MAX660 INVERTER/DOUBLER

Design by J. Ruiters

A small circuit is described that inverts a positive voltage into a negative one or doubles its level. It does not use inductors and is based on a single Type MAX660 chip.

THE power supply for a battery-operated design can often cause a few headaches as regards the level of the voltage or whether asymmetrical supply should be used. The latter, for instance, normally means a doubling of the number of batteries, which take twice the space originally allowed for and increase the weight: two undesirable factors. The obvious solution is a switch-mode supply, but the construction and/or dimensions of the in-

ductor required for that is another unwelcome element.

There is, however, another solution, provided the output current is not required to be larger than 100 mA: the Type MAX660 integrated circuit. This IC needs only a few capacitors and a diode to provide, from a positive supply, a negative voltage at the same level or double the voltage. It is, of course, possible to use a number of these ICs to increase

the output current or voltage, but the proposed design is based on just one.

 \mathbf{Z}

D١

The circuit

The internal of the MAX660 circuit is shown in Fig. 1; Fig. 1a is a design for a voltage inverter and Fig. 1b, for a voltage doubler. Within the IC, one of two pairs of CMOS switches is opened or closed by the internal

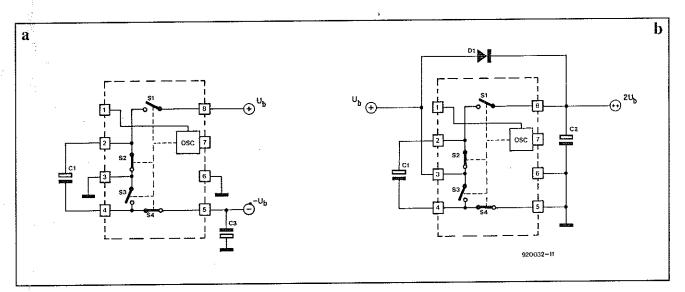


Fig. 1. Basic circuit of a voltage inverter (a) and a voltage doubler (b) based on a Type MAX660 integrated circuit.

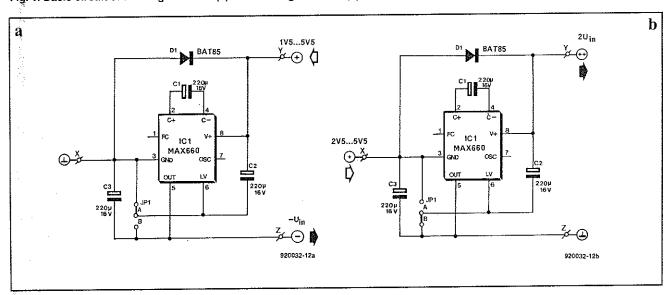


Fig. 2. The two circuits of Fig. 1 can be combined into one that can serve either as an inverter or as a doubler.

TABLE 1 Connections				
	inverter	doubler		
JP1 X Y Z	A ground in (1.5–5.5 V) out	B in (2.5–5.5 V) out ground		

oscillator that operates at 10 kHz.

If, in Fig. 1a, S_1 and S_3 are closed (S_2 and S_4 are then open), C_1 will be charged. When these switches change over, C_1 and C_3 are in parallel, whereupon charge is transferred from C_1 to C_3 . Also, the polarity of C_1 with respect to earth is reversed (pin 2 was connected to \oplus U_b and is now connected to earth, while pin 4 was connected to earth and is now connected to pin 5). The voltage across C_3 will thus be negative with respect to earth. In the absence of a load, a negative voltage

will arise across C_3 , whose level is equal to that of \oplus U_b . When the circuit is loaded, that negative voltage will not only decrease, but will also have a ripple. This is, of course, because C_1 can transfer only a limited charge, smaller than the one required, per unit time. On average, there will remain a smaller charge in C_3 , so that the voltage across this capacitor will drop.

When the switches are connected as in Fig. 1b, and a diode, D1, is added, the IC will double the input voltage. When the supply is switched on, C2 is charged immediately to the supply voltage (less the forward voltage of the diode) via D1. This is necessary to ensure a supply to the oscillator. Furthermore, the charge need not be transferred via the IC. Here again, C1 is the reservoir. It is charged when the switches are in the position shown. When the position of the switches is reversed, C_1 is in series with the supply voltage, U_b , so that the potential across it is 2Ub. At the same time, C_2 is connected, so that charge is transferred from C1 to C2. In that way, and provided the the circuit is not loaded, a voltage arises across C2 that is twice Ub. As in Fig. 1a, when a load is connected to the circuit, the output voltage, 2Ub, will decrease in proportion to the load (see Table 3). Bear in mind that the input current will be twice as large as the output: the energy has to come from somewhere.

The circuits in Fig. 1a and Fig. 1b can be combined as shown in Fig. 2. The position of jumper JP1 and the connections to X, Y and Z are given in Table 1. Table 2 shows the function of each of the external components. When the circuit serves as voltage inverter, D₁ is not really required, but, together with a 160 mA fuse, it serves as protection against polarity reversal. Should the supply voltage be connected with incorrect polarity, it will be short-circuited by D₁, whereupon the fuse blows.

The minimum input voltage to the doubler circuit cannot be as low as to the inverter circuit, because, in that configuration, the oscillator has difficulty in starting at too low a voltage. This happens particularly at input voltages below 3.5 V; above that level, the oscillator starts readily at all times.

Although the circuit is perfect for building into an existing design, there may be applications where it is used by itself and for those a printed circuit board—see Fig. 3—is provided.

PARTS LIST

TABLE 2 Function of various components						
component	inverter	doubler				
C1 C2 C3 D1	pump input buffer output reservoir polarity protection	pump output reservoir input buffer start up				

TABLE 3 Measurement results							
<i>U</i> _{in} (V)	$R_{ m L}$	I _{in} (mA)	U _{out}	$U_{ m ripple} \ ({ m mV}_{ m pp})$	Efficiency (%)		
2.5 2.5 2.5 5.0	∞ 22 ∞	0.1 80 0.2	-2.5 -1.8 -5.0	.5 100 .5	74		
5.0 Doubler	47	97	-4.5	100	89		
2.5 2.5	∞ 47	0.1 178	5.0 4.1	5 100	80		
5.0 5.0	∞ 100	0.3 190	10.0 9.5	5 100	95		

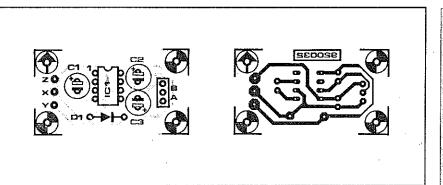


Fig. 3. Printed-circuit board for the inverter/doubler

Semiconductors: D1 = BAT85 IC1 = MAX660

Capacitors:

 $C1-C3 = 220 \mu F$, 16 V, radial

ELEKTOR ELECTRONICS JUNE 1992

ro-

wn

ler.

OS

nal

b