Your pcis a
programmable event
timer capable of
precision gafing up to
55ms. Alan Bradley
describes how to
configure it.

normally used as a variable frequency

square wave generator for the pc’s speak-
er. But this timer can also be used as an interval
timer that is independent of the processor type
and speed. This article describes how.,

T imer channel 2 is present in all pes. It is

Overview

Timer 2 is within the pc’s programmable uni-
versal counter/timer. This IC contains three
counter/timers each with an associated control
register, The original IBM pc used an Intel
8253, the IBM AT an Intel 8254. Modern
clones may use custom ICs, but all have the
same programming model. This universal
counier/timer operates at 1.193MHz irrespec-
tive of the processor’s type or clock speed. All
three counters are 16 bits wide.

PC ENGINEERING

Event timing
via the pc¢

1 and 2. are accessed through ports 40,4, 414
and 42,4 respectively within the pc’s ifo port
address space. The command register is locat-
ed at port 43¢. It selects the mode for reading
and writing values to the chosen channel,
selects the type of use for that channel, and
selects the channel to which the previous
selections apply. Examples of uses for the
channel are square wave generation, one shot
pulse production and terminal down count.

Applying the counter/timer

Timer channel 0 is used to calculate the time
of day. This channel is set up by the bios to
give 18.2 pulses per second, Each pulse caus-
es the timer interrupt, IRQ 0, after which the
counter is reset. A four-byte counter for these
timer pulses is stored in the bios data area at
0040:006C,,. This counter alse synchronises

disk operations. Reprogramming it might
therefore damage disk reads and writes.

Timer channel 1 is used by ram refresh and
also by disk operations. Reprogramming this
channel may also cause loss of disk data.

Tismer channel 2 is connected to the pc’s
internal speaker, generating the variable fre-
quency square waves necessary to make sim-
ple sounds. The speaker can be turned on and
off via the pc's parallel-peripheral interface
chip. As this channel controls no vital hard-
ware, and the speaker can be turned off, it can
be set up as a timer. A possible use is deter-
mining the waiting pertod for an analogue to
digitai conversion.

The 8255 programmable peripheral
Timer 2 is also controiled by the pc's 8255
peripheral interface chip. or PPL. This device

The three counter/timer channels, namely 0,

digital i/o lines for the trigger and o/p.

This pc meonostable is not retriggerable, although it could eas-
ily be made so. It has a timed period of 40ms. The parallel-port
input line that normally signais printer error, abbreviated PE, is
used as the monostable trigger input. If it goes low, the monos-
table is triggered. Parallel port output line Dy is used as the
monostable output. it goes high when triggered, remains high
until chosen time period has passed.

Pseudo code for a 40ms monostable multivibrator

Find location of printer port registers.

Reset monostable: set its cutput low: ie set printer port
output data line DO low {pin 2 on D connector}).

Set up PPI B register to allow timer-chamnel 2 to be used
as a down counter.

Set up Timer channel 2 to select down count mode, a binary
count, and READ-WRITE msb and lsb consecutively mode.

For a downcount from FFFFis.
Calculate FinalTimerbDownCount for a 40ms delay.

Print title message.

WHILE (forever).

IF printer port input pin PE (pin L2 on D
connector) is low then:
Trigger mcnostable output:
output line D nigh.

Load counter with maximum count wvalus {FFFF.;;) and

ie set printer port data

start down counc.
Print “triggered: output (D;} goes high”
tlaiz for 40ms.

. . Reset monostakb.2: ie ==2: printer port Dy (pin 2
Applying the timer on b commector) low.
This pseudo-code program illustrates how the pc can form a Print “Reset: cutput .3:) goes low”
monostable multivibrator by using timer-channel 2 in conjunc- END_Z5
tion with the parailel printer port. The printer port is provides the :EE“WHILE

The pc paraliel port

A pc can have up to three parallel printer ports LPT1, £PT2, and
LPT3. Each port interface has three 8bit registers, the data latch,
the status register and the controf register.

Data latch: writing to this register causes the byte sent to be
latched and appear on the parallel port’s 25-way [J connector on
pins 2 to 9. Normally reading this register returns the contents of

the latch.

Status register: this register represents input lines from the print-
er with functions as follows: b- BUSY, by, ACK, bs PE by SLCT
and by ERR. Bits by, are unused. This is a read only register. The
BUSY input is inverted between the D connector and the register.

Control register. Bit functions of this register are, by IRQ DIS-
ABLE, by SLCTINP, by, INIT, by AUTOFEED, by STROBE. Bits b;.
5 are not used.

This is a latch holding printer control signals. Interrupt s dis-
abled on a failing ACK input when by is low. | always disabie this
interrupt as it is rarely used by printer software so the associated
IRQ) channels 5 and 7 are considered iree, and available for other
expansion cards.

STROBE, AUTOFEED and SLCT INPUT are inverted between
the register and D connector output pins although this inversion
is corrected again when the control register is read.

Decernber 1996 ELECTRONICS WORLD

947

PC ENGINEERING

controls the keyboard and is used to obtain
information about the pc's configuration. It
also controls the pc speaker and the speaker’s
associated timer on channel 2,

Port A of the PPI is a read/write port asso-
ciated with the keyboard. Port B controls the
reading mode for ports A and C, It also con-
trols the speaker and timer channel 2. Port B is
located at port 61,4 in the pc’s ifo address
space.

Using timer 2 as an interval timer
I wrote the interval timing code in a mixture
of C and assembly language. This is because
the C compiler generated a much slower shift-
by-8 loop. It did not make use of the
80x86 processor’s ability to treat 16-bit data
registers as 8-bit pairs, ie AX=AH+AL,
BX=BH+BL, CX=CH+CL and DX=DH+DL.
The 80x86 has four more registers, SP, BP,
SI and DI. These are normally used as pointer
and index registers. In my program [used the
DI register simply to store 16-bit data. Turbo

TaasspRl

VT IRPCVTI P

Speaker
Square

wave

_ Timar

! . ! Tirner ;
> [channel 2

»Omoﬁ

Standard on all pc compatibles, Timer
channel 2 of the 8253 universal
counter/timer ic forms the speaker driver
which is confrofled viz Part B of the 8255
programmable peripheral interface ic but,
as can be seen, the speaker can be
switched off and the timer put to better
use.

N
5
=] = . = o
2 & g ¥ 85 %2 3z g
o a 3o o o 0 [&) O
A4 ¥ A4
'[Channel 0 I Charnel 1 I Timer channet 2

Control register

Block diagram of the pc’s 8253
programmable universal counter/timer.
Timer channel 2 counting is enabled when
GATE2 is taken high.

Programmable peripheral interface

B register bit usage

PPI B register PC /0 address is 061 .

Bit Purpose

0 Set Timer channel 2 gate i/p high or low
1 Link/uniink timer 2 ofp from speaker:
O:==off if unlinked

Must be 0

Read high or low dip switches
O=enable ram parity check, 1=disable
O=enable i/o channel check

O=hold keyboard clock low

O=enable keyboard, 1=disable

I = L U R N PO N

C uses 5P, BP and Sl itself. The DX data reg-
ister is atso used in some INJOUT instructions
results and so cannot be used by my program.

The 8086 has four segment registers, name-
ly CS, DS, 5SS, ES. These allow addressing
over 64K. The C compiler sets these to appro-
priate values automatically. The 8086 has an
instruction pointer, similar to a program
counter. It also has a FLAGS register, record-
ing the result of instructions such as NON-
ZERQ and OVERFLOW,

Counting is interrupted if the GATE2 input
18 switched to a low level and restarted when
the GATE2 input is switched back to a high
level. Hence GATE2 should be high for a
down counting interval timer.

Therefore my program sets bit 0 of the PPI
B register to logic [. I also disable the pc
speaker by setting bit 1 of the PPI B register to
0. Inset 1 shows the Timer controf register bit
pattern required to select down count mode for
Timer charmnel 2 and the timer control register
bit pattern required to perform a latch opera-
ticn on Timer channel 2.

After the latching command has been writ-

AX AH AL Accumulator !
Bx BH BL Base [Data
Ccx CH GL Count lgroup
DX DH DL Data
SP, Stack pointer ﬁ
BP, Base pointer Pointer
- and
S, Source index index
D1, Destination index H
—
cs
DS Segment
s registers
ES i
t5 Q
| l Ingtruction pointer
I [Flags

80x86 registers, common toe alf IBM pcs. My
€ compiler could not treat 16-bit registers as
8-bit pairs, and a shift-by-eight loop is much
slower than it needs to be. I used assembly
language instead.

Control register bit usage for the pc’s 8253 timer ic

PC QO address of timer control register is 043 hex.

Location Bits 7,6 Bits 5,4 Bits 3,2,1 Bit 0
Function Select counter Select latch Mode Select binary
channel operation or or BCD count
type of read/write
Code Number of 00 Latch current Select counter/ 1=BCD
the channel to value of counter timer mode C=Binary
be programmed {done before a 0C0=Terminal
0, 1T or2) read operation} down count

01=Read/Load Isb
10=Read/Write msb

001=Programmable
one shot

11=Read/Write Isb x10=Rate

followed by msb Generator
x11=5quare Wave
Generator

100=5o0ftware

triggered strobe
H01=Hardware
triggered strobe

C pseudo code for pe timing

Calculate final count value for a 10ps delay. Calculate number of clock ticks in a 40,000ps
delay.

PRINT“Preparing Count Down”

FINAL COUNT VALUE FOR 40,000ps DELEAY:=FFFF-{number of clock ticks in a 40,000ps
delay)

Now set up Port B of the PPl so that Timer2 can be used as a terminal down counter and
disable speaker: ie set Timer gate 2 high (via PPI Port B, bit 0) {ailow counting in Timer
channel 2) and disabie speaker (via PPl Port B, bit 1}

Set Timer Gate 2 HIGH (allow counting)

Now set up channel 2 of the timer to count in binary, perform a terminal down count and
choose option: readAwrite Ish, msh one after the other, by writing appropriate value to the
timer control register.

PRiNT“Starting Count Down”

write FF g {Isb) to timer channel 2

write FFqq (msb) to timer channel 2

REM: down count from FFFF;4 has now begun.

Loop until 10ps has passed

Print"Ten microseconds have now passed”

toop until whole 40,000ps delay has elapsed.

PRINT“Entire chosen timed interval of 40,000ps=40ms has now passed”

END

948

ELECTRONICS WORLD December 1994

lent
s

ten to the timer control register, the latched
value can be read from timer channel 2
(042,¢), least-significant bit first. According to
the 8253 data sheet, a counter value of 0000
can not be read.

Programming the chosen delay

First calculate the number of counter clock
ticks that equal the chosen delay interval. This
is the number which the counter must count
down past before the chosen interval has
passed. The number of timer clock ticks
before interval has passed is equal to the cho-
sen delay interval in microseconds, multiplied
by 1.193MHz.

I always start the down count from FFFF¢.
In this way, when the current counter value is
less than or equal to FFFF ¢ minus the number
of clock ticks before interval has passed, then
the chosen defay interval will have expired.
For example, for a 40,000ps delay:

No. of clock ticks=
40,000x1.193=47720=BA68 ¢

Final timer downcouni=
FFFF;g~-BAOE=4597 .

The maximum delay is 55ms.

Example timing program in C

This timing program example is derived from
my printer port sound sampler program, where
I needed to wait 10ps for the a-to-d converter
to complete a conversion, process this value,
then wait until the end of the sample period
before repeating the koop.

QOuttined in the timer software panel Inset 2,
this routine waits until the first 10ps of a
40.000us delay has elapsed, then waits until
the whole 40,000us delay has passed.

C and Assembler details of Timer.C
The program compiles under Borland Turbo
C++ and Borland C++. This allows the 80486
registers to be used by name within a C pro-
gramt’s asm|] assembly blocks. Registers can
also be accessed from C by preceding the reg-
ister name with an underscore, eg _AX, _AH.
AL

The program uses # defines to give PPI Port
B. and timer control register and timer channel
2 port addresses meaningful names.

Timer channel 2 is read by sending a latch
command via the Control register, then simply
reading the Isb, then the msb from Timer
channel 2, port 0424. |

Software on disk

The Timer.c routine and the full monos-
table example in ¢ can be obtained by
sending a cheque of postal order for
£7.50 to Electronics World's editorial
offices. Please mark the envelope Timer
software and make your cheque
payable to Reed Business Publishing
Group.

PC ENGINEERING

Timer control register usage for interval timing.

PC i/o address 043 5.
Using terminal down count mode, this is timer control register bit usage to set up a down count.

Bit 7 6 5 4 3 2 1 0
Setting 1 0 i 1 0 0 0 0
Function Select timer Select type [i Select mode 0: terminal Select
channel 2 read/write down count binary
operation: counting
LSB is first

written to timer 2
{042,¢) then MSB is
written to timer 2
{042,4) counting
begins as soon as
MSB is written

Timer control register bit usage to perform a latch operation, current counter value prior to a read
operation.

Bit 7 6 5 4 3 2 1 0
Setting 1 0 0 0 0 0 0 0
Function Select timer Select latch Select mede 0: terminal Select
channei 2 current value of down count binary
counter operation counting

Accuracy of the pc as a timer

Instructions for reading and checking the current value of timer channel 2 take a finite
amount of time, adding inaccuracy to the timing. [have calculated the worst-case delay
between timer-channel 2 reaching its chosen final count value. With the program
Timer.c, described later, the worst case inaccuracy for an 8MHz ISA i/o bus pe should
be 7.144ys:

Calculation of Timer.c program timing limits:

80x86 instr 8MHz ifo cycle 80386 cycle
START TIMER channel 2 count: mov reg, immed 2
OUT immed,al 10
OUT immed,al 10
Send Counter latch command: mov reg,reg 2
QUT immed,al 10
Read and store timer lsh: in al, immed 12
mov reg, reg 2
Read and store timer msb: in al, immed 12
mov reg, reg 2
Compare msh:sb of current
timer value with
FinalTimerDownCount: cmyp reg, reg 2
"WHILE': ja 8bitdisplacement 3

(no jump occurs)
Total clock cycles=54 ifo clock+13 processor clock cycles
For a 33MHz 386 pc this would give a worst-case error of:
inaccuracy = ifo clock delay+processor clock delay

= 6.75ps+0.4ps =7.144ps

According to my assembly language hook, INOUT 386/486 instructions vary in the num-
ber of clock cycles they need. | have used the slowest timing, which is similar to that of
the 8086/8. The 286 IN/OUT instructions are about twice as fast as those of an 8086/8.

Greater accuracy in small delays would need interrupt programming, which is more
difficult to write. This would involve reprogramming timer-channel 0, which needs care
to avoid affecting disk operations; timer-channel 2 has ne associated interrupt.

Small delays are often needed. When reading an a-to-d converter value for example,
the 7us inaccuracy can be important. In longer delays the 7us may be insignificant. The
inaccuracy should reduce on local-bus machines and on fast ISA buses that unofficially
run at T1MHz.

December 1996 ELECTRONICS WORLD

949

PC ENGINEERING

C code for controlling the pc’s timer
This program, Timer.c, demonstrates using timer 2 as a down counter to

measure time intervals. Written in Turbo ¢ with in-line 8086 assembler. Smal

memeory model: 64K code 64K data and stack. Register keyword enabled.

#$include <stdio.h>
#include<dos.h>
#include<conio. h>
#include<stdlib.h>
#inciude<io.h>

/* Prog PPI port B, TimerControl, & Timer? regs */
#define PPIportB 0x061
#define TimerCtlReg 0x043
#define Timerz 0x042

/* ‘register’ vars: #defs for direct access to */
/* DI,CX,CH,CL via meaningful names */

#tdefine FINALTIMERDWNCOUNT DI

#define MSBE CH

#define LSB CL

#define COUNT CX

/* if counter starts at FFFFig then : */

/* (val of cntr after 10ps) 2FFFF- {10ps*1,193MHz) */
/* thus tenMicroSechwnCount={FFFF-CYhex=FFF3hex */
fdefine tenMicroSecDwnCount OxEff3

/* clock fregquency is 1.193MHz */

/% #def to set No of 1.193mMHz clock tick decrements) */
/* to pass before chosen timed interval has passed: */
/* nocfclockticks=chosen interval in us*1.193MHz */

/* = 40,000%1.193=47720dec=BAG8hex */
#define NoOfClockTicks_inFortyMilliSecDelay 0xba b8

/* temporary stora for B register of PPI IC */
unsigned char breg;
int main{) {

puts (*\nPreparing count down\n*} ;

/* set FINALTIMERDWNCOUNT: /*

/* = Oxffff - WoOfClockTicks_in... delay */
asm {
mov ax, Oxffff;

sub ax, NoOfClockTicks_inFortyMillisSecDelay;
mov FINALTIMERDWNCOUNT, ax;
}

/*Set portB of PPI for timer2 as down counter instead
of driving speaker */
/* lst get a copy of PPI port‘s B register */

breg = inp(PPIportB };

/* logic OR with 0000 0001 to set bit 0 (timer gate)
high */
breg = breg | 0x01;

/* END with 1111 1101 to set bit 1 (spkr data) off */
breg = breg & 0xfd;

/* set up 8255 PPI port B for speaker off & timer gate
high */
outp{ PPIportB , breg };

/* Now set up channal 2 (Timer2) of Timer chip:— */
/* send 1011 0000 to Timer control reg to select: */
/* Channel2,oper 11 (r/w both h&l
bytes), terminalcount,binary data */

outp(TimerCtlReqy, 0xb0) ;

puts {*\nStarting count down\n”}:

/+ set walue (FFFF} from which timer counts down: */
asm{

/* first o/p count low byte (FF) */

mov al, OxEf;

out Timer2, al
/% o/p high byte (FF); timer starts on writing high
byte */

out Timer2, al

J

/* down count from ffff has now started */

/* now wait until ten microseconds has passed */
/* 10 00 000 0 is 8 hex*/
/* 10:ch 2, 00:ctr latch, 000:texrm cnt, O:bin data*/
/*store above in ah for speed*/

asm{ mov ah , 0x80 }

/*locp until 10ps or more has passed */
labellDO: asm
{
/* read ctr latch command from ah into al for I/0
instr */
mov al, ah
/*now send latch command to timer*/
ocut TimerCtlReg, al
/* now read 1lsb from timer2 */
in al, Timerz2
/* now store lsb */
mov LSB, al
/* now read msb from timer2*/
in al, Timer2
/*now move msb into highbyte of COUNT */
mov MSB, al
/* while COUNT holds value > tenMicroSecDwnCount */
/* ie while timer2 value > tenMicroSecDwnCount™/
cmp COUNT, tenMicroSecDwnCount
ja labeliDO
} /* WHILE COUNT > tenMicroSecDwnCount */
puts{"\nTen microseconds has now passed\n”};

/* now wait until end of chosen interval */
/* (wait for count down past FINALTIMERDOWNCOUNT) */
/* 10:chann 2, 00:counter latch cormmand, */
/* 000:terminal down cnt, 0:bin data */
/* store above 10000000b byte in ah for spead®/
asm{ mov ah , 0x80 }
labelzD0: asm
{

/* read ctr latch command from ah into al for ifo
instr */
mov al, ah
/* send latch (0x80) command to Timer*/
out Timer{tlReg, al
/* read 1sb from timer2 */
in al, Timer2
/* store 1lsb in low byte of count*/
mov LSB, al
/* read msb from timer2*/
in al, Timer2
/*move msb into highbyte of count *f
mov MSB, al
/* while timer2 value > FINALTIMERDWNCOUNT* /
cmp COUNT, FINALTIMERDWNCOUNT
ja lakel2DO

}
/* NOTE ! timer count value of 0000 cannect be read */

printf{
s\nEntire chosen timed interval of 40,000us =

40 msecs has now passedini\n”};

return 0;

950

ELECTRONICS WORED December 1996

