interface between a 4-by-4 keypad and one microcomputer pin

Ised with a microcomputer having an i/o pin that may be shorted to ground while in the high state, such as one of the 8051 family, this circuit enables a 4-by-4 keypad to use only that pin, instead of the four or five normally needed.

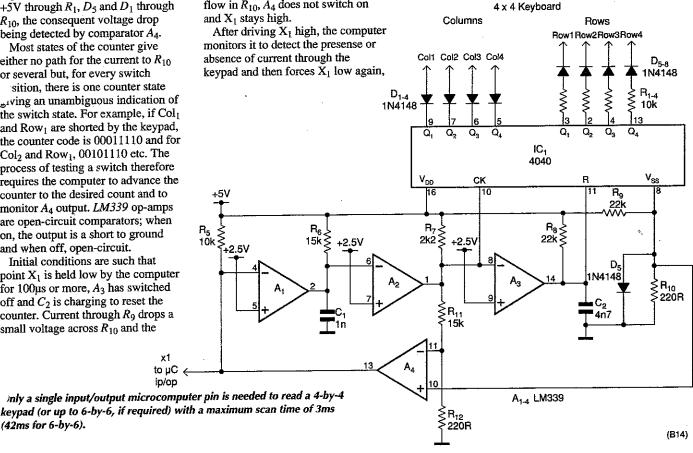
Neglecting, for the moment, the effect of R_9 , current through R_{10} is small. Shorting Col1 and Row1 via the keypad, Q₁ being low and Q₅ high, causes current to flow from +5V through R_1 , D_5 and D_1 through R_{10} , the consequent voltage drop being detected by comparator A_4 .

Most states of the counter give either no path for the current to R_{10} or several but, for every switch

sition, there is one counter state siving an unambiguous indication of the switch state. For example, if Col1 and Row are shorted by the keypad, the counter code is 00011110 and for Col₂ and Row₁, 00101110 etc. The process of testing a switch therefore requires the computer to advance the counter to the desired count and to monitor A4 output. LM339 op-amps are open-circuit comparators; when on, the output is a short to ground and when off, open-circuit.

Initial conditions are such that point X1 is held low by the computer for 100µs or more, A3 has switched off and C_2 is charging to reset the counter. Current through Ro drops a small voltage across R_{10} and the

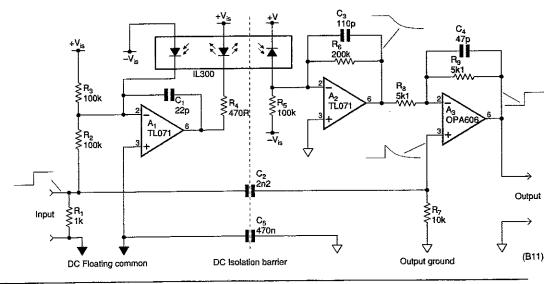
> to µC ip/op


output of A_2 and therefore the negative input of A4 are grounded and A_4 is off.

When the computer takes X₁ high, A_1 discharges C_1 , A_2 goes high and A4 pulls X1 low again. Switching delays allow C_1 to discharge completely so that when A4 switches A₁ off, it takes about 10us for the voltage across C_1 to switch A_2 high again. For a count state and switch position causing the extra current to flow in R_{10} , A_4 does not switch on

notwithstanding the state of A_4 . After 14us, the trailing edge of the pulse at A_2 has incremented the counter, A_4 has switched off and the computer drives X1 high to start the whole thing again until the counter holds the desired count for the switch under

SI Kearley


Hoylake Wirral Merseyside ADC42

under 100Ω and both the values and voltage ratings of $C_{2,5}$ are increased. Minor adjustments in crossover frequency may be effected by replacing C3 with 100pF across a 20pF trimmer; crossover time constant of 20us should not be reduced to become comparable with the optocoupler time constant of about 1.5µs.

(42ms for 6-by-6).

B Vojnovic and RG Newman Gray Laboratory Cancer Research Trust Mount Vernon Hospital Northwood Middlesex (B11)

