PC ENGINEERING

12-bit analogue i/o via LPT

Although simple, Yongping Xia’s LPT
analogue interface resolves to 12 bits.

quipped with a-to-d and d-to-a converters, 2 pc can perform many

measurement and controf functions. Figure 1 shows an easy way of

providing 12-bit a-to-d and d-to-a conversion. Driven by the soft-
ware below, the circuit interfaces with the pc tirough its printer porl,

The MAX176 is a compiete seriat 12-bit a-to-d converter with a built-
in track/hold circuit and a voltage reference. Two signals — clock and
convert start — are needed to drive the chip. Once started, the a-to-d
conversion result is sent out through the DATA pin in two’s comple-
ment, high-to-low seriaj order. Analogue input is buffered by /C\g with
range of -5V to +5V. The MAX176 needs +5V and 15V power sup-
plies and provides a -5V reference output.

The MAX543 is a 12-bit serial d-to-a converter, Its current output is
converted to voltage by /Cs. Required -5V reference is provided by a
MAX176. Resistors R, 4 adjust the d-to-a converter offset and gain
respectively. The d-to-a converter’s output range is also -5V to +3V.

The a-to-d and d-to-a conversion procedures shown are in C. In this
application, two printer port addresses {0x37¢ and 0x37d) are used.
One s for output and the other input. Note that the base address may
differ between computers. You should find details in your user guide.

The d-to-a conversion procedure converts 12-bit data in serial order
and sends it to MAX543 through the printer port pin 5. Conversion data
is stored in ‘data oul’. An outpuit register named ‘out’ is used to map the
base address printer port. The a-to-d conversion procedure generates

MAX176 required CL{oc)K and CONV(ersion start) signals through
pins 2 and 3 of the printer port. reads serial data via printer port pin 13,
and returns the reorganised a-to-d conversion result.

These procedures can be included in any C-based application pro-
gram. If an a-to-d conversion is needed, call the a-to-d procedure and
it will return the result. If & d-to-a conversion is required, simply call
the d-to-a procedure and pass the data to the procedure. Conversion
time depends on the type of pc is used. It takes around 75ps for a-to-d

and 68ps for d-to-a on a 50MHz 486 machine. -
1G5
MAXITE
-y Slpata st .
2 Slork vrer]2 :
a Tleony anl? :
510 [Sk 18k
61 I‘ i
7o :
8-t H
2o ICa — s
o MAX543 == Emg
1 to i 1on T g—3
2o 1L OADEND)| ‘ T CE_“
1340 i
11-to t

; . f8L05 E‘?V
T + +
Cy =5
T’!O()n T"UM
Fig. 1. This circuit provides 12-bit a-
to-d and d-to-a converters for the
pc through its printer port.

I
YR EEEEEY)

Assembly language for reading and writing the analogue
data converlers via the pc’s LPT port.

#include cstdio.h~

ginclude <dos.h>

ginclude <conic.h~

#define QUT PORT (x37c¢
#define IN PORT 0x37d
#define CLOCK HIGH 0x01
#define CLOCK LOW Oxie
#define CONVST HIGH 0x02
sdefine CONVST LOW Oxfd
#define LOAD HIGH 0x04
#define LOAD LOW 0Oxib
#define DAC HIGH 0x08
zdefine DAC LOW Oxf7

void dac(int data out);

int adc{void);

/* hase address */

/* base address + 1 %/

/* set clock bit high */

* set clock bit fow */

/% set start conversion bit high */
* set start conversion bit [ow */
/* set load bit high */

/* set load bit low */

/* set data out bit high */

/= set data out bit fow */

/= D-to-A conversion procedure */
void dactint data out)
{
inti, out;
out = 0x04;
for {i=0; i<12; t++)
{
if (data out < Ox8O0}
{
out = out & DAC LOW; /~ set output bit = 0 and =/
data out *=2; /* doubte DAC data ™/
else /il bit 11 is high, */
out = out | DAC HIGH; et output bit = 1 and =/
data out = fdata out-Ox800; * 2; 7* double DAC data arter set ™/
} fhit1t obe
cutportb{OUT PORT, outi;
out = out | CLOCK HIGH;
cutpontbiOUT PORT, outk;
out = out & CLOCK LOW;
outportb{QUT PORT, out);
t

/* set DAC's LOAD to be high */
/* send out 12-bit DAC data */

/bt 11 s tow, */

/= send out =/
#* turn CLOCK high ~/
/* send out ¥/
/~ turn CLOCK Tow =/
/% send out </

=t LOAD low ¥/
*send out */
= turn LOAD high */
= send out ¥/

out = out & LOAD LOW"
cutportb(OUT PORT, out:
out = out [LOAD HIGH;
cutporthtCGUT PORT, outt:
}
* A-to-D conversion procedure ™/
int adc{void)
{
int 1, data, out;
data=D; 7~ clean data

out = 0x04 | CLOCK HIGH: - set CLOCK and DAC's LOAD high */

outportb{QUT PORT, outx = send out */
out = out & CLOCK LOW: * turn CLOCK low */
outporth{OUT PORT, out- = send out */
out = out | CLOCK HIGH: = turn CLOCK high */
outportb(OUT PORT, out: < send out */
out = out | CONVST HICH: * turn A/D CONVERT START high */
autporthiOUT PORT, outi: * send out ¥/
out = out & CLOCK LOW: * turn CLOCK low */
= send out */

outporth{OUT PORT, cutt:
out = out & CONVST LOW;
outportb{OUT PORT, out:
out = out | CLOCK HIGH:
outportb{OUT PORT, out:;
out = out & CLOCK LOW:
outportkOUT PORT, outr:
for (i=0; i<12; i++)
{
out = out | CLOCK HIGH: « CLOCK high 7
outportbtOUT PORT. outl: = send out ¥/
data = data = 2 + finporthsIN PORT: & 0x08)/ 8; /* vpdate */
out = out & CLOCK LOW: - CLOCK low ¥/
ocutportbtOUT PORT. outk, = send out ¥/
i
return fdatak;
'
maint)

{

7 your application */

= turn A/D CONVERT START low =/
< send out */

= turn CLOCK high */

= send out ¥/

* turn CLOCK low */

*send out ¥/

= get 12-bil conversion dala ¥/

= return A D conversion resuft */

750

ELECTRONICS WORLD October 1996

