6

CODE PL/SQL SUBPROGRAMS -

6-2 Code PL/5QL Subprograms Develop Applications with PL/SQL (Version 2.0)

SECTION OBJECTIVES

At the end of this section, you shouid be able to:
1 Understand the advantages of writing subprograms.
‘2 Explain the differences between PL/SQL procedures and functions.”

3 Create and invoke a PL/SQL procedure.

Deveiop Appiications with PL/SQL (Version 2.0) Code PL/SQL Subprograms

6-3

CODE PL/SQL SUBPROGRAMS: OVERVIEW

DECLARE

PROCEDURZ . ..I3
| BEGIN
(EXCEPTION]

END;

BEGIN

precedure name. . . ;

W

16-4) Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0)

Code PL/SQL Subprograms: Overview—cont'd

Aid application development by writing PL/SQL subprograms
(procedures and functions).

PL/SQL Subprograms
. Provide extensibility
Provide modularity

» Promote reusability
. Promote maintainability

« Aid abstraction

Quick Notes

. Incorporate a subprogram in a PL/SQL block by coding the
subprogram in the declaration section for that block.

. Procedures and functions contain a declaration section, an
executable section, and an optional exception handling

section.

Develop Appiications with PL/SQL (Version 2.0) Code PL/SQL Subprograms

6-5

CREATE A PL/SQL PROCEDURE

PROCEDURE. .. IS

[EXCEPTION]

6-6 Code PL/SQL Subprograms Deveiop Applications with PL/SQL {Version 2.0)

Create a PL/SQL Procedure—cont'd

A PL/SQL procedure is a named, callable block that performs a
specific action.

Syntax—Procedure body

PROCEDURE prol:edure_name { {(parameter [, parameter, . . .] } 1718
[local declarations]

BEGIN

executable statements

[EXCEPTION

excepticn handlers]

END [procedure_name];

where: parameter represents the following:

parameter_name mode datatype [:= valuel

Syntax—Call a procedure
procedure_name [(parameter_name [, parameter_name, . . 21) 3 i
Quick Note

. PL/SQL procedures are specific to ORACLE?.

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms

6-7

Create a PL/SQL Procedure—wcont’d

Pass information between procedures using parameters.

Syntax - Use parameters
PROCEDURE procedure name (parameter name mode datatvpe [:=value])
where: IN allows for passing values in to a procedure. It acts as a constant and

cannot be assigned a value in the procedure. IN is the default mode.

ouT allows for returning values back to the caller of the procedure. It acts
as an un-initialized variable and cannot be assigned to another
variable or reassigned to itseif in the procedure.

INOUT allows for passing initial values in to a procedure and returning
updated values to the caller. It acts as an initialized variable.

8-8 Code PL/3QL Subprograms Develop Applications with PL/SQL (Version 2.0}

Create a PL/SQL Procedure—cont'd

Example - Call a procedure with IN parameters

! raise salary {(emp num, amount);
‘ - S %

Example -
Procedure body
with IN parameters

PROCEDURE raise_ salary (emp_id IN INTEGER, increase IN REAL) IS
current salary REAL;
salary_missing EXCEPTION;

BEGIN .
SELECT sal INTO current_salary FROM emp
WHERE empno = emp_1id; '

IF current salary IS NULL THEN

RAISE salary missing;
ELSE
UPDATE emp SET sal = sal + increase
WHERE empno = emp_id; |
END IF; !
EXCEPTION E
WHEN NC_DATA FOUND THEN
INSERT INTO emp audit VALUES (emp id,, 'No such number');

WHEN salary missing THEN
INSERT INTO emp audit VALUES (emp_id, 'Salary is null');

END raise_ salary; :

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms 6-9

Create a PL/SQL Procedure—cont'd

Example - Call a procedure with an IN and an OUT parameter

calc_bonus (employee num, bonus_amt);

N

Example -
Procedure body with an
IN and an OUT parameter

~
PROCEDURE calc_beonus (emp_id IN INTEGER, bonus OUT REAL) IS

hire date DATE;
commission NUMBER (7,2);

BEGIN
SELECT hiredate, comm into hire date, commission FRCM emp

WHERE empno = emp_id;
IF MONTHS BETWEEN (SYSDATE, hire_date) > 60 THEN

bonus ;= commission + 500;

END IF; '
END calc_bonus; :

610 Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0)

Create a PL/SQL Pchedure-——cont'd

Example - Call a procedure with an IN and an IN OUT parameter

debit_account (account_num, purchase);

N,

Example -
Procedure body with an
IN and an IN OUT parameter

PROCEDURE debit account {acct_id IN INTEGER, amount IN QUT REAL) IS
minimum_purchase CONSTANT REAL := 10.5;
service_charge CONSTANT REAL := 0.50;

[BEGIN
I IF amount < mipnimum puxchase THEN
amount := amcount + service__charge H
END IF;

1 END debit_account;

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms

CREATE A PL/SQL FUNCTION

FUNCTION ... IS

EXCEPTION]

6-12 Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0}

Create a PL/SQL Function—cont'd

A PL/SQL function is a named, callable block that performs a specific
action and returns a value. Functions are structured the same as
procedures except functions have a RETURN clause.

Syntax - function body

FUNCTION function name [(parameter [, parameter,...]}]RETURN datatype IS
[local declarations]

BEGIN

executable statements

[EXCEPTION _

exception handlers]

END [function_name];

where: parameter represents the following:

parameter_name [IN] datatype [:= value]

Syntax - Call a function as part of an expression

. function name | (parameter_name [, parameter name, ...l)}] ...

Quick Notes
« Functions are specific to ORACLE?.
« A function can only take IN parameters.
- A function must be called as part of an e;pression.

. Calls to user-defined functions can appear in procedural
statements, but not in SQL statements. Lo

s (a_j waia o Elmri (ename.), sa¥

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms 6-13

Create a PL/SQL Function—cont'd

Example - Call a function as part of an expression

IF sal_ok (new_sal, level) THEN

END IF:;

Or

E promotable := sal_ok (new_sal, level) AND (rating > 3);
E .

Example - Function body

FUNCTICN sal ok (salary IN REAL, level IN CHAR) RETURN BOCLEAN 1S
min_sal REAL;
max_sal REAL;
BEGIN
SELECT losal, hisal INTO min sal, max sal FROM salgrade
WHERE grade = level;
RETURN (salary >= min_sal} AND (salazy <= max_sal);

END sal_ck H

6-14 Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0}

Create a PL/SQL Function—cont'd

One or more RETURN statements must appear in the executable part
of a function.

The RETURN Statement

. A function can contain several RETURN statements, none of which need to
be the last lexical statement.

- The RETURN statement must contain an expression, which is evaluated
when the statement is executed. The resulting value of the expression is
assigned to the function identifier.

« The RETURN statement retumns control to the point where the function
was called. Execution then resumes with the statement following the
function call.

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms 6-15

Create a PL/SQL Function—cont'd

One or more RETURN statements must appear in the executable part
of a function.

The RETURN Statement

. A function can contain several RETURN statements, none of which need to
be the last lexical statement.

. The RETURN statement must contain an expression, which is evaluated
when the statement is executed. The resulting value of the expression is
assigned to the function identifier.

. The RETURN statement returns control to the point where the function
was called. Execution then resumes with the statement following the

functon call.

615

Develop Applications with PL/SQL (Version 2.0) Code PL/SQL Subprograms

Code PL/SQL Subprograms: Summary—cont'd

Use PL/SQL subprograms as building blocks to develop reliable,
modular, and maintainable applications.

PL/SQL Subprograms
. APL/ SQL procedure is a named, callable block that performs a specific
action.

. APL/SQL function is a named, callable block that performs a specific
action and returns a value.

Develop Appiications with PL/SQL {Version 2.0) Code PL/SQL Subprograms 617

6-18 Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0)

LAB 6-1

Write a PL/ SQL block based upon the tables and scenario in lab 3-1
given the additional information below. Test your block by executing
itin SQL*Plus.

1 The ACTION table defines a set of actions to be taken on the ACCOUNTS table. The
actions (stored in the OPER_TYPE column) may either be T to insert a new account,
U’ to update an existing account, or 'D’ to delete an existing account. On an insert, if
the account already exists, an update is done instead. On an update, if the account
does not exist, it is created by an insert. On a delete, if the row does not exist, no
action is taken.

2 Write a PL/SQL block that goes through each row of ACTION and carries out the
actions specified. Incorporate procedures in the declaration section of the block for
each of the different actions (insert, update, and delete) and call the procedures from
the executable section of the block (Hint: You'll need to pass parameters to the
procedures).

TUNIQUE INDEX |
ACCOUNTS TABLE
[NUMBER (4)] [NUMBER(11,2)] |

ACCOUNT_ID BAL |

ACTION TABLE

[NUMBER (4) | [CHAR(1)] [NUMBER (11, 2)]
ACCOUNT_ID OPER_TYPE NEW_VALUE
3 U 598
8 I 2099
5 D
7 U 1599
| 1 I 399
: 9 D

Develop Applications with PL/SQL (Version 2.0) Code PL/5QL Subprograms 5-19

6-20 Code PL/SQL Subprograms Develop Applications with PL/SQL (Version 2.0)

