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Richard Formato explains
how a natural-selection
like design process
produces better
antennas, and provides
evidence in the form of a
three-element Yagi
example for 50MHz
work.

enetic algorithms, or GAs, are a class
Gof optimisation techniques that mimic

q natural selection, i.e. ‘survival of the
fittest’. Such algorithms are applicable to
many types of problems, and they are becom-
ing increasingly useful in antenna design!?.
This note describes a genetically designed
three-clement Yagi that provides very good
performance and illustrates how effective
genetic algorithms can be.

Unlike deterministic optimisation schemes,
GAs are based on random selection. A bina-
ry-coded genetic algorithm staris by creating
a population of ‘chromosomes’ which are
random one and zero bit sequences. Each
chromosome contains a complete antenna

10
8
/
/
6
=
z
£
1]
S 4
2
0 -
0.94 0.96 0.98 1.00 1.02 1.04 1.06
F/Fo

“Fig. 1. Main lobe gain for the genetically-designed Yagi example.

design — in this example — a complete three-
elemeni Yagi antenna.

The chromosome is made up of ‘genes’
which are strung together one after another.
Each gene comresponds to one of the anten-
na’s design parameters,

The Yagi gene relationship appears in
‘Table 1. A design is fully specified by eight
genes: reflector length and radins REF, driv-
en element length and radius DE, director
length and radius D/R, and location along the
boom DE/DIR. Gene length is its length in
bits — for example, REF length is five bits.,

The minimum and maximum values of
each design parameter alse appear in the
table, and all dimensions are in wavelengths,
‘waves’. The DE length, for example, cannot
be longer than 0.6 wave or shorter than 0.4
wave.. ’

Since each design parameter is a decimal
nuimber, not a bit sequence, the actual value
of the parameter is computed by decoding its
binary gene using the following transforma-
tion equation, .

X=X+ (—m———Xm‘“L X ) x D
24 -1 :
where X is the decimal valie of the parameter,
D 1s the decimal value of the gene’s binary
sequence, and L is the gene’s length.

To illustrate how this decoding scheme
works, consider the 37-bit chromosome that
contains the design for the Yagi discussed
below:

0010111000011011111661011100010111106

The DE length is coded in gene No 3, which
starts at bit No 10 and ends with bit No 14.
The binary sequence for the DE length gene is
00110, and its decimal valie is,

02%+02)+1(22+1(23)40(2%=12

Since gene No 3 is five bits long, the denom-
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Gene #

TR W

0~

Name .-
REF Length
REF Radius
DE Length

DE Radius

DE Separation
(from ref.)

DIR Length
DIR Radius
DIR Separation
(from DE)

Table 1. Gene fable for three-element Yagi.
Length

5
4
5
4
5

LI SN |

Max
0.6

0.002

0.6
0.004
0.3

C.6
¢.002
0.3
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Fig. 2. Front-to-back ratio for the genetically-designed Yagi example,
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Fig. 3. Genefically-designed Yagi’s input impedance.

inator in the transformation ecquation is
2°-1=31. This makes the DFE length,

04+(0.6-04)12
31

wavelengths. Because the computer model
used to calculate the Yagi’s performance
inputs the hkalf-length of DE instead of its
overall length, this value is divided by two and
rounded to three places to give 0.239 wave.
This decoding scheme is used fo evaluate each
of the Yagi’s design parameters. The DIR
radius, gene No 7, for example, evaluates to
0.0015 wave, and so on.

The genetic algorithm begins by creating an

= 0.477419355

;initial population of random 37-bit chromo-

somes. It then applies the operators of “selec-
tion’, ‘crossover’, and ‘mutation’ to filter out
‘unfit’ designs while retaining the better ones.

Successive applications of these operators
create ‘generations’ of antenna designs, with
each subsequen{ generation hopefuily con-
taining better designs than the previous one.
But, because of the algorithm's inherently ran-
dom nature, there is no guaranty of obtaining
better designs. They may actually become
worse from one generation to another.

Well-designed genetic algorithins, however,
usually produce progressively better designs,
at least on the average. Every new run holds
the intriguing possibility of producing a pre-
viously unseen ‘best’ design,

The selection operator determines which
chromosomes are fit enough to survive to the
next generation. Some may be automatically
discarded — for example, the worst 10% —
while others are typically ‘killed’ at random,
as they would be in nature. Others may be
automatically retained — the best 5%, for
example.

The algorithm designer is free to implement
whatever selection process seems best. The
CTOSSOVer operator ‘mates’ two chromosomes,
or ‘parents’, to produce two new chromo-
somes, or children’, which become members
of the next generation. Child chromosomes
usually maintain a constant population from
one generation to the next, although the pop-
ulation could grow if desired.

Each parent’s chromosome is split at a gene
boundary, usually randomly selected, and the
pieces are swapped (concatenated together) to
form two different chromosomes. This is the
primary process by which genetic algorithm
propagate ‘good’ genes from one generation
to the next.

Finally, the mutation operator randomly
flips a bit here and there with some smaH
probability. This simulates the genetic muta-
tion that occurs randomly in Nature.

Deciding which is best

In each generation, all of the designs, or chro-
mosomes, are ranked from best to worst using
a figure-of-merit. The figure-of-merit com-
bines various antenna performance measures
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5.0 /
4.5
4.0 / The boom length — the sum of DE/DIR sepa-
‘@ ) rations — is only 0.229. This is less than a
_E b / quarter-wave, which is quite short. At the 6m
o 3.5 amateur band frequency of 51MHz, for exam- -
2 ple, this Yagi is only 53in long. The REF, DE
=~ : and DIR lengths are 122.66, 110.62, and
e 30 103.22in, respectively, with diameters of 0.37,
= / .85, and 0.6%4in.
g 25 Gene DE is located 28. 47m from REF
/ while DIR is located 24.53in from DE. It is
/ interesting that the genetic algorithm con-
2.0 verged to the maximum allowable value for
/ the DE radius, because it is known from ana-
15 Iytical considerations that increasing DE diam-
1.0l = . .
0.94 0.96 0.98 1.00 1.02 1.04 1.06 Fig. 5. Azimuth, a), and elevation pattern, b),
FlFo of the antenna.
Fig. 4. Standing-wave ratio performance. 10
8 ’ op _ —l
A \ . )
computed by a modelling engine, which is 0 <
another computer program separate from the
genetic algorithn. ‘ \
Individual anterna performance parameters, - =10
for-example, can be calcnlated with any suit- =
able antenna modefling program. The figure- % /"' -
of-merit used for the Yagi described below is = _og \ - .
5(G) + 4(FB)— SWR é ' \
o g
This particular figure of merit gives slight- & -30F - ' N
ly more weight to the main lobe gain (7 than / _ \
to the front-to-back ratio FB, and relatively : 3
less weight to the input standing-wave ratio -40 : \
SWR.
The algorithm demgner is free to define any : \
figure of merit that reflects the relative impor- -50 |
tance of different performance measures, - -
inclading even non-electrical parameters such 0 20 40 60 80 100 120 140 160 180
as cost or time to build, or amount of materi- Azimuth Angle (deg)
al required, and so on. This feature is a major
distinction between genetic algorithm and 10
deterministic optimisations, which frequently I '
canmot optimise arbitrary figures of merit. \\
Other significant differences are that genet- 0 - ~
ic algorithms produce groups of designs with \
similar figures of merit, instead of the single
*best’ design, and they usually require much -10 .
less computer time than deterministic algo- \
rithms.
The genetically optimised three-clement — \
Yagi has the following dimensions, in wave- 5 20
lengths at the design frequency F: =t \
T
Reflector length 0.530 C 3 \
Reflector radius 0.0008 g
Driven element length 0.478 e
Driven element radius 0.004
DE distance from REF 0.123 -40
Director length 0.446 ‘ \
Director radius 0.0015 50
PIR distance from DR 0-106 0 20 40 60 80 100 120 140 160 180
Elev Angle {(deg)
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eter can improve Yagi performance
substantially’,

Free-space main lobe gain, front-to-
back ratio, input impedance (resistance
and reactance), and standing-wave

Gain

Table 2.Performance of the genetically designed Yagi.

FB Zin SWR HPBW

7dBi 54.2dB 33.9-j30Q 1.49 66°az, 122°el

excellent performance. This exam-
ple illestrates that genetic algo-
rithms can produce very good
antennas indeed. Such algorithms
are easily implemented on a pc and

ratio relative to 504 are plotted in Figs
1-4, respectively. These parameters
were computed over a 10% band centred at
the design freguency F,,

The azimuth and elevation patterns at F,
appears in Figs 5a) and b). Key performance
measures are shown in Table 2,

The band-centre gain of 7dBi is typical of
well-designed three-element Yagis, and the
optimised antenna’s FB of 54dB is excep-
tionally good. For comparison, this B figure
is more than 16dB better than the best FBs of
typical quarter-wave designs described in
WZPV’s treatise on Yagi antennas® (see espe-
cially Fig. 2.9), - :

The optimised antenna also exhibits good
FB bandwidth, with values exceeding 20dB
from 0.97F, to 1.017F,, which equates to
4.7%. The optimised Yagi is nearly resonant

. atFyatan input reactance of 38} capacitive,

which is less than 10% of the input resistance.

From 0.95F, 10 1.015F,, a difference of
6.5%, the standing wave ratio is less than two.
If desired, this antenna can be fed directly with
30€2 coaxial cable, eliminating the insertion
loss introduced by a matching network or
anienna tuner.

Of course, a balun should be used to main-
tain feed system balance. But it would be
interesting to build this antenna with and with-
out a balun to see how much difference it
makes. -

For the 51MHz design, the standing-wave
ratio is below two, and the FRB is greater than
20dB, from 49.47 10 51.76MHz - a bandwidth
of 4.5%. The lower band edge can be shifted
up to 50MHz by increasing the design fre-
quency to F£,=51.55MHz and recalculating the
dimensions. Note that the wavelength is com-
puted as 299.7956/Fyy,, which is more accu-
rate than the commeonly used formula
300/F MHz-

The optimised Yagi’s E-plane azimuth pat-
tern has a characteristic two-lobe structure
with a deep broadside null. The ~3dB half-
power beamwidih is -66°. The rear lobe is
about 22dB down, which is quite low. The
H-plane clevation patiern is plotted in Fig.
5b). It has a single, broad lobe with halt-
power beamwidth at 122°,

- The genetically, optimised, three-element
Yagi is a very compact antenna that provides

can provide significant advantages
over deterministic techniques,
Communications engineers will probably
hear more and more about the genetic design
approach. It certainly merits serious consider-
ation by designers who are interested in
antennas. |
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