISE A;

ELSIF X = 2 THEN
RAISE B;

ELSE
RAISE C;

END:;

EXCEPTION
WHEN A THEN

EXCEPTION

WHEN B THEN

Exception C has no handler
and will result in a runtime
unhandled exception

Develop Applications with PL/SQL (Version 2.0)

Handle PL/SQL Errors

5-13

OTHER USES OF RAISE

By itself, the RAISE statement simply re-raises the current exception
(as if it were being propagated).

Syntax

RAISE;

Quick Note |
- RAISE may only be used in an exception handler.

5-14 Handle PL/SQL Errors Develop Applications with PL'SQL (Version 2.0)

NAME AN ORACLE ERROR

Exceptions may only be handled by name (not ORACLE error
number).

Name an ORACLE error so that a handler can be prowded spec1f1cally :
for that error, with EXCEPTION_INIT.

Syntax

PRAGMA EXCEPTION INIT (<user defined exception_name>, f

<ORACLE_error_number>); l

i
!

!‘ deadlock detected EXCEPTION;
: —

t

PRAGMA EXCEPTION INIT (deadlock_detected, —60); |

For further information on the subject see:

" Technical Reference Appendix, pages 8 and 9
PL/SQL User’s Guide and Reference Version 1.0, 800-20

Develop Applications with PLUSQL (Version 2.0) Handle PL/SQL Errors 3-15

REFERENCE ERROR REPORTING FUNCTIONS

SQLCODE and SQLERRM

. Provides information on the exception currently being handled

- Especially useful in the OTHERS handler

SQLCODE

« Returns the ORACLE error number of the exception, or 1 if it was a
user-defined exception.

SQLERRM

. Returns the ORACLE error message associated with the current
value of SQLCODE.

. Can also use any ORACLE error number as an argument.

Quick Notes
- If no exception is active...
SQLCODE =0
SQLERRM = normal, successful completion

« SQLCODE and SQLERRM cannot be used within a
SQL statement.

5-16 Handle PL/SQL Errors Develop Applications with PL/SQL (Version 2.0}

Reference Error Reporting Functions—cont'd

Example

g DECLARE
sglcode val NUMEER;
sgierrm val =~ CHAR(SS):;
BEGIN
EXCEPTION
WHEN OTHERS THEN

SQLCODE;

sqlcode_val

-- Can’t insert SQLCCLDE directly.

SUBSTR (SQLERRM, 1,53) ;

sglermm val

-=- Can'’t insert SQLERRM directly.

-- that returned string will fit into

-- target wvariable.

INSERT INTO temp (coll, message)

VALUES (sqglcode_val, sglerrm_wval):

m
g

-- Also, SUBSTR should be used to ensure

Develop Applications with PL/SGL (Version 2.0)

Handle PL/SQL Errors 517

HANDLE PL/SQL ERRORS: SUMMARY

- EXCEPTION

7

5-18 Handle PL /SQL Errors Develop Applications with PL/SQL (Version 2.0)

Handle PL/SQL Errors: Summary—cont'd

Handle PL/SQL errors in the exception handler section.

. Predefined internal exceptions are raised automatically in response to an
ORACLE error.

- User-defined exceptions must be declared and explicitly raised.
- When an exception is raised, the current block is searched for a handler. If

there is no handler present, the exception propagates to the enclosing
block.

. For ORACLE errors that do not correspond to a predefined internal excep-
Hion, declare a user-defined exception and associate it with an ORACLE

error using PRAGMA EXCEPTION_INIT.

« The functions SQLCODE and SQLERRM provide information on the
exception currently being handled.

Devetop Applications with PL/SQL (Version 2.0) Handle PL/SQL Errors 5-19

LAB 5-1

Write a PL / SQL block based upon the tables depicted below and the
scenario below. Test your block by executing it in SQL*Plus.

ACCOUNTS TABLE
UNIQUE INDEX™

[NUMBER (4)] [NUMBER (11,2)]
ACCOUNT_ID BAL i
1 1000 ?
2 2000 |

3 1500

4 6500

5 500

ACTION TABLE

[NUMBER (4)] {CHAR (1)] [NUMBER (11,2}]
ACCOUNT ID OPER_TYPE NEW_VALUE
3 U 599
6 I 2099
7 U 1599 :
1 I 399 E

520 Handle PL/SCL Errors Develop Applications with PL/SQL {Version 2.0)

Lab 5-1—cont'd

1 The ACTION table defines a set of actions to be taken on the ACCOUNTS table. The
" actions (stored in the OPER_TYPE column) may either be T to insert a new account,
or 'U" to update an exdsting account. For example, if arow in ACTION reads 6, T,
2099, that means to create account 6 with $2099 as an initial balance. If there was a
U instead of an T in the same row, it would mean update account 6, and set the new

balance to $2099.

2 Write a PL/SQL block that goes through each row of ACTION (Hint: You'll need a
cursor here) and carries out the actions specified.

3 If you attempt to insert a row that already exists, perform an update instead. The
DUP_VAL_ON_INDEX internal exception will be raised, so your block should
include a local handler to perform the update. If you perform an update ona row
that doesn't exist, perform an insert instead. How can you tell if no rows were up-

dated?

Deveiop Applications with PL/'SQL (Version 2.0) Handle PL/SQL Errors 521

5-22 Handle PL/SQL Errors Develop Applications with PL/SQL {Version 2.0)

Lab 5-1—cont'd

Optional Lab

Write a PL/ SQL block to satisfy the scenario below. Test your block
by executing it in SQL*Plus.

4 Prompt the user for a department number, and then, using a cursor, get the salary,
commission, and name of each employee in the department. This information is
inserted into the COL1, COL2, and MESSAGE columns of the TEMP table (depicted

~ below).

5 However, if an employee in that department has a NULL commission, raise a user-
defined exception. In the exception handler, first ROLLBACK any previous
INSERTs. Then CLOSE and re-OPEN the cursor, this time inserting only the salary
and name of each employee into the COL1 and MESSAGE columns of the TEMP

table.

TEMP TARLE
[NUMBER (9,4)] [NUMBER({9,4)] [CHAR {55)] ‘[
CoLl CcoLz2 MESSAGE

Develop Applications with PL/SQL (Version 2.0) Handle PL/SQL Errors 5-23

5-24 Hanudle PL/SQL Errors Develop Applications with PL/SQL (Version 2.0)

