

Expert PHP 5 Tools

Proven enterprise development tools and best
practices for designing, coding, testing, and deploying
PHP applications

Dirk Merkel

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Expert PHP 5 Tools

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1240310

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-38-9

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Credits

Author
Dirk Merkel

Reviewers
Andrew J. Peterson

Deepak Vohra

Acquisition Editor
Douglas Paterson

Development Editor
Ved Prakash Jha

Technical Editor
Neha Damle

Indexer
Monica Ajmera

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Claire Cresswell-Lane

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Melwyn D'sa

Cover Work
Melwyn D'sa

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

About the Author

Dirk Merkel has been developing software in a variety of programming
languages for many years, including PHP, Java, Perl, and Ruby. His focus has
been on web-related technologies and he has over 10 years experience coding in
PHP. He has experience covering the whole software development cycle and has
been managing several teams of developers working on large-scale projects.

He has been working as a professional consultant through his company
Waferthin Web Works LLC (http://www.waferthin.com) and can be reached
at dirk@waferthin.com. He is also the Chief Technology Officer at VivanTech Inc.,
a San Diego based provider of IT solutions.

He has written several articles on software development and security.
Expert PHP 5 Tools is his first book.

He lives in San Diego with his lovely wife and two wonderful daughters.

I would like to thank my family (near and far)—especially my
parents and sisters, my lovely wife, Rania, and my two awesome
daughters, Nadia and Yasmin.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

About the Reviewers

Andrew J. Peterson lives with his wife and three daughters in San Francisco,
California. He has 20 years experience building and managing software systems
for consumers, enterprises, start-ups, and non-profits. He brings expertise in the
full life-cycle of software development, engineering, methodologies, architecture,
and usability. He has diverse experience in the industry. In the consumer space,
he led a team in the creation of the top-selling SoundEdit 16. He served numerous
roles producing enterprise software, for the leading supplier of software solutions
for container terminals, shipping ports and lines, and distribution centers. Over the
past ten years, he transferred this experience to web-based software. He has built a
variety of web applications, including non-profit, social networking, social search,
pharmaceuticals and social ecommerce. He has build successful projects in a variety
of languages, including Java, Ruby, C++, Ruby and Perl.

In the primal days of the Web, he wrote a manual helping users connect their
Macintosh to the Web. More recently, he reviewed PHP and Scriptaculous Web
Application Interfaces for Packt Publishing.

I'd like to thank my wife for the bliss she brings.

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML and Java programming and J2EE for
over five years. Deepak is the co-author of the Apress book Pro XML Development with
Java Technology and was the technical reviewer for the O'Reilly book WebLogic: The
Definitive Guide. Deepak was also the technical reviewer for the Course Technology
PTR book Ruby Programming for the Absolute Beginner, and the technical editor for
the Manning Publications book Prototype and Scriptaculous in Action. Deepak is also
the author of the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE
Development and Processing XML Documents with Oracle JDeveloper 11g.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents
Preface 1
Chapter 1: Coding Style and Standards 5

Coding standard considerations 5
Pros 6
Cons 7

A PHP coding standard 7
Formatting 8

PHP tags 8
Indenting 8
Line length 8
Line endings 8
Spacing 9
Statements 9
Strings 10
Arrays 11
Control structures 12
Class and method definitions 14

Naming conventions 14
Class names 14
Property and variable names 16
Constant names 17
Method and function names 17

Methodology 19
Type hinting 19
Separating object creation from initialization 19
Class files 20
Class names and directory structures 20
Visibility and access 21
Including source files 22
Comments 23
Inline documentation 23

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[ii]

Coding standard adherence and verification 25
PHP_CodeSniffer for automated checking 25

Installing PHP_CodeSniffer 25
Basic usage 27
Slightly advanced usage 27
Validating against your own coding standard 29

Summary 38
Chapter 2: Documentation with phpDocumentor 39

Code-level documentation 40
Levels of detail 41

Introducing phpDocumentor 42
Installing phpDocumentor 42
DocBlocks 44

Short and long descriptions 44
Tags 44

DocBlock templates 45
Tutorials 46

Naming conventions and how to reference tutorials 47
DocBook syntax 48

Documenting a project 49
Documentation without DocBlocks 54
Documentation with DocBlocks 57

phpDocumentor options 67
Command line reference 67
Config files 69
Browser-based interface 70

Tag reference 71
Standard tags 71
Inline tags 83

PHP4 elements 91
Custom tags 92

Summary 92
Chapter 3: The Eclipse Integrated Development Environment 93

Why Eclipse? 94
Introducing PDT 96
Installing Eclipse 96

Requirements 96
Choosing a package 98
Adding the PDT plugin 99

Basic Eclipse concepts 100
Workspace 101
Views 102
Perspectives 104

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[iii]

A PDT sample project 106
PDT features 109

Editor 109
Syntax highlighting 109
Code assist 110
Code folding 110
Mark occurrences 111
Override indicators 112
Type, method, and resource navigation 112

Inspection 114
Projects and files 114
PHP explorer 114
Type hierarchy 115

Debugging 115
PDT preferences 119

Appearance 119
Code style 119
Debug 120
Editor 121
New project layout 123
PHP executables 124
PHP interpreter 124
PHP manual 124
PHP servers 125
Templates 125

Other features 126
PHP function reference 126

Eclipse plugins 127
Zend Studio for Eclipse 129

Support 131
Refactoring 131
Code generation 131
PHPUnit testing 132
PhpDocumentor support 133
Zend Framework integration 133
Zend server integration 133

Summary 134
Chapter 4: Source Code and Version Control 135

Common use cases 136
A brief history of source code control 136
CVS 140
Introducing Subversion 142

Client installation 142
Server configuration 143

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[iv]

Apache with mod_dav_svn 143
Subversion concepts 143

Repository 144
Tags 144
Trunk 144
Branches 145
Working (Local) copy 145
Merging 146
Revisions and versions 146
Updating 146
Comparing 146
History/Log 147
Annotating code 147
Reverting 148
Committing 148

Subversion command reference 148
svn 148
svnadmin 157
svnlook 158
svnserve 158
svndumpfilter 158
svnversion 158

Creating a Subversion project 159
Basic version control workflow 168
A closer look at the repository 172

Data store 172
Layout 173

Branching and merging 174
What is a branch? 175
Why branch? 175
How to branch? 176
Maintaining and merging a branch 177
Branching workflow 180

UI clients 182
Eclipse plug-ins 182
TortoiseSVN 185
WebSVN 185

Subversion conventions and best practices 189
Customizing Subversion 190

Hooks 190
Notifying developers of commits with a post-commit hook 194

Summary 195

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[v]

Chapter 5: Debugging 197
First line of defense: syntax check 197
Logging 199

Configuration options 200
Customizing and controlling config options: PhpIni 202

PhpIni example 208
Outputting debug information 209

Functions 209
echo(string $arg1 [, string $...] / print(string $arg) 210
var_dump(mixed $expression [, mixed $expression [, $...]]) and
print_r(mixed $expression [, bool $return= false]) 210
highlight_string(string str [, bool return]) and highlight_file(string filename [, bool return]) 212
get_class([object object]) 212
get_object_vars(object object) 212
get_class_methods(mixed class_name) 212
get_class_vars(string class_name) 212
debug_backtrace() 213
debug_print_backtrace() 213
exit([string status]) or exit (int status) 213

Magic constants 213
Writing our own debugging class 214

Functional requirements 214
DebugException 215

Introducing Xdebug 232
Installing Xdebug 233
Configuring Xdebug 235
Immediate benefits 237

var_dump() improved 237
var_dump() settings 238
Errors and exceptions beautified 238
Protection from infinite recursion 240

Remote debugging 240
Remote server debug configuration 241
Debugging client configuration 242

Summary 249
Chapter 6: PHP Frameworks 251

Writing your own framework 251
Evaluating and choosing frameworks 252

Community and acceptance 252
Feature road map 253
Documentation 254
Code quality 254
Coding standards and compliance 255
Project fit 255

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[vi]

Easy to learn and adapt 256
Open source 256
Familiarity 257
Their rules 257

Popular PHP frameworks 257
Zend 258
CakePHP 259
CodeIgniter 259
Symfony 260
Yii 260

Zend Framework application 261
Feature list 262
Application skeleton 262

Important concepts 265
Application structure detail 265

Enhancements 269
Adding a layout 269
Adding views 271
Adding logging 274
Adding a database 276
Adding a model 278
Adding a controller 282
Putting it all together 288

Summary 289
Chapter 7: Testing 291

Testing methods 291
Black box 292
White box 292
Gray box 293

Types of testing 294
Unit testing 294
Integration testing 295
Regression testing 296
System testing 296
User acceptance testing 297

Introducing PHPUnit 298
Installing PHPUnit 298
String search project 299

BMH algorithm basics 300
Implementing BMH 301
Unit testing BoyerMooreStringSearch 304
The test class 305
Assertions 305

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[vii]

Organization 306
Our first unit test 307
Extended test class features 309
Automation: generating tests from classes 317
Automation: generating classes from tests 321
Test-driven development 321

Code coverage 326
TestCase subclasses 328

Summary 328
Chapter 8: Deploying Applications 329

Goals and requirements 329
Deploying your application 331

Checking out and uploading files 332
Displaying an under-maintenance message 333
Upgrading and installing files 333
Upgrading database schema and data 334
Rotating log files and updating symbolic links 334
Verifying the deployed application 335

Automating deployment 335
Phing 335

Installing Phing 336
Basic syntax and file structure 337

Tasks 338
Targets 339
Properties and property files 340

Types 341
Filters 342
Mappers 342
The project tag 343

Deploying a site 344
Separating external dependencies 345
Creating a build script 345
Directory skeleton 349
Subversion export and checkout 350
Building files from templates 352
Maintenance page 353
Database backup 354
Database migrations 356
Going live 358
Putting it all together 358
Backing out 362

Summary 362

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[viii]

Chapter 9: PHP Application Design with UML 363
Meta-model versus notation versus our approach 364
Levels of detail and purpose 365
Round-trip and one-way tools 366
Basic types of UML diagrams 367
Diagrams 369

Class diagrams 370
Elements of a class 370
Static methods and properties 372
A class diagram example 372
Relationships 380
Interfaces 382
Example refactored 383
Code generators 383

Sequence diagrams 384
Scope 384
A sequence diagram of the network scanner 384

Use cases 390
Use cases—diagrams optional 390
When to create use cases 391
Example use case 391

Summary 394
Chapter 10: Continuous Integration 395

The satellite systems 397
Version control: Subversion 397

Commit frequency 398
Testing: PhpUnit 398
Automation: Phing 399
Coding style: PHP_CodeSniffer 401
Documentation: PhpDocumentor 401
Code coverage: Xdebug 402

Environment setup considerations 402
Do I need a dedicated CI server? 403
Do I need a CI tool? 403

CI tools 403
XINC (Xinc Is Not CruiseControl) 404
phpUnderControl 404

Continuous integration with phpUnderControl 404
Installation 405

Installing CruiseControl 405
Installing phpUnderControl 406
Overlaying CruiseControl with phpUnderControl 407

CruiseControl configuration 409

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Table of Contents

[ix]

Overview of the CI process and components 409
CruiseControl and project layout 409
Getting the project source 412
Configuring the project: build.xml 413
Configuring CruiseControl 417
Advanced options 420
Running CruiseControl 420
Replacing Ant with Phing 428

 Summary 433
Index 435

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Preface
This book will enable you to take your PHP development skills to an enterprise
level by teaching the skills and tools necessary to write maintainable and efficient
code. You will learn how to perform activities such as unit testing, enforcing coding
standards, automating deployment, and interactive debugging using tools created
for PHP developers—all the information in one place. Your code will be more
maintainable, efficient, and self-documenting.

What this book covers
Chapter 1, Coding Style and Standards, explains how to define a coding standard
that suits your development process and how to enforce it using PHP_CodeSniffer.

Chapter 2, Documentation with phpDocumentor, explains how to properly
document your code with phpDocumentor and generate well formatted
developer documentation.

Chapter 3, The Eclipse Integrated Development Environment, explains how to install,
customize, and use the free PDT plug-in for Eclipse to create a powerful IDE for
PHP development

Chapter 4, Source Code and Version Control, explores the ins and outs of subversion
for distributed version control for development teams. It also teaches you to extend
subversion functionality with PHP scripts.

Chapter 5, Debugging, teaches you to write your own flexible debugging library
and master remote interactive debugging with Xdebug.

Chapter 6, PHP Frameworks, explains how to evaluate, compare, and choose
frameworks that suit your projects and development style. Master the most
commonly used modules of Zend Framework.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Preface

[2]

Chapter 7, Testing, explains testing methods and types, unit testing, creating
comprehensive test suites with PHPUnit, and test-driven development.

Chapter 8, Application Deployment, states guidelines for automated and reversible
application deployment, automating upgrades and deployments with Phing

Chapter 9, PHP Application Design with UML, introduces the reader to UML, class
diagrams, sequence diagrams, and use cases.

Chapter 10, Continuous Integration, explains how to use CI, keep costs down and
save time by discovering bugs and conflicts in your projects, at an early stage.

What you need for this book
To follow along with the examples, you will need a working version of PHP 5
installed on your system. Some of the chapters rely on command line tools such as
pear and pecl, which are included in the standard distribution of PHP. Version 5.2.x
of PHP or higher is recommended for maximum compatibility with the sample code.
If you do not already have PHP installed on your system, you can download it from
php.net here:

http://www.php.net/downloads.php

Although this book was written and coded on OS X, any flavor of MS Windows
or Linux will do the job as well. Basic familiarity with your system's command line
and a handy text editor for tweaking the examples will also be helpful.

Who this book is for
This book has been written for professional developers new to PHP and experienced
PHP developers, who want to take their skills to the next level by learning enterprise
level tools and techniques.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Preface

[3]

A block of code will be set as follows:

<fileset dir="${project.home}/build" >
<include name="*.properties" />
<exclude name="deprecated.properties" />
</fileset>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items will be shown in bold:

<fileset dir="${project.home}/build" >
<include name="*.properties" />
<exclude name="deprecated.properties" />
</fileset>

Any command-line input or output is written as follows:

$ phing upgrade-db

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/8389_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in text or code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration, and help us to improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the
let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards
A developer's coding style takes time to develop and often reflects his or her
personality. Consequently, you are likely to encounter more than just a little resistance
when trying to get your team members to adopt a different style. However, that is
exactly what I will be arguing in this chapter. We will learn about the benefits of
standardizing on a certain coding style. Along the way, we will develop our own style
and learn how to automatically enforce that or any standard of your choice using the
handy PHP_CodeSniffer utility. I am hoping that at the end of this chapter, you will
be able to take a look at your own and your co-workers' coding styles and make
the necessary changes to reap the benefits that include code readability
and maintainability.

Coding standard considerations
Since you are reading this book, there is a good chance that you have a couple of years
of programming experience under your belt. Even if it is in a programming language
other than PHP, you have probably had plenty of time to develop your own style of
writing code. In all likelihood, you have chosen or developed a style that appears to
make the most sense to you and that you can adhere to and read easily.

However, if you are reading this book, it also means that you are looking to improve
your knowledge of PHP. Consequently, I assume that you are willing to change your
coding style or at least fine-tune it. First, let me try to convince you that this is worth
the effort.

Even if you are writing code only for yourself and have no reasonable expectation
that any other programmer will ever look at or work on it, you will probably
want to follow your own coding standards. Whether you are aware of it or not,
chances are you are doing this already. For example, at some point every programmer
decides whether to put the opening brackets on the same line or the one following
the if-statement. I would also guess that you are doing it the same way every time.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[6]

Personally, I have had many occasions to revisit code that I had written years
ago. I can always tell how well defined my coding style was at the time. The more
consistent the style, the easier it is to get back into the code and understand the
intricacies of what it is doing.

I think we have all had trouble understanding our own code after not looking at
it for a while. If you haven't been in that position already, imagine inheriting a
project of substantial size and having to get used to someone else's coding habits
and oddities. This is where agreeing on a common coding standard pays off. If all
developers working on the same project agree on the same standard, collaboration
becomes so much easier as it takes less time to find and figure things out. I'm not
just talking about where to place the opening brackets, but rather things such
as locations of classes and libraries, names of methods and attributes, and
inline documentation.

Let's consider some of the pros and cons of having formally defined coding
standards—starting with the pros.

Pros
It will be easier to understand code. Whether you are looking at your own code or
that of another development team member, reading and understanding the code
will be more fluent. This benefit extends not only to current contributors, but also
to programmers who are new to the team or PHP in general. Not having to grapple
with different styles and conventions will allow them to come up to speed more
quickly and allow them to absorb the common style from the beginning.

Nowadays, software is often designed, developed, tested, and used in a distributed
fashion. Team members could be located anywhere in the world. With todays tools
for communication, the rules for where and how to assemble software teams are
being rewritten. Just take a look at some of the very successful Open Source projects,
many of which have no physical presence at all. Consider the Apache Software
Foundation or in the PHP space, the Zend Framework project, both of which are
very successful examples of highly successful projects with many distributors from
all over the globe. Projects such as these are some prime candidates for reaping the
benefits of a common coding standard.

I would go so far as to say that the right coding standard should go beyond style. It
can improve the quality and robustness of the code. For example, having developers
consistently validate method parameters will undoubtedly result in a more robust
code base.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[7]

Cons
Developers tend to ignore coding standards. Adhering to a common standard requires
everyone to change their ways – some more so, some less. Unless someone takes on
the responsibility of enforcing the standard, change is not going to come about by
itself. When developers are too set in their ways or push back when being asked to
change, you run the risk of alienating them. The best thing is to get everyone involved
in developing the standard. With their own time and expertise invested in the project,
they are more likely to abide by the rules the group agreed on.

There are also some common myths when it comes to coding standards in general.
First, people tend to think that it stifles creativity. What people who are not familiar
or experienced with software development often don't realize is that software is
as much a creative process as writing a poem or composing a melody is. There are
basic rules to follow in all those endeavors. Depending on what kind of poem you
are writing, you might have to make sure it rhymes, follows a certain rhythm, or
only has a certain number of syllables. Writing software is no different. At a basic
level, you have some rules to define the playing field. Having a coding standard is
just a small part of the rules. There are still endless possibilities for the developer to
express his creativity and ingenuity.

The second myth you commonly encounter is that it is unnecessary. You will often
hear programmers say something like: "My code has been working flawlessly all
along. Why do I need a coding standard?" or "If you can't understand the code I
write, then you're not good enough to work on this project."

The former statement misses the point. A coding standard's primary purpose is not
to make the code work (although it may help). There are many other tools available
to help developers with that part of their work. What a coding standard does is make
it easier and faster for the developer to understand their own and others' code.

The latter statement betrays the developer's attitude towards working in a group
environment. In my opinion, exactly the opposite is true. The bigger the development
team and the more complex the project, the more it can benefit from some common
ground rules.

A PHP coding standard
There are many ways to define a coding standard. Some like to set some basic
guidelines and leave the rest to the developers. Others like to be as explicit as
possible. What I am getting at is that there is no correct answer. Any given
standard may or may not be appropriate for a given situation or project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[8]

With that in mind, let's be true to the approach of this book and come up with a
general-purpose coding standard that you can use as a starting point for your own
projects. Our assumption will be that we are developing PHP5+ application, which
is why our coding standard will specifically address and forbid some constructs and
conventions commonly used in PHP4's object-oriented implementations.

Formatting
Formatting paints the overall picture of the code. It's the first thing you see when
you glance at it. It is also the one chance the developer has to make the code easily
readable that does not require understanding of what the code actually does.

PHP tags
All PHP code is to be enclosed by full PHP tags: <?php and ?>. Short tags (<? and ?>)
or ASP-style tags (<% and %>) are not allowed.

Indenting
Tabs are to be replaced by four space characters. Most IDEs and text editors can be
set to do this automatically.

Line length
The suggested maximum number of characters per line is 80 characters, although
just about all GUI-based editing tools can easily accommodate more characters. This
convention takes into consideration that command line interfaces are often limited to
80 characters. The absolute maximum number of characters per line is 120. Lines of
code with more characters are not acceptable.

Line endings
Lines must end only with a standard Unix linefeed (LF). Linefeeds are represented as
ordinal 10, or hexadecimal 0x0A.

Carriage returns (CR) (0x0D), commonly used on Macintosh computers, and carriage
return/linefeed combinations (CRLF) (0x0D, 0x0A), commonly used on Windows
computers, are not allowed.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[9]

Spacing
For readability, spaces are required at the following code sections:

•	 After a comma separating method/function parameter lists or array members
•	 Following control structure keywords, such as if, else, unless, switch, and

so on
•	 Before curly braces unless they are at the beginning of a line
•	 Before and after logical operators, such as &&, ||, &, |, ==, !=, ===, and !==
•	 Before and after arithmetic operators, such as +, -, *, and %
•	 Before and after assignment operators, such as =, +=, -=, and *=

<?php
 public function doSomething($arg1, $arg2, $arg3)
 {
 if ($arg1 == $arg2 == $arg3) {
 // notice blank line above
 $this->identical = true;
 echo "All three arguments are identical.\n";
 } else {
 echo "At least one argument is different.\n";
 }
 }
?>

Statements
Put only one statement per line. Multiple statements on a single line are expressly
forbidden because they are easily overlooked when reading the code. Spreading
a single statement over multiple lines is discouraged unless it clearly improves
readability of the code.

<?php
// unnecessary and confusing
echo ($errorCondition === true)
 ?
 "too bad\n"
 :
 "nice\n";

// keep ';' on the same line as the statement
// don't do this:
echo "goodbye!\n"
;

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[10]

// must not put multiple statements on a line
echo 'An error has occurred'; exit;
?>

Strings
Use only double quotes to define strings if you are taking advantage of variable
interpolation or the string contains formatting characters or single quotes, such as
', \n or \t. In all other instances, single quotes should be used as they result in less
work for the parser and faster execution of your script.

Strings exceeding the maximum line length should be broken into smaller segments
and concatenated using the dot notation.

Long strings should use the heredoc notation if possible.

<?php
// defining a simple string
$myOutput = 'This is an awesome book!';

$adjectives = array('nicer',
 'better',
 'cleaner');

// string with variable interpolation and formatting characters
echo "Reading this book makes a good PHP programer $adjectives[1].\n";

// double quotes containing single quote
echo "This book's content will make you a better developer!";

// defining long strings by breaking them up
$chapterDesc = 'In this chapter, we are tyring to explore how'
 'a thorough and clear common coding standard'
 'benefits the project as well as each individual'
 'developer.';

// I'm not much of a poet, but this is how you use the heredoc syntax
$poem = <<<ENDOFSTRING
Roses are red,
violets are blue,
this is my poem
for the code in you.
ENDOFSTRING;
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[11]

Arrays
Numerically indexed arrays should have base index 0 whenever possible. For
numerically indexed array, multiple values per line are allowed, but spaces must
be inserted to align the first item of each line.

Associative arrays should be declared such that key-value pairs should be listed
one to each line. White space must be inserted so as to align the names, assignment
operators, and values of all items. Single quotes are always to be used if the key
value is a string.

<?php
// simple numerically indexed array
$myFruits = array('apples', 'bananas', 'cherries');

// use bracket syntax within string to access array
echo "My favorite fruits are {$myFruits[2]}.\n\n";

// longer numerically indexed array
$myLongList = array('The', 'quick', 'brown' ,'fox',
 'jumped', 'over', 'the', 'lazy',
 'fox', '.');

// use bracket syntax with variable as index to access array
$listSize = count($myLongList);
for ($i = 0; $i < $listSize; $i++) {
 echo $myLongList[$i];
 echo ($i < $listSize - 2) ? ' ' : '';
}
echo "\n\n";

// associative array; everything lines up
$spanAdj = array('green' => 'verde',
 'little' => 'poquito',
 'big' => 'grande');

// using a foreach construct to access both keys and values
foreach ($spanAdj as $english => $spanish) {
 echo "'" . $spanish . "' means '" . $english . "' in Spanish.\n";
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[12]

The above code fragment outputs the following text when executed:

Control structures
Conditional tests should be written on one line if possible. For long and complex
conditional tests, line breaks should be inserted before each combining operator with
the line indented for combining operators to line up. The starting curly brace should
appear on the same line as the last conditional test. Control statements should have
one space between the control keyword and the opening parenthesis, so as to
distinguish them from function calls.

<?php
// all conditionals on the same line
if ($myValue <= -1 || $myValue > 100) {
 doSomethingImportant();
}

// too many conditional for one line
// break up conditionals like this ...
if ($myValue > 5
 || $myValue < 5
 || $myValue == 0
 || $myValue == -3) {

 doSomethingElseImportant();
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[13]

If-elseif-else statements
The elseif and else keywords are to appear on the same line as the previous
block's closing parenthesis:

<?php
if (is_array($myHash)) {
 throw new Exception("myHash must be an array!");
} elseif (array_key_exists('index', $myHash)) {
 echo "The key 'index' exists.\n";
} else {
 echo "The key 'index' does NOT exists.\n";
}
?>

Switch statements
The body of the switch statement and the body of each case statement must be
indented. The opening curly bracket should appear on the same line as the test
expression. A space character should precede the parentheses of the test expression.
Finally, the last case statement must be followed by a default statement:

<?php
switch ($temperature) {

 case 50:
 echo "Let's stay home and write some code.\n";
 break;

 case 80:
 echo "Let's go to the beach\n";
 break;

 default:
 echo "Go to jail. Do not pass go.\n";
 break;
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[14]

Class and method definitions
Both class and method definitions follow the "one true brace" convention. That is to
say, the opening and closing curly brackets are to appear on a line by themselves:

<?php
// showing "one true brace" convention
class Otb
{
 // for metods as well
 public method doSomething()
 {
 // your clever and immensely important code goes here
 ...
 }
}
?>

Naming conventions
Choosing appropriate and descriptive names for your classes, methods, properties,
and constants may seem like a trivial task, but it may well be the most important part
of your job as a programmer — short of developing functional code. The names you
choose will have a significant impact on the readability of your code and the ease
with which other developers in your team will be able to follow your design and
logic. It is also far from easy because it requires a deep and thorough understanding
of the overall structure of your application.

Stringing words together to construct the name of a method, function,
variable, property, or class is commonly referred to as a camelCase if each
new word starts with a capital letter, but all other letters are lowercase.
No other word delimiters are used. Examples of camelCase formatting
are: getStackLength(), updateInterval, and DbLogWriter.

Class names
Classes should be named after the objects they represent. Try to stay away from
descriptive phrases (too long), incorporating parent class or interface names, or
using verbs.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[15]

Examples of bad class names are:

•	 ExcessInventoryProductOrderReceivedAndFilled (too long
and contains verb)

•	 IterableWidgetList (incorporates interface name)

Examples of good names are as follows:

•	 WidgetStack

•	 DbFileCache

Class names should reflect the path relative to the root class directory. Directories
are to be delimited by the underscore character ("_"). The first letter of each word/
directory name is to be capitalized. No other characters are to be capitalized. In
particular, abbreviations should adhere to this convention as well. Furthermore, only
alphanumeric characters and the underscore character are allowed. Use of numbers
is discouraged.

The following PHP segment takes a class file path and converts it to the corresponding
class name:

<?php
class ClassNameConverter
{
 public static $classRootDir = array('var', 'www', 'sites',
 'my_app', 'includes', 'classes');

 public static function makeClassName($absolutePath)
 {
 $platformClassRootDir = DIRECTORY_SEPARATOR .
implode(DIRECTORY_SEPARATOR, self::$classRootDir) .
DIRECTORY_SEPARATOR;

 // remove path leading to class root directory
 $absolutePath = str_replace($platformClassRootDir, '',
 $absolutePath);

 // replace directory separators with underscores
 // and capitalize each word/directory
 $parts = explode(DIRECTORY_SEPARATOR, $absolutePath);

 foreach ($parts as $index => $value) {
 $parts[$index] = ucfirst(strtolower($value));
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[16]

 // join with underscores
 $absolutePath = implode('_', $parts);

 // remove trailing file extension
 $absolutePath = str_replace('.php', '', $absolutePath);

 return $absolutePath;
 }
}

$classNameExamples =
array('/var/www/sites/my_app/includes/classes/logging/db/Mysql.php',
'/var/www/sites/my_app/includes/classes/logging/db/MysqlPatched.php',
'/var/www/sites/my_app/includes/classes/caching_lib/Memcached.php'
);

foreach ($classNameExamples as $path) {
 echo $path . ' converts to ' .
ClassNameConverter::makeClassName($path) . "\n";
}
?>

Here is the corresponding output:

Property and variable names
Properties and variables should start with a lower case letter, contain only
alphanumeric characters, and generally follow the "camelCase" convention. Every
effort should be made to make property names as descriptive as possible without
their length getting excessive. Underscore characters are not allowed in property
and variable names.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[17]

Short variable names, such as $i or $cnt are only allowed in very short
looping constructs.

Constant names
Names of constants should only contain alphanumeric characters. Words are to be
separated by the underscore character. Names should be as descriptive as possible,
but more than three words are discouraged.

Method and function names
Similar to property names, method and function names should contain only
alphanumeric characters and follow the "camel case" convention. They should start
with a lower case letter and contain no underscore characters. Class methods must
always be preceded by one of the three visibility specifiers: public, protected,
or private.

Method names should be descriptive as to their purpose. However, excessive length
is discouraged.

Accessor methods for object properties should always be named set<PropertyName>
and get<PropertyName>.

The following listing illustrates proper names for properties, methods, classes,
and constants:

<?php
class MessageQueue
{
 // upper case constant with underscores
 const MAX_MESSAGES = 100;

 // descriptive properties using camelCase
 private $messageQueue = array("one\ntwo");
 private $currentMessageIndex = -1;

 // setter method for $currentMessageIndex
 public setCurrentMessageIndex($currentMessageIndex)
 {
 $this->currentMessageIndex = (int)$currentMessageIndex;
 }

 // getter method for $currentMessageIndex
 public getCurrentMessageIndex()
 {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[18]

 return $this->currentMessageIndex;
 }

 // is<Attribute> method returns boolean
 public function isQueueFull()
 {
 return count($this->messageQueue) == self::MAX_MESSAGES;
 }

 // has<Attribute> method returns boolean
 public function hasMessages()
 {
 return (is_array($this->messageQueue) && count($this-
>messageQueue) > 0);
 }

 // descriptive take action method
 public function resetQueue()
 {
 $this->messageQueue = null;
 }

 // descriptive take action method
 public function convertMessagesToHtml()
 {
 // local copy of message queue
 $myMessages = $this->messageQueue;

 // $i is acceptable in a short for-loop
 for ($i = 0; $i < sizeof($myMessages); $i++) {
 $myMessages[$i] = nl2br($myMessages[$i]);
 }

 return $myMessages;
 }

 // additional methods to manage message queue ...
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[19]

Methodology
In this section, we will look at some conventions that take advantage of object-oriented
features found in PHP5 and later. Some of the recommendations listed as follows are
generally considered best practices.

Type hinting
Whenever possible, functions should type-hint by specifying the class of the
parameter. Furthermore, as of PHP 5.1, arrays can be type-hinted. Therefore,
arrays should always be type hinted—especially when passing a hashed array
instead of individual parameters.

<?php
class SomeClass
{
 // method requires an object of type MyClass
 public function doSomething(MyClass $myClass)
 {
 echo 'If we made it this far, we know that the name ' .
 'of the class in the parameter: ' . get_class($myClass);
 }

 // method requires an array
 public function passMeAnArray(array $myArray)
 {
 // we don't need to test is_array($myArr)
 echo "The parameter array contains the following items:\n";
 print_r($myArr);
 }
}
?>

Separating object creation from initialization
If something goes wrong during object creation, the calling code may be left in
a state of uncertainty. For example, throwing an exception in the constructor will
prevent the object from being instantiated. Therefore, it is advisable to separate
construction and initialization of the object. A short constructor will be responsible
for instantiating the object, after which, an init function is responsible for handling
object initialization.

<?php
class MyClass
{

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[20]

 private myAttrib;

 // short constructor - no parameters this time
 public function __construct()
 {
 // intentionally left blank
 }

 // initialization method to be called
 // immediately after object instantiation
 public function init($var)
 {
 $this->myAttrib = trim$(var);
 }
}

// first we instantiate the object
$myObject = new MyClass();

// then we initialize the object
$myObject->init('a string literal');
?>

Class files
Each class definition should be in a separate source file. And, there should be no
additional code (outside the class) in that file. The name of the file should reflect
the name of the class. For example, class Message should be defined in the file
Message.php.

Class names and directory structures
The directory hierarchy in which the class files are organized should be reflected
in the name of the class. For example, assume that we decided to put our classes
directory inside an includes directory:

includes/

 classes/

 Parser/

 FileParser/

 CommonLog.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[21]

The file CommonLog.php should contain a class called Parser_FileParser_
CommonLog. This convention will make it easier to comprehend a class's position
in the class hierarchy. It also makes it easier for the autoload() function to
locate classes.

Visibility and access
All properties and methods of a class must have one of three visibility specifiers:
public, protected, or private. Direct access to properties is discouraged in favor
of corresponding getter and setter methods: get/set<Attribute>() —even when
accessing properties from within a class. Magic methods may be used to provide
access to the properties.

<?php
class AlwaysUseGetters
{
 // private property not accessible outside this class
 private $myValue;

 // setter method
 public function setMyValue($myValue)
 {
 $this->myValue = $myValue;
 }

 // getter method
 public function getMyValue()
 {
 return $this->myValue;
 }

 public function doSomething($text)
 {
 // use getter to retrieve property
 return $text . $this->getMyValue() . '!';
 }
}

// instantiate object
$myAwc = new AlwaysUseGetters();

// use setter to set property
$myAwc->setMyValue('book');

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[22]

// call method to illustrate use of getter
echo $myAwc->doSomething('This is an awesome ');
?>

Including source files
Use require_once to unconditionally include a PHP file. Analogously, use
include_once to conditionally include a PHP file, for example in a factory method.
Since require_once and include_once share the same internal file list, a file will
never be included more than once even if you're mixing the two constructs.

Never use require or include as they provide the same functionality as require_
once and include_once, but leave open the possibility of unintentionally including
the same PHP file multiple times.

<?php
// use of require_once
require_once('logging/Database/DbLogger.php');

class DbConnector
{
 // these are the RDBMs we support
 public static $supportedDbVendords = array('mysql',
 'oracle',
 'mssql');

 // factory method using include_once
 public static function makeDbConnection($dbVendor = 'mysql')
 {
 if (in_array($dbVendor, self::$supportedDbVendords)) {

 // construct the class name from the DB vendor name
 $className = ucfirst($dbVendor);
 include_once 'database/drivers/' .
 $className . '.php';

 return new $className();

 } else {

 // unsupported RDBMs -> throw exception
 throw new Exception('Unsupported RDBSs: ' . $dbVendor);
 }
 }
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[23]

// use factory method to get DB connection
$dbHandle = MakeAnObject::makeDbConnection();
?>

Comments
Developers are encouraged to provide inline comments to clarify logic. Double
forward slashes (//) are used to indicate comments. C or Perl-style hash marks (#)
to signal comments are not allowed. For readability, all inline comments are to be
preceded by a blank line. Here is the previous listing with inline comments. Notice
how blank lines were added to make it more readable.

<?php
// inline comment preceding if statement
if (is_array($myHash)) {

 // inline comment indented with code
 throw new Exception("myHash must be an array!");

// inline comment preceding elseif (preceded by blank line)
} elseif (array_key_exists('index', $myHash)) {
 echo "The key 'index' exists.\n";

// inline comment preceding else (preceded by blank line)
} else {
 echo "The key 'index' does NOT exists.\n";
}
?>

Inline documentation
The phpDocumentor type documentation blocks are required in four places:

•	 At the beginning of each PHP source code file
•	 Preceding each class definition
•	 Preceding each method definition
•	 Preceding each class-level property definition

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[24]

Following is a table of required and recommended phpDocumentor tags. Please refer
to the chapter on documentation for more details.

Tag name File Class Method Property Usage
abstract x x x
access x x public, private, or protected
author x x [x] [x] author name <author@email.com>
copyright x name date
deprec [x] [x]
deprecated [x] [x]
example [x] [x] [x] path or url to example
extends [x] class name
global [x] type $variableName
link [x] [x] [x] [x] url
package x x package name
param x type [$name] description [default]
return x type description
see [x] [x] [x] file, class, or function name
since x date added to class
static [x] [x]
subpackage [x] [x] sub-package name
throws [x] exceptionName
todo [x] [x] [x] task description
var x type $name description [default]
version x [x] auto-generated by source control

where
x = required
[x] = recommended where applicable
blank = do not use

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[25]

Coding standard adherence and
verification
Now that we have gone through the effort of defining a detailed coding standard,
how do we make sure that everybody on the team adheres to it? Even if you are the
only one writing code, it would help to have a way of checking that you are following
your own standard. Looking through every single file and inspecting it for coding
standard adherence would do the job, but it would also be mind-numbingly boring
and repetitive. Luckily, repeating things is something at which computers excel.

PHP_CodeSniffer for automated checking
PHP_CodeSniffer is a free package that parses PHP source files and checks them
for compliance with pre-defined coding standards. The software comes pre-defined
with some common coding standards, namely the PEAR, Zend, Squiz, MySource,
and PHPCS standards. But luckily, the author made the package easily extensible.
Defining your own coding standard against which PHP_CodeSniffer can check
is simply a matter of extending some classes and implementing some methods.
Naturally, PHP_CodeSniffer is written in object-oriented PHP.

In their own words: "PEAR is a framework and distribution system for
reusable PHP components."
What this means is that PHP comes with a simple installer that can
be used to automatically install any of the various libraries that are
categorized, organized, documented, and made available for download
from the PEAR site:
http://pear.php.net

Installing PHP_CodeSniffer
Let's start by installing PHP_CodeSniffer directly from the PEAR site using their
handy command line installer. When I built and installed PHP on my system, I had
it put everything in a sub-folder of my local Apache installation. In my case, the PHP
root folder is therefore in /usr/local/apache2/php/. This is where you can find the
PEAR executable among other handy PHP utilities. The most recent version at the
time of this writing is 1.2.1.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[26]

Installing the package is simply a matter of telling the pear executable to download
and install it. You should see something similar to the following lines cascading
down your screen.

Afterwards, listing the contents of your PHP installations bin directory should
show the phpcs executable in addition to everything else you had in that directory.

Just like PHP itself, the PEAR installer supports many operating systems.
I installed PHP_CodeSniffer on Mac OS X, but the same procedure will
work on any of the operating systems on which PHP itself runs. Also, if
you are running into problems during the installation, I urge you to visit
the PEAR site's support section and FAQ page.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[27]

Basic usage
Using PHP_CodeSniffer to validate one or more files against a coding standard is
pretty straightforward. You simply invoke the phpcs executable and pass the file
or directory to check as an argument.

Here is some sample output from checking one of the listings for this chapter:

As you can see from the output, checking against the default coding standard
(Zend), phpcs has found three errors and one warning. For each of the problems it
finds, phpcs reports the line number of the source file, the severity of the issue (error,
warning, and so on) and a description. The three errors it found aren't really part of
the coding standard that we defined earlier in this chapter. However, the warning
indicates that the maximum line number, which we defined in our own standard to
be 80 characters, was exceeded. We could have suppressed the warnings by adding
the –n switch to the command line. At this point, we should fix the issue and re-run
phpcs to confirm that there are no additional issues detected.

Slightly advanced usage
Rather than duplicating the PHP_CodeSniffer documentation here, I want to use
this section to briefly list the available runtime options and highlight some of the
more useful ones.

There are various command line options that let you customize what to check,
how to check, and how to format the ouput. Type phpcs --help to see all of the
arguments understood by the script.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[28]

PHP_CodeSniffer comes with several predefined coding standards. Typing
phpcs –i will tell which coding standards are installed. The version of the tool I
installed came with the following standards: MySource, PEAR, PHPCS, Squiz, and
Zend. To tell phpcs to check against a specific standard, simply add the following
option to the command line: --standard=Zend.

The last useful command line switch I would like to point out is the
--report=summary argument. When recursively checking a directory of source
files, the output can get rather long. This switch prints a summary report with
one line per file rather than outputting each individual issue it identified. Here
is the summary report for all code listings in this chapter up to this point.

Here is a list of additional features you can customize from the command line. Please
refer to the PHP_CodeSniffer online documentation for details.

•	 Including/excluding files based on their extension
•	 Excluding files or directories based on their name
•	 Limiting the checking to select sub-sections of the coding standard (sniffs)
•	 Verbosity of the output

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[29]

•	 Permanently setting / deleting configuration options for future invocations
of phpcs including defaults for:

	° Coding standard
	° Report format
	° Show/hide warnings in output
	° Tab width (numbers of space characters)
	° Coding standard specific configuration options

Validating against your own coding standard
Being able to check code against an existing and established coding standard, such
as Zend, is useful, but the real power of PHP_CodeSniffer lies in its extensibility. By
defining our own coding standard in a format PHP_CodeSniffer understands, we
can use it to check conformance to our own standard.

Defining your own coding standard involves a three-step process. The steps are
as follows:

1. Create the directory structure to contain your PHP_CodeSniffer coding
standard definition.

2. Create a class file to allow PHP_CodeSniffer to interact with and learn
about our coding standard.

3. Create the individual rule files, called Sniffs in PHP_CodeSniffer lingo.

Terminology: In PHP_CodeSniffer parlance, Sniffs are individual
class files that contain the logic to validate a single coding standard rule.
For example, you might have a file called LineLengthSniff.php that
contains the definition for class LineLengthSniff. The logic in this
class will be invoked each time PHP_CodeSniffer wants to check whether
the length of a line of code conforms to the defined standard.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[30]

Creating the directories
The directory structure for each coding standard definition is simple. From the
command line, the following set of commands can be used to create the initial set of
directories and files of a hypothetical coding PHP_CodeSniffer standard definition.

We start by creating a directory to hold all the files associated with our coding
standard definition, ProjectStandard. In that directory, we create a class file
called ProjectStandardCodingStandard.php that identifies our directory as
one containing a PHP_CodeSniffer coding standard definition. This class is also
responsible for communicating with the main phpcs executable regarding some
of the details of our coding standard (more about that later).

Next we create a directory called Sniff, which will contain descriptions of
individual coding standard rules, or collections (directories thereof). In our case,
we plan on creating rules regarding naming conventions and line length, which
is why we are creating directories NamingConventions and LineLength inside
the Sniffs directory. Each of these sub-directories then contains one or more
individual sniff files: LimitLineLengthSniff.php, ClassNamesSniff.php,
VariableNamesSniff.php, and PropertyNamesSniff.php.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[31]

The main coding standard class file
In the previous step, we have already created a placeholder for the main class file
in our ProjectStandard directory. Now let's put some code in there and identify
ourselves as a PHP_CodeSniffer coding standard.

<?php
// make sure the parent class is in our include path
if (class_exists('PHP_CodeSniffer_Standards_CodingStandard', true)
 === false) {
 throw new PHP_CodeSniffer_Exception('Class
 PHP_CodeSniffer_Standards_CodingStandard not found');
}

// our main coding standard class definition
class PHP_CodeSniffer_Standards_ProjectStandard_
ProjectStandardCodingStandard extends PHP_CodeSniffer_Standards_
CodingStandard
{
 // include sniffs from other directories or even whole coding
 standards
 // great way to create your standard and build on it
 public function getIncludedSniffs()
 {
 // return an array of sniffs, directories of sniffs,
 // or coding standards to include
 return array(
 'Generic'
);
 }

 // exclude sniffs from previously included ones
 public function getExcludedSniffs()
 {
 // return a list of sniffs or directories of sniffs to
 exclude
 return array(
 'Generic/Sniffs/LineLengthSniff.php'
);
 }
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[32]

Our main class extends PHP_CodeSniffer_Standards_CodingStandard. This
is required of all classes identifying a coding standard to be used with phpcs.
However, the two methods we are implementing, getIncludedSniffs() and
getExcludedSniffs() are pretty important because they let us assemble our own
coding standard from parts of existing standards, thus saving us a lot of time since
we don't have to write all the sniffs ourselves. Both classes return simple arrays. The
items in the array are either names of existing coding standards, paths to directories
of sniffs of existing coding standards, or paths to individual sniff files. For example,
it turns out that our own coding standard is pretty close to the "Generic" coding
standard included with PHP_CodeSniffer. Therefore, to make things easier for us,
we include the whole "Generic" coding standard in the getIncludedSniffs()
method, but choose to exclude that standard's LineLengthSniff.php in the
getExcludedSniffs() method.

Creating Sniffs
Each of the rules we formulated to express our coding standard earlier in the chapter,
can be described using a sniff class file that PHP_CodeSniffer can use. However,
before we jump in and really get our hands dirty, it is a good idea to review how
tokenization works. After all, PHP_CodeSniffer builds on and expands PHP's inbuilt
tokenizer extension.

Tokenization is the process of breaking input text into meaningful parts.
When combined with a classification and/or description, each such part
is considered a token.

Tokenization
PHP uses the Zend Engine's tokenizer at its core to parse and interpret PHP source
files. Lucky for us, the tokenizer is also directly accessible via two functions in the
language's top-level namespace: token_get_all() and token_get_name().

Tokenization consists of taking input text and breaking it up into meaningful
segments. Each segment can optionally carry a label, explanation, or additional
detail. Let's look at an example of PHP code being tokenized by the Zend Engine.

<?php
// get the contents of this file into a variable
$thisFile = file_get_contents(__FILE__);

// get the token stack
$tokenStack = token_get_all($thisFile);

$currentLine = 0;

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[33]

// output each token & look up the corresponding name
 foreach ($tokenStack as $token) {

 // most tokens are arrays
 if (is_array($token)) {

 if ($currentLine < $token[2]) {
 $currentLine++;
 echo "Line $currentLine:\n";
 }
 echo "\t" . token_name($token[0]) . ': ' . rtrim($token[1]) .
"\n";

 // some tokens are just strings
 } else {
 echo "\tString: " . rtrim($token) . "\n";
 }
 }
?>

The above code snippet runs itself through the tokenizer, which results in the
following output:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[34]

We formatted our output a littler nicer, but the first token essentially looks like this:

Array(
 [0] => 367
 [1] => <?php
 [2] => 1
)

In this case, 367 is the value of the parser token, which corresponds to T_OPEN_TAG
when we look it up with the token_name() function. <?php is the actual text of
the token and 1 is the line number on which the token occurs. You can look up the
complete list of tokenizer token constants in the online PHP manual, or the following
code snippet will list the ones that are defined for your version of PHP.

<?php
// get all constants organized by category
$allTokens = get_defined_constants(true);

// we're only interested in tokenizer constants
print_r($allTokens["tokenizer"]);
?>

As you can see for yourself, tokens contain a lot of information that is useful
to programmatically understand what an analyzed portion of code is doing.
PHP_CodeSniffer builds upon the existing tokenization extension and built-in
tokens by providing additional tokens to provide even finer granularity when
examining PHP code.

Writing our first sniff
Now that you know what tokens are, it will be much easier to understand what
the individual sniffs are doing. First of all, a sniff registers with the main executable
the tokens in which it is interested using the register() method. That way, the main
code can hand over execution to the sniff's process() method whenever it encounters
such a token. For example, a sniff trying to validate that a code file has the proper PHP
opening and/or closing tag might register interest in the T_OPEN_TAG with the parent
code. That is exactly what we're doing in the following listing:

<?php
// sniff class definition must implement the
// PHP_CodeSniffer_Sniff interface
class ProjectStandard_Sniffs_Syntax_FullPhpTagsSniff implements
PHP_CodeSniffer_Sniff
{
 // register for the tokens we're interested in
 public function register()

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[35]

 {
 return array(T_OPEN_TAG);
 }

 // process each occurrence of the token in this method
 public function process(PHP_CodeSniffer_File $phpcsFile,
 $stackPtr)
 {
 $tokens = $phpcsFile->getTokens();

 // warn if the opening PHP tag is not the first token in the
 file
 if ($stackPtr != 0) {
 $phpcsFile->addWarning('Nothing should precede the PHP
 open tag.', $stackPtr);
 }

 // error if full PHP open tag is not used
 if ($tokens[$stackPtr]['content'] != '<?php') {
 $phpcsFile->addError('Only full PHP opening tags are
 allowed.', $stackPtr);
 }

 // all files must have closing tag
 if ($token[sizeof($tokens) - 1]['type'] != T_CLOSE_TAG) {
 $phpcsFile->addError('All files must end with a closing
 PHP tag.', $stackPtr);
 }
 }
}
?>

Let's take a closer look at the process() method, which takes two parameters.
The first one is a reference to a PHP_CodeSniffer_File object, which we can use
to access the token stack. The second argument is an array index to the current
token in the stack.

Armed with that information, we can start validating the code via the token stack.
First, we use the PHP_CodeSniffer_File's addWarning() method to display a
warning message whenever the very first token is not the PHP open tag. Next, we
use the addError() method to display an error message to the user whenever the
opening tag doesn't match the string "<?php" since that is the only opening tag that
our coding standard allows. Lastly, we display an error message if the last token in
the stack is anything other than the closing PHP tag.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[36]

That's it. The main phpcs executable does the rest. It tokenizes the input file(s), calls
all registered sniffs for each occurrence of their respective token, and displays nicely
formatted output to the user.

You may have noticed in the above listing that we used the values of the token's
'content' and 'type' attributes. If you recall, the tokens returned by the standard
PHP tokenizer did not have those attributes. Instead, PHP_CodeSniffer adds those
and other attributes. Following is a list of token attributes that are always available.
Depending on the type of token, additional attributes might be available. You should
consult the PHP_CodeSniffer API documentation for details.

Attribute name Example Description
code 301 The token type code (see token_get_all())
content if The token content
type T_IF The token name
line 56 The line number when the token is located
column 12 The column in the line where this token starts (starts from

1)
level 2 The depth a token is within the scopes open
Conditions Array(

2 => 50, 9
=> 353

)

A list of scope condition token positions => codes that
opened the scopes that this token exists in (see conditional
tokens)

Extending existing sniffs
We have already seen that we can include sniffs from other coding standards in
our own. However, we can take it a step further and make an existing sniff do all
the work while still implementing our own standard. For example, the "Generic"
coding standard includes a sniff to check for maximum line length. As it happens,
the suggested maximum line length is 80 characters— the same as in our own
standard. However, the absolute maximum line length is 100; whereas, our standard
allows for up to 120 characters per line. Therefore, all we have to do is extend the
existing sniff and overwrite the protected property $absoluteLineLimit as in the
following listing.

<?php
if (class_exists('Generic_Sniffs_Files_LineLengthSniff', true) ===
false) {
 throw new PHP_CodeSniffer_Exception('Class Generic_Sniffs_Files_
LineLengthSniff not found');
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 1

[37]

// class to check line length in number of characters
// note: we're overwriting an existing sniff from the generic coding
standard
class Zend_Sniffs_Files_LineLengthSniff extends Generic_Sniffs_Files_
LineLengthSniff
{
 // we generate an error when exceeding the absolute
 // maximum line length

 protected $absoluteLineLimit = 120;

}
?>

Automated code checks
Even though PHP_CodeSniffer is available, there is no guarantee that individual
developers will actually take advantage of it. However, in a team environment, the
lead developer can take several steps to make sure the team members adhere to the
chosen common standard. First, the code base should be scheduled for an automated
check once a day during active development. A simple (insert you favorite scheduler
utility here) job can process all the source files and send an email to everybody in
the team.

However, it is possible to take things a step further. Assuming that you are using
a source code control system, most of these systems provide hooks at various stages
of checking out or committing source code. The most commonly used hook is the
pre-commit hook. In other words, the source code control system executes any number
of user-configurable steps before committing the code. The outcome of these steps
impact whether the use is allowed to commit the code or not. In the case of our coding
standard, we can configure the pre-commit hook to run any PHP source files being
committed through PHP_CodeSniffer and only proceed if no errors and/or warnings
are being generated. In essence, this is a way that your team only accepts contributions
from individual developers if they adhere to the team's coding standard.

For a detailed example of how to configure the Subversion source code control
system with a PHP_CodeSniffer pre-commit hook, please consult the chapter on
source code and version control.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Coding Style and Standards

[38]

Summary
I think we have come full circle within the course of this chapter. We started with
a philosophical discussion; as well as an examination of the pros and cons of a
common coding standard. We then proceeded to formulate a coding standard that
can serve as a foundation for any PHP development project— whether it consists of
a single developer or dozens spread throughout the globe.

Realizing that having a standard alone is not enough, we looked at PHP_CodeSniffer
as a tool for validating code against a pre-defined standard. We even learned how
to translate our coding guidelines to PHP code that PHP_CodeSniffer can use when
checking the source files. Lastly, we briefly discussed that automating or integrating
source validation is an effective way of actually enforcing the standard without
having to waste too much time reviewing code manually.

The standard we defined in this chapter is not the answer to all your coding standard
needs. I'm sure you were objecting to some of the rules I defined as you were reading
through them. That's ok. The important thing is to have a coding standard at all. You
can never make everybody happy, but you can make sure that the team benefits from
the coding standard, even if the members don't agree with each and every detail.

Rather than blindly adopting the coding standard in this or any other standard for
that matter, you might want to take the time to examine it and customize it for your
purposes. Also, a coding standard evolves over time along with the language itself.
With PHP6 due to be released in the near future, we will have to revisit our standard
and see how to best improve it to reflect all the exciting new features.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with
phpDocumentor

In this chapter, we will take a look at documentation. Since this is a book for
the professional PHP developer, we will primarily be dealing with code-level
documentation targeted at other developers.

We will learn to create code-level documentation using phpDocumentor, PHP's
entry into the xDoc family of documentation tools and the de facto standard for
documenting PHP code. Specifically, we will install phpDocumentor. Next, we will
learn the general syntax for DocBlocks and how to run phpDocumentor to generate
the documentation. Finally, we will cover all phpDocumentor tags in some detail
and look at some examples.

Before we proceed further, I have to start off with a confession. The
code samples and listing in the rest of this book don't fully reflect the
extent of code-level documentation I would expect a reader of this book
to produce. Although I have tried to make sure that there are plenty of
inline comments to guide the reader, I haven't really been using proper
phpDoc tags and sections. The reasons are simple and two-fold. First,
space in print editions is limited and adding all the proper documentation
sections to our source code would have increased the size of the listings
significantly. Second, the inline comments in the listings are intended
for the developer directly. In contrast, phpDoc comments get parsed and
processed with the rest of the code and the resulting output formatted for
easier reading and browsing.
In other words, when you tackle your own projects, I would expect you to
do as I do in this chapter and not as I do in the rest of the book (at least as
far as phpDoc is concerned).

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[40]

Code-level documentation
The documentation we will be creating describes the interface of the code more than
minute details of the actual implementation. For example, you might document an
API that you have developed for the outside world to interact with some insanely
important project on which you are working.

Having an API is great, but for other developers to quickly get an overview of the
capabilities of the API and being able to crank out working code within a short
amount of time is even better. If you are following the proper conventions while
writing the code, all you would have to do is run a utility to extract and format the
documentation from the code.

Even if you're not inviting the whole world to interact with your software,
developers within your own team will benefit from documentation describing some
core classes that are being used throughout the project. Just imagine reading your
co-worker's code and coming across some undecipherable object instance or method
call. Wouldn't it be great to simply pull up the API documentation for that object
and read about its uses, properties, and methods? Furthermore, it would be really
convenient if the documentation for the whole project were assembled and logically
organized in one location. That way, a developer cannot only learn about a specific
class, but also about its relationships with other classes. In a way, it would enable
the programmer to form a high-level picture of how the different pieces fit together.

Another reason to consider code-level documentation is that source code is easily
accessible due to PHP being a scripting language. Unless they choose to open
source their code, compiled languages have a much easier time hiding their code.
If you ever plan on making your project available for others to download and run
on their own server, you are unwittingly inviting a potential critic or collaborator.
Since it is rather hard (but not impossible) to hide the source code from a user that
can download your project, there is the potential for people to start looking at and
changing your code.

Generally speaking, that is a good thing because they might be improving the
quality and usefulness of the project and hopefully they will be contributing their
improvements back to the user community. In such a case, you will be glad that you
stuck to a coding standard and added comments throughout the code. It will make
understanding your code much easier and anybody reading the code will come away
with the impression that you are indeed a professional.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[41]

Great, you say, how do I make sure I always generate such useful documentation
when I program? The answer is simple. You need to invest a little time learning the
right tool(s). That's the easy part for someone in the technology field where skill sets
are being expanded every couple of years anyway. The hard part is to consistently
apply that knowledge. Like much else in this book, it is a matter of training
yourself to have good habits. Writing API level documentation at the same time as
implementing a class or method should become second nature as much as following
a coding standard or properly testing your code.

Luckily, there are some tools that can take most of the tedium out of documenting
your code. Foremost, modern IDEs (Integrated Development Environments) are very
good at extracting some of the needed information automatically. Templates can
help you generate documentation tags rather rapidly. Take a look at the chapter on
IDEs to see how you can configure our IDE of choice to quickly generate much of the
syntax surrounding the documentation, while leaving it to the programmer to fill in
the crucial details.

Levels of detail
As you create your documentation, you have to decide how detailed you want to
get. I have seen projects where easily half the source code consisted of comments
and documentation that produced fantastic developer and end-user documentation.
However, that may not be necessary or appropriate for your project. My suggestion
is to figure out what level of effort you can reasonably expect of yourself in relation
to what would be appropriate for your target audience. After all, it is unlikely that
you will start documenting every other line of code if you are not used to adding
any documentation at all. On one hand, if your audience is relatively small and
sophisticated, you might get away with less documentation. On the other hand,
if you are documenting the web services API for a major online service as you are
coding it, you probably want to be as precise and explicit as possible. Adding plenty
of examples and tutorials might enable even novice developers to start using your
API quickly. In that case, your employer's success in the market place is directly tied
to the quality and accessibility of the documentation. In this case, the documentation
is very much part of the product rather than an afterthought or merely an add-on.

On one end of the spectrum, you can have documentation that pertains to the project
as a whole, such as a "README" file. At the next level down, you might have a doc
section at the beginning of each file. That way, you can cover the functionality of the
file or class without going into too much detail.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[42]

Introducing phpDocumentor
phpDocumentor is an Open Source project that has established itself as the
dominanot tool for documenting PHP code. Although there are other solutions,
phpDocumentor is by far the one you are most likely to encounter in your work
– and for good reason. Taking a clue from similar documentation tools that came
before it, such as JavaDoc, phpDocumentor offers many features in terms of user
interface, formatting, and so on.

PhpDocumentor provides you with a large library of tags and other markup, which
you can use to embed comments, documentation, and tutorials in your source code.
The phpDoc markup is viewed as comments by PHP when it executes your source
file and therefore doesn't interfere with the code's functionality. However, running
the phpDocumentor command line executable or using the web-based interface,
you can process all your source files, extract the phpDoc related content, and compile
it into functional documentation. There is no need to look through the source files
because phpDocumentor assembles the documentation into nicely looking HTML
pages, text files, PDFs, or CHMs.

Although phpDocumentor supports procedural programming and PHP4,
the focus in this chapter will be on using it to document applications developed
with object-oriented design in mind. Specifically, we will be looking at how to
properly document interfaces, classes, properties, and methods. For details on
how to document some of the PHP4 elements that don't typically occur in PHP5's
object-oriented implementation, please consult the phpDocumentor online manual:

http://manual.phpdoc.org/

Installing phpDocumentor
There are two ways of installing phpDocumentor. The preferred way is to use the
PEAR repository. Typing pear install PhpDocumentor from the command line
will take care of downloading, extracting, and installing phpDocumentor for you.
The pear utility is typically included in any recent standard distribution of PHP.
However, if for some reason you need to install it first, you can download it from
the PEAR site:

http://pear.php.net/

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[43]

Before we proceed with the installation, there is one important setting to consider.
Traditionally, phpDocumentor has been run from the command line, however,
more recent versions come with a rather functional web-based interface. If you want
pear to install the web UI into a sub-directory of your web server's document root
directory, you will first have to set pear's data_dir variable to the absolute path
to that directory. In my case, I created a local site from which I can access various
applications installed by pear. That directory is /Users/dirk/Sites/phpdoc. From
the terminal, you would see the following if you tell pear where to install the web
portion and proceed to install phpDocumentor.

As part of the installation, the pear utility created a directory for phpDocumentor's
web interface. Here is the listing of the contents of that directory:

The other option for installing phpDocumentor is to download an archive from
the project's SourceForge.net space. After that, it is just a matter of extracting
the archive and making sure that the main phpdoc executable is in your path so
that you can launch it from anywhere without having to type the absolute path.
You will also have to manually move the corresponding directory to your
server's document root directory to take advantage of the web-based interface.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[44]

DocBlocks
Let's start by taking a look at the syntax and usage of phpDocumentor. The basic unit
of phpDoc documentation is a DocBlock. All DocBocks take the following format:

/**
 * Short description
 *
 * Long description that can span as many lines as you wish.
 * You can add as much detail information and examples in this
 * section as you deem appropriate. You can even <i>markup</i>
 * this content or use inline tags like this:
 * {@tutorial Project/AboutInlineTags.proc}
 *
 * @tag1
 * @tag2 value2 more text
 * ... more tags ...
 */

A DocBlock is the basic container of phpDocumentor markup within
PHP source code. It can contain three different element groups: short
description, long description, and tags – all of which are optional.

The first line of a DocBlock has only three characters, namely "/**". Similarly, the
last line will only have these three characters: " */". All lines in between will start
with " * ".

Short and long descriptions
An empty line or a period at the end of the line terminates short descriptions. In
contrast, long descriptions can go on for as many lines as necessary. Both types of
descriptions allow certain markup to be used: ,
, <code>, <i>, <kbd>, ,
, <p>, <pre>, <samp>, , <var>. The effect of these markup tags is borrowed
directly from HTML. Depending on the output converter being used, each tag can
be rendered in different ways.

Tags
Tags are keywords known to phpDocumentor. Each tag can be followed by
a number of optional arguments, such as data type, description, or URL. For
phpDocumentor to recognize a tag, it has to be preceded by the @ character.
Some examples of common tags are:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[45]

/**
 * @package ForeignLanguageParser
 * @author Dirk Merkel dirk@waferthin.com
 * @link http://www.waferthin.com Check out my site
 */
class Translate
{
}

In addition to the above "standard" tags, phpDocumentor recognizes "inline" tags,
which adhere to the same syntax, with the only notable difference that they are
enclosed by curly brackets. Inline tags occur inline with short and long descriptions
like this:

/**
 * There is not enough space here to explain the value and usefulness
 * of this class, but luckily there is an extensive tutorial available
 * for you: {@tutorial ForeignLanguageParser/Translate.cls}
 */

DocBlock templates
It often happens that the same tags apply to multiple successive elements. For example,
you might group all private property declarations at the beginning of a class. In that
case, it would be quite repetitive to list the same, or nearly the same DocBlocks, over
and over again. Luckily, we can take advantage of DocBlock templates, which allow
us to define DocBlock sections that will be added to the DocBlock of any element
between a designated start and end point.

DocBlock templates look just like regular DocBlocks with the difference that the first
line consists of /**#@+ instead of /**. The tags in the template will be added to all
subsequent DocBlocks until phpDocumenter encounters the ending letter sequence
/**#@-*/.

The following two code fragments will produce the same documentation. First, here
is the version containing only standard DocBlocks:

<?php
class WisdomDispenser
{
 /**
 * @access protected
 * @var string
 */
 private $firstSaying = 'Obey the golden rule.';

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[46]

 /**
 * @access protected
 * @var string
 */
 private $secondSaying = 'Get in or get out.';

 /**
 * @access protected
 * @var string
 * @author Albert Einstein <masterof@relativity.org>
 */
 private $thirdSaying = 'Everything is relative';
}
?>

And here is the fragment that will produce the same documentation using a more
concise notation by taking advantage of DocBlock templates:

<?php
class WisdomDispenser
{
 /**#@+
 * @access protected
 * @var string
 */
 private $firstSaying = 'Obey the golden rule.';
 private $secondSaying = 'Get in or get out.';

 /**
 * @author Albert Einstein <masterof@relativity.org>
 */
 private $thirdSaying = 'Everything is relative';
 /**#@-*/
}
?>

Tutorials
DocBlocks are targeted at developers. phpDocumetor generates beautiful
documentation, but even if you are looking at the code itself, DocBlocks
are very valuable to a programmer. In contrast, tutorials are often targeted
at end-users or present extended examples and instructions to developers,
which often require a little more handholding than even a DocBlock's long
description can accommodate.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[47]

Naming conventions and how to reference tutorials
Tutorials are typically organized in their own directory that mimics the package
structure you designed using the @package and @subpackage tags. Each tutorial
is a self-contained file that will be referenced from DocBlocks using the @tutorial,
{@tutorial}, or {@link} tags.

For example, perhaps you have used the @package tag to group various files and
classes together under a package named "WebServices." Furthermore, let's assume
you have created multiple sub-packages using the @subpackage tag, one if which
might be called "Authentication." If you wanted to write a tutorial on how to
consume the authentication web service and use it to log into your system, you
would employ the following directory structure and file naming convention:

WebServices/

`-- Authentication

 `-- Login.cls

The corresponding DocBlock preceding the Login class might then look something
like this:

/**
 * Login class for web services authentication
 *
 * This class provides various methods that are exposed
 * by the web services layer of the package. This class
 * and its methods can be used to obtain a token from
 * the authentication system that will be required during
 * subsequent API calls. For more detail on how to call
 * the authentication system from you PHP code, take a
 * look at our tutorial:
 * {@tutorial WebServices/Authentication/Login.cls}.
 *
 * @package WebServices
 * @subpackage Authentication
 * @tutorial WebServices/Authentication/Login.cls
 */
class Login
{
 // lots of useful methods here!
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[48]

Essentially, the directory structure reflects your package and sub-package names.
The names of tutorial files match the name of the element being documented in the
case of package and class-level documentation. The file extension indicates the PHP
element being documented: tutorials for a package have file extension .pkg, class
tutorial end in .cls, and procedure-level tutorials end in .proc.

PackageName/

`-- SubpackageName

 |-- ClassTutorialName.cls

 |-- PackageTutorialName.pkg

 `-- ProcedureTutorialName.proc

DocBook syntax
Rather than coming up with their own format, the developers of phpDocumentor
relied on an established format for technical documentation: DocBook. DocBook
is an XML-based markup language originally developed to document software
and hardware. However, it has since been applied to all kinds of documentation,
including tutorials.

Rather than to go into the details of DocBook syntax, which is beyond the scope
of this chapter, I want to present a basic outline of a DocBook tutorial that
continues our theme of writing a tutorial for a web services authentication call.
This rudimentary DocBook document has been adapted from the phpDocumentor
manual and can be used as a starting point for your own tutorials.

<refentry id="{@id}">
 <refnamediv>
 <refname>Web Services Authentication Tutorial</refname>
 <refpurpose>How to use the authentication web service to
 obtain a security token that will be required for
 subsequent web services requests.
 </refpurpose>
 </refnamediv>
 <refsynopsisdiv>
 <author>
 Dirk Merkel
 <authorblurb>{@link mailto:dirk@waferthin.com Dirk
 Merkel}</authorblurb>
 </author>
 </refsynopsisdiv>
 {@toc}
 <refsect1 id="{@id intro}">

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[49]

 <title>Web Services Authentication Tutorial</title>
 <para>Pay attention because this is how you will have to
 implement authentication to access our web service
 </para>
 </refsect1>
</refentry>

One important thing to take away from this example is that DocBook tutorials can
contain certain inline phpDocumentor tags. This is very important because it allows
tutorials to tie into the rest of the project's documentation. The following inline tags
can be used in DocBook tutorials:

{@link}

{@tutorial}

{@id}

{@toc}

Please consult the phpDoc tag reference section in this chapter to see the proper
usage for each tag.

Documenting a project
To really illustrate the usefulness of good documentation, nothing takes the place
of actually seeing a complete example. Now that we have covered the basic syntax
and you have some idea of the available tags, let's see what phpDocumentor can do.

For the purpose of this example, I have created a small project. I have tried to cram as
many different object-oriented features in as possible. This way, there will be plenty for
us to document and explore the different phpDoc tags at our disposal.

The purpose of this example project is to provide user authentication. Given a
username and password, this code tries to verify that a corresponding valid account
exists. In an effort to keep things at a manageable size, I have taken the liberty to
simplify much of the functionality.

Here is a hierarchical outline of the files in the sample project:

project/

|-- classes

| |-- Accountable.php

| |-- Authentication

| | `-- HardcodedAccounts.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[50]

| |-- Authentication.php

| `-- Users.php

`-- index.php

The classes directory contains all our interfaces and class definitions. The index.php
file handles all necessary includes, creates some objects, and serves as a form handler.
It essentially ties everything together. Next, let's take a look at each of the files.

File project/classes/Accountable.php:

<?php
interface Accountable
{
 const AUTHENTICATION_ERR_MSG = 'There is no user account
associated with the current session. Try logging in fist.';

 public function isLoggedIn();
 public function getAccount($user = '');
}
?>

The Accountable interface defines a constant and two methods that will have to be
implemented by any that implement the interface.

File project/classes/Authentication.php:

<?php
abstract class Authentication implements Accountable
{
 private $account = null;

 public function getAccount($user = '')
 {
 if ($this->account !== null) {
 return $this->account;
 } else {
 return AUTHENTICATION_ERR_MSG;
 }
 }

 public function isLoggedIn()
 {
 return ($this->account !== null);
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[51]

 abstract public function login($user, $password);
}
?>

Authentication is a class that implements the Accountable interface. It provides
concrete implementations of the two methods dictated by the interfaces. However,
since it also declares an abstract method, the class itself is abstract. Authentication
serves as a blueprint for any class providing authentication services. Any child class
will have to implement the login() method.

File project/classes/Authentication/HardcodedAccounts.php:

<?php
class Authentication_HardcodedAccounts extends Authentication
{
 private $users;

 public function __construct()
 {
 $this->users = new Users();
 }

 public function login($user, $password)
 {
 if (empty($user) || empty($password)) {
 return false;
 } else {

 // both validation methods should work ...

 // user static method to validate account
 $firstValidation = Users::validate($user, $password);

 // use magic method validate<username>($password)
 $userLoginFunction = 'validate' . $user;
 $secondValidation = $this->users-
 >$userLoginFunction($password);

 return ($firstValidation && $secondValidation);
 }
 }
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[52]

Class Authentication_HardcodedAccounts extends abstract class Authentication
and provides the required implementation of method login(). To actually validate
whether a given username and password correspond to an account, it delegates the
work to a User class, which we will see in the next listing.

One thing to note is that login() calls two different methods of the User object to
validate the username and password. There is absolutely no reason for doing so
other than showing two different ways of passing the required parameters. The first
is a call to a static method, which passes both username and password as method
arguments. The second is a call to magic method login<user>($password), which
passes the username as part of the method name and the corresponding password
as an argument.

File project/classes/Users.php:

<?php
class Users
{
 private static $accounts = array('dirk' => 'myPass',
 'albert' => 'einstein');

 public static function validate($user, $password)
 {
 return self::$accounts[$user] == $password;
 }

 public function __call($name, $arguments)
 {
 if (preg_match("/^validate(.*)$/", $name, $matches) &&
count($arguments) > 0) {
 return self::validate($matches[1], $arguments[0]);
 }
 }
}
?>

Class Users has a hard-coded list of users and their passwords stored in a private
array property. I sure hope you're not thinking of implementing this in production,
but it does keep things nice and simple for our example.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[53]

Users also provides the two account validation methods we saw being called from
the Authentication_HardcodedAccounts class. validate<user>() is implemented
with the help of the __call() magic method.

File project/index.php:

<?php
require_once('classes/Accountable.php');
require_once('classes/Authentication.php');
require_once('classes/Users.php');
require_once('classes/Authentication/HardcodedAccounts.php');

$authenticator = new Authentication_HardcodedAccounts();

// uncomment for testing
$_POST['user'] = 'dirk';
$_POST['password'] = 'myPass';

if (isset($_POST['user']) && isset($_POST['password'])) {

 $loginSucceeded = $authenticator->login($_POST['user'],
 $_POST['password']);

 if ($loginSucceeded === true) {
 echo "Congrats - you're in!\n";
 } else {
 echo "Uh-uh - try again!\n";
 }
}
?>

Lastly, we have index.php, which ties everything together. After including the
necessary class files, it creates an instance of Authentication_HardcodedAccounts,
and uses it to validate the username and password that were presumably posted
from a web form.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[54]

Documentation without DocBlocks
You have probably already noticed that short of some inline comments, the
sample project has no DocBlocks, tags, or anything else added by the programmer
for the purpose of documenting the code. Nevertheless, there is quite a bit that
phpDocumentor can do with uncommented PHP code. If we are in the directory
containing the project directory, we can run phpDocumentor and ask to generate
documentation for the project like this:

The above command will recursively process all files in the project directory
(--directory ./project/), create documentation with a custom title (--title
'Generated Documentation - No DocBlocks'), include a source code listing of
each file processed (--sourcecode on), save all documentation to the docs directory
(--target ./project/docs), and group everything under a specified package name
(--defaultpackagename 'UserAuthentication'). Later on in this chapter, we will
take a look at the complete list of command line options of the phpdoc executable.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[55]

Listing all documentation pages that phpDocumentor generated is impractical, but
let's take a look at the outline and at least one of the classes. All we have to do to
view the documentation is to open the index.html file in the docs directory where
we told phpDocumentor to direct the output with a web browser.

Looking at the above screenshot, we see that phpDocumentor correctly found all
the class files. Moreover, it identified Accountable as an interface and found index.
php, even though it contains no class definitions. All classes and interfaces are
grouped together under the AuthenticationUser package name that was specified
from the command line. At the same time, we see some of the shortcomings. There
is no further classification or grouping and all components are simply listed under
the root level.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[56]

Before we move on, let's also take a look at what information phpDocumentor was
able to extract from the Users.php file:

It correctly identified the methods of the class, their visibility, and which parameters
are required. I think that is a pretty useful start, albeit the description is a bit sparse
and we have no idea what methods were actually implemented using the
magic __call()method.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[57]

Another point to note here is that the class property $accounts does not appear in
the documentation at all. That is intended behavior because the property has been
declared private. If you want elements with private visibility to appear in your
documentation, you will have to add the –pp / --parse private command line
option or put this option in a config file.

Documentation with DocBlocks
Of course, this example wouldn't be complete if we didn't proceed to add proper
DocBlocks to our code. The following is the exact same code as before, but this time
it has been properly marked up with DocBlocks.

File project/classes/Accountable.php:

<?php
/**
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @subpackage Authentication
 * @copyright Waferthin Web Works LLC
 * @license http://www.gnu.org/copyleft/gpl.html Freely available
under GPL
 */
/**
 * <i>Accountable</i> interface for authentication
 *
 * Any class that handles user authentication must
 * implement this interface. It makes it almost
 * trivial to check whether a user is currently
 * logged in or not.
 *
 * @package WebServices
 * @subpackage Authentication
 * @author Dirk Merkel <dirk@waferthin.com>
 * @version 0.2
 * @since r12
 */
interface Accountable
{
 const AUTHENTICATION_ERR_MSG = 'There is no user account
associated with the current session. Try logging in fist.';

 /**
 * Did the current user log in?
 *

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[58]

 * This method simply answers the question
 * "Did the current user log in?"
 *
 * @access public
 * @return bool
 */
 public function isLoggedIn();

 /**
 * Returns user account info

 *
 * This method is used to retrieve the account corresponding
 * to a given login. Note: it is not required that
 * the user be currently logged in.
 *
 * @access public
 * @param string $user user name of the account
 * @return Account
 */
 public function getAccount($user = '');
}
?>

File project/classes/Authentication.php:

<?php
/**
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @subpackage Authentication
 * @copyright Waferthin Web Works LLC
 * @license http://www.gnu.org/copyleft/gpl.html Freely available
under GPL
 */
/**
 * <i>Authentication</i> handles user account info and login actions

 *
 * This is an abstract class that serves as a blueprint
 * for classes implementing authentication using
 * different account validation schemes.
 *
 * @see Authentication_HardcodedAccounts
 * @author Dirk Merkel <dirk@waferthin.com>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[59]

 * @package WebServices
 * @subpackage Authentication
 * @version 0.5
 * @since r5
 */
abstract class Authentication implements Accountable
{
 /**
 * Reference to Account object of currently
 * logged in user.
 *
 * @access private
 * @var Account
 */
 private $account = null;

 /**
 * Returns account object if valid.
 *
 * @see Accountable::getAccount()
 * @access public
 * @param string $user user account login
 * @return Account user account
 */
 public function getAccount($user = '')
 {
 if ($this->account !== null) {
 return $this->account;
 } else {
 return AUTHENTICATION_ERR_MSG;
 }
 }

 /**
 * isLoggedIn method
 *
 * Says whether the current user has provided
 * valid login credentials.
 *
 * @see Accountable::isLoggedIn()
 * @access public
 * @return boolean
 */
 public function isLoggedIn()

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[60]

 {
 return ($this->account !== null);
 }

 /**
 * login method
 *
 * Abstract method that must be implemented when
 * sub-classing this class.
 *
 * @access public
 * @return boolean
 */
 abstract public function login($user, $password);
}
?>

File project/classes/Authentication/HardcodedAccounts.php:

<?php
/**
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @subpackage Authentication
 * @copyright Waferthin Web Works LLC
 * @license http://www.gnu.org/copyleft/gpl.html Freely available
under GPL
 */
/**
 * <i>Authentication_HardcodedAccounts</i> class
 *
 * This class implements the login method needed to handle
 * actual user authentication. It extends <i>Authentication</i>
 * and implements the <i>Accountable</i> interface.
 *
 * @package WebServices
 * @subpackage Authentication
 * @see Authentication
 * @author Dirk Merkel <dirk@waferthin.com>
 * @version 0.6
 * @since r14
 */
class Authentication_HardcodedAccounts extends Authentication
{
 /**

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[61]

 * Referece to <i>Users</i> object
 * @access private
 * @var Users
 */
 private $users;

 /**
 * Authentication_HardcodedAccounts constructor
 *
 * Instantiates a new {@link Users} object and stores a reference
 * in the {@link users} property.
 *
 * @see Users
 * @access public
 * @return void
 */
 public function __construct()
 {
 $this->users = new Users();
 }

 /**
 * login method
 *
 * Uses the reference {@link Users} class to handle
 * user validation.
 *
 * @see Users
 * @todo Decide which validate method to user instead of both
 * @access public
 * @param string $user account user name
 * @param string $password account password
 * @return boolean
 */
 public function login($user, $password)
 {
 if (empty($user) || empty($password)) {
 return false;
 } else {

 // both validation methods should work ...

 // user static method to validate account
 $firstValidation = Users::validate($user, $password);

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[62]

 // use magic method validate<username>($password)
 $userLoginFunction = 'validate' . $user;
 $secondValidation = $this->users-
 >$userLoginFunction($password);

 return ($firstValidation && $secondValidation);
 }
 }
}
?>

File project/classes/Users.php:

<?php
/**
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @subpackage Accounts
 * @copyright Waferthin Web Works LLC
 * @license http://www.gnu.org/copyleft/gpl.html Freely available
under GPL
 */
/**
 * <i>Users</i> class
 *
 * This class contains a hard-coded list of user accounts
 * and the corresponding passwords. This is merely a development
 * stub and should be implemented with some sort of permanent
 * storage and security.
 *
 * @package WebServices
 * @subpackage Accounts
 * @see Authentication
 * @see Authentication_HardcodedAccounts
 * @author Dirk Merkel <dirk@waferthin.com>
 * @version 0.6
 * @since r15
 */
class Users
{
 /**
 * hard-coded user accounts
 *
 * @access private
 * @static

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[63]

 * @var array $accounts user name => password mapping
 */
 private static $accounts = array('dirk' => 'myPass',
 'albert' => 'einstein');

 /**
 * static validate method
 *
 * Given a user name and password, this method decides
 * whether the user has a valid account and whether
 * he/she supplied the correct password.
 *
 * @see Authentication_HardcodedAccounts::login()
 * @access public
 * @static
 * @param string $user account user name
 * @param string $password account password
 * @return boolean
 */
 public static function validate($user, $password)
 {
 return self::$accounts[$user] == $password;
 }

 /**
 * magic __call method
 *
 * This method only implements a magic validate method
 * where the second part of the method name is the user's
 * account name.
 *
 * @see Authentication_HardcodedAccounts::login()
 * @see validate()
 * @access public
 * @method boolean validate<user>() validate<user>(string
 $password) validate a user
 * @staticvar array $accounts used to validate users & passwords
 */
 public function __call($name, $arguments)
 {
 if (preg_match("/^validate(.*)$/", $name, $matches) &&
count($arguments) > 0) {
 return self::validate($matches[1], $arguments[0]);
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[64]

 }
}
?>

File project/index.php:

<?php
/**
 * Bootstrap file
 *
 * This is the form handler for the login application.
 * It expects a user name and password via _POST. If
 *
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @copyright Waferthin Web Works LLC
 * @license http://www.gnu.org/copyleft/gpl.html Freely available
under GPL
 * @version 0.7
 * @since r2
 */
/**
 * required class files and interfaces
 */
require_once('classes/Accountable.php');
require_once('classes/Authentication.php');
require_once('classes/Users.php');
require_once('classes/Authentication/HardcodedAccounts.php');

$authenticator = new Authentication_HardcodedAccounts();

// uncomment for testing
$_POST['user'] = 'dirk';
$_POST['password'] = 'myPass';

if (isset($_POST['user']) && isset($_POST['password'])) {

 $loginSucceeded = $authenticator->login($_POST['user'],
 $_POST['password']);

 if ($loginSucceeded === true) {
 echo "Congrats - you're in!\n";
 } else {
 echo "Uh-uh - try again!\n";
 }
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[65]

Since none of the functionality of the code has changed, we can skip that discussion
here. What has changed, however, is that we have added DocBlocks for each file,
class, interface, method, and property. Whereas the version of the project without
documentation had a total of 113 lines of code, the new version including DocBlocks
has 327 lines. The number of lines almost tripled! But don't be intimidated. Creating
DocBlocks doesn't take nearly as much time as coding. Once you are used to the
syntax, it becomes second nature. My estimate is that documenting takes about 10
to 20 percent of the time it takes to code. Moreover, there are tools to really speed
things up and help you with the syntax, such as a properly configured code editor
or IDE (see the chapter on Development Environment for more details).

Now let's see how phpDocumentor fared with the revised version of the project.
Here is the index page:

This time, the heading shows that we are looking at the Web Services package.
Furthermore, the classes and interfaces have been grouped by sub-packages in the
left-hand index column. Next, here is the documentation page for the Users class:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[66]

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[67]

As you can see, this documentation page is quite a bit more informative than the
earlier version. For starters, it has a description of what the class does. Similarly,
both methods have a description. All the tags and their content are listed and there
are helpful links to other parts of the documentation. And, from the method tag
we can actually tell that the magic method __call() was used to implement a
method of the form validate<user>($password). That is quite an improvement,
I would say!

To really appreciate how much more informative and practical the documentation
has become by adding DocBlocks, you really need to run through this example
yourself and browse through the resulting documentation.

phpDocumentor options
There are a good number of options when running phpDocumentor that affect
everything from where it looks for the code to parse, how to parse, what kind of
output to generate, and how to format it. All the options are available from both
the command line and the web-based interface.

Command line reference
Here is a listing of all command line options supported by phpDocumentor 1.4.2,
which is the version that was used while writing this chapter. The descriptions
are taken directly from the output produced by running phpdoc --help from the
command line and it is only reproduced here for the readers' convenience.

Short option Long option Description
-f --filename Name of file(s) to parse ',' file1,file2. Can

contain complete path and * ? wildcards
-d --directory Name of a directory(s) to parse

directory1,directory2
-ed --examplesdir Full path of the directory to look for

example files from @example tags
-tb --templatebase Base location of all templates for this parse.
-t --target Path where to save the generated files
-i --ignore File(s) that will be ignored, multiple

separated by ','. Wildcards * and ? are ok
-is --ignoresymlinks Ignore symlinks to other files or directories,

default is off
-it --ignore-tags Tags to ignore for this parse. @package, @

subpackage, @access and @ignore may
not be ignored

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[68]

Short option Long option Description
-dh --hidden Set equal to on (-dh on) to descend into

hidden directories (directories starting with
'.'), default is off

-q --quiet Do not display parsing/conversion messages
Useful for cron jobs on/off, default off

-ue --undocumentedelements Control whether or not warnings will be
shown for undocumented elements. Useful
for identifying classes and methods that
haven't yet been documented on/off
default off

-ti --title Title of generated documentation, default is
'Generated Documentation'

-h --help Show this help message
-c --useconfig Use a Config file in the users/ subdirectory

for all command-line options
-pp --parseprivate Parse @internal and elements marked

private with @access. Use on/off,
default off

-po --packageoutput Output documentation only for selected
packages. Use a comma-delimited list

-dn --defaultpackagename Name to use for the default package. If not
specified, uses 'default'

-dc --defaultcategoryname Name to use for the default category. If not
specified, uses 'default'

-o --output Output information to use separated by ','.
Format: output:converter:templatedir like
"HTML:frames:phpedit"

-cp --converterparams Dynamic parameters for a converter,
separate values with commas

-ct --customtags Custom tags, will be recognized and put in
tags[] instead of unknowntags[]

-s --sourcecode Generate highlighted sourcecode for every
parsed file (PHP 4.3.0+ only) on/off,
default off

-j --javadocdesc JavaDoc-compliant description parsing. Use
on/off, default off (more flexibility)

-p --pear Parse a PEAR-style repository (package is
directory, _members are @access private)
on/off, default off

-ric --readmeinstallchangelog Specify custom filenames to parse like
README, INSTALL, or CHANGELOG files

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[69]

Config files
Rather than having to specify all options you want on the command line each time
you run generate documentation, phpDocumentor supports config files. You can
put all your command line switches in one config file and then conveniently tell the
phpdoc executable to use the config file. Here is a config file that has all the same
options that we used in the above example:

;; phpDocumentor parse configuration file
;;
;; interface will automatically generate a list of .ini files that can
be used.
;;
;; project_phpdoc_config.ini is used to generate the documentation
;; for the sample project in the chapter on phpDocumentor
;;
;; Copyright 2009, Dirk Merkel <dirk@waferthin.com>

[Parse Data]
;; title of all the documentation
;; legal values: any string
title = Generated Documentation - No DocBlocks

;; comma-separated list of directories to parse
;; legal values: directory paths separated by commas
directory = /Users/dirk/php/project

;; where should the documentation be written?
;; legal values: a legal path
target = /Users/dirk/php/project/docs

;; turn this option on if you want highlighted source code for every
file
;; legal values: on/off
sourcecode = on

To use the config file from the command line, simply type:

phpdoc –c /Users/dirk/php/project/project_phpdoc_config.ini

For additional examples of user-defined config files, consult the user/ directory
of your phpDocumentor installation.

There is also a system-wide default config file called phpDocumentor.ini that can
be found in the top level of the phpDocumentor installation directory. It contains
some additional options that are not accessible from the command line, such as
toggling debug mode, which file extensions to parse, and so on.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[70]

Browser-based interface
You may remember from the installation, phpDocumentor includes a browser-based
interface that gives you the same options as the command line. However, you get
the added convenience of a tabbed interface that lets you easily explore the available
options without having to consult the help section. Of course, you can also select
your custom config file from this interface just as you did from the command line.

Here is an example of the browser-based interface while processing the
documentation for our sample project:

One of the 'gotchas' of working with the browser-based interface is that you must
have all permissions properly set up. For example, if your project is residing in a
directory outside your web server's DocumentRoot, phpDocumentor might not be
able to read the files. Also, if the template you are using to format the output comes
with one or more stylesheets that need to be copied to the output directory, your web
server and/or PHP will need the necessary permissions.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[71]

Tag reference
This section contains an alphabetical listing of all tags supported by phpDocumentor
by default. For each tag, we list the name and indicate whether it can or should be
used in any of the four different contexts: file, class, method, and property. Each
tag listing also comes with an example and a comments section that point out any
botches. Lastly, tags are separated into standard and inline tags.

Standard tags
Standard tags are used to describe and document specific characteristics code
immediately following the DocBlock. For example, you can specify where in the
package hierarchy a class falls (using @package and @subpackage tags), link to
a different section of the documentation (using the @link tag), or track a version
number for a given method (using the @version tag).

For phpDocumentor to recognize a tag, it has to be the first thing on the line after the
asterisk ("*") and of course it has to be one of the tags phpDocumentor recognizes.

@access

Name: File: Class: Method: Property:
@access (public|protected|private) [x] [x] x x
Example(s):

/**
 * @access private
 */
$myProp = null;
…
/**
 * @access protected
 */
protected function sortEntries() {}

Comments:

Possible values for the access tag are public, private, and private. By default, elements with
access level private will not be documented. To turn off this behavior, use the command
line switch ?parseprivate. A PDERROR_PARSEPRIVATE warning will be generated if the
@access tag is set to private in a file-level DockBlock because it will result in the while file
being omitted from documentation.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[72]

@author

Name: File: Class: Method: Property:
@author author_name [<email>] x x [x] [x]
Example(s):
/**
 * @author Dirk Merkel <dirk@waferthin.com>
 */
class WorldDomination { }

Comments:
phpDocumentor will try to parse any content between < and > to see whether it is a valid
e-mail address. If so, it will be displayed as a mailto link in documentation output that
supports it.

@category

Name: File: Class: Method: Property:
@category category_name [x]
Example(s):
/**
 * @package REST API
 * @category Web Services
 */

Comments:
Packages are grouped into categories. As of phpDocumentor version 1.4.2, this tag will be
ignored by all default converters other than the XMLDocBook one.

@copyright

Name: File: Class: Method: Property:
@copyright [copyright holder info] x [x] [x]
Example(s):
/**
 * @copyright Copyright © Waferthin
 */

Comments:
Most of the time, this tag will be used in file-level DocBlocks. In rare occasions, you might
want document copyright to a particular class or even method. For example, if you are
using a copyrighted algorithm or are reusing another entity's code.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[73]

@deprecated

Name: File: Class: Method: Property:
@deprecated [info string] x x x
Example(s):
/**
 * @deprecated superseded by class UltimateWorldDomination

 */
class WorldDomination { }

Comments:
Although the functionality is still supported by the code, you can use the deprecated
phpDoc tag to let developers know that they should no longer use the respective element.

@example

Name: File: Class: Method: Property:
@example file_path "link text" [x] [x] [x]
Example(s):

/**

 * @example http://www.waferthin.com/examples/proper_markup.php
Example of proper markup usage
 * @example xmpls/config.php configuration file illustrated
 */
public function parseConfig() { }

Comments:
The example tag retrieves, parses, and creates a link to an external example file. The file
URL scheme is compatible with fopen(), which means you can retrieve remote files as
well as local ones. phpDocumentor will add line numbers and syntax highlighting to the
retrieved file. For relative paths, phpDocumentor will look in directories specified via
the --ed or --examplesdir command line switches, but it will look for an examples
directory in the top-level parsing directory by default.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[74]

@filesource

Name: File: Class: Method: Property:
@filesource [x]
Example(s):

/**
 * @filesource
 */
class { }

Comments:
When the documentation gets created for the file containing the @filesource tag,
it will include a link to the syntax-highlighted source code of the file containing the tag.
@filesource can only be used in file-level DocBlocks.

@global

Name: File: Class: Method: Property:
Usage 1: @global data_type $variable_name

Usage 2: @global variable_name [description]

[x]

[x]
Example(s):

/**
 * Usage 1: Documenting declaration of a global variable
 * @global array $HTML_COLORS
 */
$HTML_COLORS = array('#ffffff' => 'white',
 '#ff0000' => 'red'
 '#000000' => 'black');
/**
 * Usage 2: Documenting use of a global variable in a method
 * @global HTML_COLORS lookup for HTML color representations
 */
public function outputHtml()
{
 global $HTML_COLORS;
}

Comments:
Usage 1: This tag is used to document the declaration of global variables (see @name tag to
change the name of the global variable for display purposes).

Usage 2: Use @global to document the use of a global variable in a function or method.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[75]

@ignore

Name: File: Class: Method: Property:
@ignore [x] [x] [x] [x]
Example(s):
/**
 * @ignore
 */
const('TIME_ZONE', 'local');

Comments:
Prevents the element immediately following the @ignore tag from being documented. For
example, you might have a class that handles encryption. The encryption algorithm might
need to be seeded and for good measure you are including a salt (a pseudo-random string).
Naturally, you might not want that salt publicized in your documentation because it would
compromise the strength of your encryption implementation. Simply put the @ignore tag
before the line where you declare the variable holding the salt and it will not appear in your
projects documentation.

@internal
Name: File: Class: Method: Property:
@internal [x] [x] [x] [x]
Example(s):
/**
 * @internal
 */
public function applySecretFormula() { }

Comments:
The @internal tag prevents the corresponding element from being included in the
documentation unless the --pp / --parseprivate command line switch is being used.
This has the same effect as setting the @access tag to private and serves the purpose of
creating documentation for different audiences.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[76]

@license

Name: File: Class: Method: Property:
@license license_text_url [link text] [x] [x] [x]
Example(s):
/**
 * @license http://waferthin.com/gpl.txt available under GPL
 */
class AesEncryption { }

Comments:
This tag creates a hyperlink to an external file that contains the text of the license under
which the corresponding element is available.

@link

Name: File: Class: Method: Property:
@link external_url [link text] [x] [x] [x] [x]
Example(s):
/**
 * @link http://www.w3.org/TR/xhtml1/ W3C XHTML Standard
 */
public function textToXhtml($text = '') { }

Comments:
Although this tag supports internal inks, it is primarily intended for linking to external
resources. For internal links refer to @see and {@link}.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[77]

@method

Name: File: Class: Method: Property:
@method return_type method_name(type $arg1[
= val1], type $arg2[= val2], …) [description]

[x]

Example(s):
/**
 * @method array mix(Array array1 = array(), Array array2 = array())
joins and randomizes two arrays
 */

Comments:
This is an extremely useful tag for any developer who takes advantage of PHP's magic
methods. Since even reflection cannot know about methods the developer creates using
the __call() magic method, one can use the @method tag to document any magic
methods provided by the class. Any method documented this way will be listed on the
class-level documentation.

@name

Name: File: Class: Method: Property:
@name $var_name [x]
Example(s):
/**
 * @name $colors
 * @global array
 */
$HTML_COLORS = array('#ffffff' => 'white',
 '#ff0000' => 'red'
 '#000000' => 'black');

Comments:
Creates an alias for a global variable for documentation purposes (also see @global tag).

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[78]

@package

Name: File: Class: Method: Property:
@package package_name x x
Example(s):
/**
 * File-level package tag
 * @package Authentication_API
 */
/**
 * Class-level package tag (needed because it is not inherited!!!)
 * @package Authentication_API
 */
class ResultSet { }

Comments:
This tag defines a logical grouping of elements within the documentation. A file-level
@package tag will apply to all elements within that file; however, package membership
of classes will be default unless explicitly set for the class itself. This is true even if the
file-level package tag has been set! The only exception is that sub-classes inherit their
parent class's package membership.

@property

Name: File: Class: Method: Property:
@property data_type $var_name [description]
@property-read datatype $varname [description]
@property-write datatype $varname [description]

[x]
[x]
[x]

Example(s):
/**
 * @property string $greeting greeting to user upon login
 */
class Login
{
 private $greeting = 'Hello, Stranger!';

 public function __get($property)
 {
 if ($property == 'greeting') {
 return $this->greeting;
 }
 }
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[79]

Comments:
The @property tag documents "magic" properties made available by a class's __get() and
__set() methods. In contrast the @property-read and @property-write tags
are used to document magic properties that are readable or writable only, respectively.

@return

Name: File: Class: Method: Property:
@return data_type x
Example(s):
/**
 * @return int
 */

Comments:
This tag indicates the data type of the return value of the method. Valid data types are
native PHP data types (int, string, and so on), array, class names, null, and nothing (void).
It is possible to list multiple possible data types separated by the pipe character ("|"):
array|string.

@see

Name: File: Class: Method: Property:
Usage 1: @see [ClassName::]methodName()
Usage 2: @see [ClassName::]$property_name
Usage 3: @see php_function_name

[x]
[x]
[x]

[x]
[x]
[x]

[x]
[x]
[x]

[x]
[x]
[x]

Example(s):
/**
 * Usage 1: link to documentation of method in another class
 * @see DbConnection::connect()
 * Usage 2: link to a property in this class
 * @see $greeting
 * Usage 3: link to a PHP built-in function
 * @see mysql_connect()

Comments:
This tag allows you to link to other sections of your documentation. This tag is very
important because it allows readers of your documentation to follow a logical flow. In a
sense it is as empowering to documentation as hyperlinks are to the Web in general. You
can specify names of classes and the properties and methods inside those classes. The string
'::' is used to separated class name from property/methods name. Use @link, @inline,
or {@link} for creating hyperlinks to external resources.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[80]

@since

Name: File: Class: Method: Property:
@since [version_info] x x [x] [x]
Example(s):
/**
 * @since r0.9.2
 */

Comments:
This tag is used to indicate at which revision or version of the software this element was
added. The version info string can identify the revision/version within your source code
control system or it can be the official release of the software in which the element was first
available to the users.

@static

Name: File: Class: Method: Property:
@static [x] [x]
Example(s):
/**
 * @static
 */
public static function proprietaryEncode() { }

Comments:
This tag is used to document static properties and methods.

@staticvar

Name: File: Class: Method: Property:
@staticvar data_type [description] [x]
Example(s):
/**
 * @staticvar bool determines whether this object needs updating
 */
public function checkState()
{
 if (self::current === false) {
 echo "Update me!";
 }
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[81]

Comments:
This tag is used to indicate when a method uses a static property.

@subpackage

Name: File: Class: Method: Property:
@subpackage [x] [x]
Example(s):

/**
 * @package World_Domination
 * @subpackage Conquer_Europe
 */
class Attack { }

Comments:
This tag is used to further organize the files and classes in your documentation by assigning
them to sub-packages. The @subpackage tag cannot be used without the @package tag in
the same DocBlock.

@todo

Name: File: Class: Method: Property:
@todo description [x] [x] [x] [x]
Example(s):

/**
 * @todo refactor to improve performance
 */
public function sortComplexData() { }

Comments:
This tag is used to leave a note for the developer(s) to implement future changes
or enhancements.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[82]

@tutorial

Name: File: Class: Method: Property:
@tutorial tutorial_name [x] [x]
Example(s):
/**
 * @package Killer_App
 * @tutorial Killer_App.pkg
 */
class AwesomeFeature { }

Comments:
This tag links to tutorials defined within your documentation. Tutorials follow certain
naming conventions and are written in DocBook syntax. See the section on phpDocumentor
tutorials for more information. To create a hyperlink to external resources, use the @see,
@link, or inline {@link} tags instead.

@uses

Name: File: Class: Method: Property:
@uses [ClassName::]methodName() description [x] [x] [x] [x]
Example(s):
/**
 * @uses Utility::secretAlgorithm() seeds algorithm with special salt
 */
class Shuffle { }

Comments:
This tag behaves exactly like the @see tag with two differences. First, a reciprocal @usedby
tag in the DocBlock of the element that is being pointed to. Second, unlike @see, @uses
takes a description.

@var

Name: File: Class: Method: Property:
@var data_type [description] [x]
Example(s):

/**
 * @var string full user name for logging purposes
 */
$uname = 'Dirk Merkel';

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[83]

Comments:
This tag is used to document the data type of variables and properties. It also takes an
optional description that can be used to elaborate on the content and/or use of the property.

@version

Name: File: Class: Method: Property:
@version version_string [x] [x] [x]
Example(s):

/**
 * @version v2.3b – prerelease candidate
 */

Comments:
You can use this tag to record your own versioning. A common use if this tag is to put
a placeholder that will automatically be replaced by the version control system's revision
or version number upon committing the change (see the chapter on source code control
for more detail).

Inline tags
Inline tags differ from standard text in that they can occur anywhere within the text
of the short or long description of a DocBlock. To properly differentiate inline tags
from the description, their syntax differs a bit from standard tags in that they are
enclosed by curly brackets. When parsed by phpDocumentor and rendered by the
desired converter, these tags are replaced by content that is being placed inline with
the rest of the text.

In addition to DocBlock descriptions, inline tags can be used in tutorials. There are a
total of six inline tags, four of which can be used in DocBlocks and a different set of
four can be used in tutorials.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[84]

{@Example}

Name: File: Class: Method: Property:
{@example start_line end_line} [x] [x] [x]
Context: DocBlock: Tutorial:

 [x]
Example(s):
/**
 * Authentication login method
 *
 * Before being able to access the web services API,
 * a client has to authenticate via this login method.
 * Simplified client code might look like this:
 * {@example examples/login.php 0 15}
 */
public function login($login, $password) { }

Comments:
The inline {@example} tag behaves very much like the standard @example tag in that it
retrieves, parses, and displays all or part of a source code file with highlighted syntax. See
the description of the @example tag for details on which files are compatible and how to
reference them.

The differences from the standard @example tag is that the referenced source code will
be displayed inline and that it is possible to limit the listing by start and end line number
within the file.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[85]

{@id}

Name: File: Class: Method: Property:
{@id section_name}
Context: DocBlock: Tutorial:

 [x]
Example(s):

// in DocBook tutorial
...
<refentry id="{@id my_main_section}">
 ...
 <refsect1 id="{@id main_argument}">
 ...
 </refsect1>
<refentry>
...

// tutorial tag
/**
 * @tutorial WebServices.Authentication.Login.cls.main_section.
main_argument
 */

Comments:
When using a @tutorial tag to link to a particular tutorial, it is possible to directly link to
specific sections within the referenced document. The {@id} tag allows one to assign the
desired section an identifier that can be used in the link. The general structure of building a
link to a sub-section of a tutorial looks like this:

package.package_name[.sub-package_name].file[.section_name].
[sub-section_name]

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[86]

{@internal}}

Name: File: Class: Method: Property:
{@internal}} [x] [x] [x] [x]
Context: DocBlock: Tutorial:

[x]
Example(s):
/**
 * Web Services Authentication
 *
 * Use this class and its methods to obtain an authentication
 * token that will be used during the session. {@internal This
 * must be discussed with the architectural committee. See
 * our {@link http://massivecorp.com/gl.html Massive Corp
 * Development Guidelines}.}}
 */
class Authentication { }

Comments:
Analogous to the standard @internal tag, the inline {@internal}} tag prevents the
corresponding content from being included in the documentation unless the --pp /
--parseprivate command line switch is being used. This has the same effect as setting
the @access tag to private and serves the purpose of creating documentation for different
audiences.

Note: This tag ends in two closing curly brackets, which is necessary because itself can
contain inline tags.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[87]

{@inheritdoc}

Name: File: Class: Method: Property:
{@inheritdoc} [x]
Context: DocBlock: Tutorial:

[x]
Example(s):

/**
 * Login User
 *
 * This class handles authentication to obtain a
 * session token.
 */
class Authentication { }
...
/**
 * Login User w/ SecureID
 *
 * {@inheritdoc} Specifically, the user will have to supply
 * a SecureID token during login.
 */
class SecureIdAuthentication extends Authentication { }

Comments:
By default, child classes will inherit certain tags and comments from the parent class they
are extending. Specifically, the following will be inherited: @author tag, @version tag,
@copyright tag, and long description. This is only true if the child class isn't explicitly
setting the tags and description. Using the {@inheritdoc} provides the developer the
flexibility of deciding where to put the inherited comments.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[88]

{@link}

Name: File: Class: Method: Property:
{@link external_url [link text]} [x] [x] [x] [x]
Context: DocBlock: Tutorial:

[x] [x]
Example(s):
/**
 * This class handles authentication using Secured tokens.
 * For more details on SecureID, you can consult
 * the {@link http://en.wikipedia.org/wiki/SecurID the SecureID
 * article on Wikipedia}.
 */
class SecureIdAuthentication { }

Comments:
Analogous to the standard @link tag, the inline {@link} tag creates a hyperlink to an
external documentation source or reference document (see @link for details).

{@source}

Name: File: Class: Method: Property:
{@source [start_line] [end_line]} [x] [x] [x]
Context: DocBlock: Tutorial:

[x]
Example(s):
/**
 * Authentication Method
 *
 * This method is to be called from the client before
 * it can make any other API call. All the heavy lifting
 * is being done by this try-catch block: {@source 10 17}
 * This is where we're calling the internal authentication
 * server.
 */
public function authenticate($login, $password)
{
 $success = false;

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[89]

 if (empty($login) || empty($password)) {
 throw new Exception("login and password cannot be blank!");
 } else {

 // the next 8 lines will be included in the DocBlock
 try {
 if ($this->authentServer->isLoginValid($login, $password))
{
 $success = true;
 }
 } catch (Exception $e) {
 $this->logger->log("Error: " . $e->message);
 }
 }
 return $success;
}

Comments:
The inline {@source} will insert the source code of the element being documented in its
place. The optional parameters of start and end line number will limit the listing to the
corresponding lines. The first line of the documented element is considered line 1. Omitting
the ending line number will list the element's source code from the starting line to the end of
the listing.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[90]

{@toc}

Name: File: Class: Method: Property:
{@toc}
Context: DocBlock: Tutorial:

[x]
Example(s):

// in DocBook tutorial
...
<refentry id="{@id my_main_section}">
 {@toc}
 ...
 <refsect1 id="{@id main_argument}">
 ...
 </refsect1>
<refentry>
...

// tutorial tag
/**
 * @tutorial WebServices.Authentication.Login.cls.main_section.main_
argument
 */

Comments:
In a tutorial, inline {@id} tags can be used as anchors for links (see {@id} tag). The inline
{@toc} tag creates a table of contents from all {@id} tags. The {@toc} tag typically occurs
within the opening and closing refentry DocBook tag.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 2

[91]

{@tutorial}

Name: File: Class: Method: Property:
{@tutorial } [x] [x]
Context: DocBlock: Tutorial:

[x] [x]
Example(s):

/**
 * Use this class to authenticate.
 * For more details take a look at this
 * tutorial: {@tutorial MyApp/Authenticate/Authenticate.cls}

 */
class Authenticate { }

Comments:
The inline {@tutorial} displays a link to a tutorial. See the section on tutorials on how to
properly reference and name a tutorial.

PHP4 elements
There are two standard tags that can only be used in PHP4 because they are named
after reserved keywords in PHP5 and greater: @abstract and @final. I find these
two tags nearly useless, as they merely document how the element should behave,
not how it actually behaves. In other words, you can say that a method should
be final, but you cannot actually declare it final because the keyword and the
corresponding concept do not exist in PHP4.

Although you should be aware that these two tags exist, I recommend against
using them.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Documentation with phpDocumentor

[92]

Custom tags
Custom tags are surprisingly easy to implement. There is no need to extend or
overwrite any classes. As a matter of fact, unless you have somewhat unusual
requirements, all it takes is a command-line option. Say you find a need to add a
tag to indicate the date on which the last peer review of the source occurred and the
name of person that performed it. You could start using a @sourcereviewdate tag:

/**
 * This class is absolutely critical to the survival
 * and success or our application.
 *
 * @author Dirk Merkel <dirk@waferthin.com>
 * @package WebServices
 * @sourcereview 03-15-2009 by Kimba Merkel
 */
class SuperSecretAlgorithm
{
}

Now all you have to do for phpDocumentor to recognize the new tag is to include
this option on the command line: --customtags sourcereview. Alternatively, you
can define your custom tag(s) in your own config file.

Summary
If the example in this chapter did not sell you on the benefits of documenting
your code using the phpDoc syntax, you only need to take a look at the API
documentation of some of the biggest PHP projects out there, such as Zend
Framework and Pear. There is a reason that this method of documenting source code
has been around for over ten years. Programmers quickly get the big picture of how
the various components come together. Moreover, it also allows them to drill down
to the granular level of parameters, return values, and so on.

If you are not in the habit of commenting your code, I suggest you start slowly.
Rather than documenting every single element, start with file and class-level
DocBlocks. I suspect that you will quickly get used to creating documentation at
the same time as code – especially when you see the results in the form of detailed
and useful documentation. Hopefully, you will feel encouraged enough to start
documenting more elements and produce documentation that any programmer
that might come across your code can benefit from.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated
Development Environment

My first PHP script was typed in an HTML editor that was eventually discontinued
eight years ago. There was no syntax coloring or auto-completion feature. But,
don't worry; this isn't going to turn into one of those when-I-was-your-age kind of
stories. I'm merely trying to make the point that PHP development environments
have come a long way. There is a lot that properly configured modern development
tools can do for you. There are tools for writing code faster, such as auto-completion,
built-in reference, and templates. There are tools to make fixing code faster, such as
advanced debuggers and automated refactoring tools.

An editing tool is one of those basic tools in your tool chest that you just can't do
without. It follows you from task to task. Whether you're writing code, editing a
plain text configuration file, or designing an XML format for exchanging data with
one of your customers, chances are that you do all that in your favorite editor. If you
have become proficient at using one particular editor, you will most likely be sticking
with it for a long time. In my case, vi editing commands have become second nature
to me a long time ago. (If you don't know, vi is a console-based text editor you will
find on most Unix/Linux operating systems). When in a bind, I'm always likely to
access a server directly to quickly correct a critical bug in vi. However, I would be
a fool not to expand my horizons and leverage some of the amazing tools that are
available now.

Don't get me wrong—I know that you can get syntax coloring and PHP debugging
support in vi. Nevertheless, you can harness a lot more power by learning one of
the Integrated Development Environments (IDEs) that have matured over the last
few years.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[94]

In this chapter, I want to take a close look at one of those IDEs, namely Eclipse with
the PDT plugin. We haven't even gotten beyond the first page of this chapter and
I can already hear the objections: "… but what about <insert_favorite_ide_here>?
I know many developers that swear by it!"

I realize that Eclipse isn't the only game in town, but there are some compelling
reasons to take a close look at what it has to offer, not the least of which is the fact
that we cannot look at all the offerings. After all, PHP has become a pretty popular
language and there are quite a few options when assembling your tool chest. Also,
you should keep in mind that many of the concepts covered in this chapter translate
across development environments. For example, any IDE that supports debugging
is likely to give you a way of manipulating breakpoints, inspecting variables, and
viewing stack traces. Even if you decide not to use Eclipse, you can probably benefit
from knowing about its benefits. At the very least, it might help to convince you to
invest the time to learn an IDE if you haven't done so already. Here is a list of the
topics we will be covering in this chapter:

•	 Introducing and installing Eclipse with PDT
•	 Basic Eclipse concepts, such as workspaces, views, and perspectives
•	 Creating a sample project
•	 Understanding and using features of the editor, including syntax

highlighting, code assist, code folding, marking occurrences, overriding
indicators, and navigating types, methods, and resources

•	 Inspecting projects, files, and libraries
•	 Interactive visual debugging
•	 Setting of preferences to customize the Eclipse
•	 Eclipse's plugin architecture and useful plugins environment
•	 Additional features offered by Zend's commercial Zend Studio for Eclipse

Why Eclipse?
Eclipse grew out of technology and concepts at IBM. Prior to being announced as
an open source project in 2001, it already had several years of development and
evolution under its belt. Since then, thousands of developers have contributed and
continue to contribute to the project. This means that many of the core concepts and
implementations of Eclipse are quite mature. Moreover, the project was put into the
hands of a newly formed not-for-profit foundation in 2004. In other words, Eclipse
is here to stay and is unlikely to disappear overnight like some software projects.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[95]

Another advantage of using Eclipse is that it has found wide acceptance. No matter
whether you are doing development in PHP, Java, Perl, or C++, there is a community
of users and developers ready to lend a hand if you need support. As we will see
shortly, efforts to make Eclipse a strong tool for PHP development are backed and
driven by Zend—probably the biggest commercial name in PHP.

Eclipse is not so much a development environment itself as it is the foundation for
building such tools. It provides all the basic tools that are common across the various
offerings to leverage this strong underpinning. For example, Eclipse provides a
framework for accessing and manipulating data called the "Data Tools Platform"
but it makes few assumptions on the underlying storage and provides no specific
support for particular vendors. Other developers can use that framework to build
more specific tools. The real benefit here is extensibility and reusability. Since Eclipse
depends on additional software to really shine, it comes as no surprise that it has a
strong and easy to use plugin architecture. It is very straightforward to locate and
install plugins that add completely new functionality to your installation of Eclipse.
In addition, the mechanism for keeping all those plugins up-to-date is also built right
into Eclipse itself.

Last, but not least, on our list of reasons to consider Eclipse as an IDE for PHP
development is that it is open source. This point is certainly debatable. There is
nothing wrong with commercial software. After all, I would expect that the audience
for this book, including myself, is looking to get paid for PHP development on
some level. Nevertheless, I put a lot of faith in the open source movement. Most of
the tools I use are open source even though most of the development I get paid for
is sold under some kind of commercial license. However, I still make an effort to
contribute to open source projects and often release code from my personal projects
under free licenses.

In order to present a balanced view, I think it would be only fair to also consider
some of the criticisms that have been leveraged against the Eclipse project. Some of
these apply to Eclipse in general; others only apply when viewing Eclipse as a tool
for PHP development.

It is no secret that Eclipse's resource requirements are quite high. It is a huge
application and gets only bigger as you continue to add plugins. Also, you might
get frustrated with its slow response times if you don't give Eclipse plenty of RAM
to do its thing. This is no lightweight text editor that you can launch in the blink of
an eye. Eclipse is a serious application and there is a lot going on behind the scenes
at any given time. In other words, if you've been eyeing that cute little net book with
the seven-inch screen that is oh-so-portable, you might want to consider that it is not
the right vehicle for PHP development using Eclipse. It is akin to a high-performance
engine requiring premium fuel. You can drive it with standard gas, but it won't be
the same.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[96]

Another issue to consider is the learning curve you will have to conquer to really
become productive in Eclipse. Yes, it has a graphical user interface, but that doesn't
mean that you will automatically know how to do what you want or even everything
that is possible. There is no way around investing some time in learning Eclipse.
Luckily, you don't have to do it all at once. I believe that reading this chapter will
give you a solid head start on knowing how to develop PHP applications in Eclipse.
The rest you will pick up automatically as you continue to explore Eclipse and the
world of PHP in general.

Introducing PDT
PDT is an acronym for PHP Development Tool. In accordance with Eclipse's
approach to extensibility, PDT is installed and updated as a plugin. PDT provides
basic functionality for developing PHP applications in an integrated environment.
Primarily, PDT provides the developer with tools to perform the three tasks of
editing, inspecting, and debugging source code. We will explore each of these
high-level features throughout this chapter.

Installing Eclipse
When it comes to installing Eclipse, you basically have two options. First, you can
download one of the standard Eclipse packages and install PDT along with several
other plugins. Second, you can download a PHP all-in-one and then use that as a
starting point for installing the remaining plugins. Either way, you will be installing
several plugins to extend the functionality of Eclipse.

The right approach for you depends on whether you will be using Eclipse for
development in other languages. If so, my recommendation is to start with a
standard Eclipse package and to install PDT and other plugins via Eclipse's built-in
software installation and update feature. It will be a good exercise in configuring
Eclipse and keeping it up-to-date. Otherwise, assuming that you will be using
Eclipse for PHP only, you are best served by download the all-in-one package for
PHP devlopers.

Requirements
All of the packages are available for Windows, Mac OS X, and both 32bit and 64bit
versions of Linux. Nevertheless, there are some additional requirements. First
and foremost, you will need a Java Runtime Environment (JRE). The Eclipse site
recommends Java 5 JRE. Yes, Eclipse is a Java program and requires Java to run. This
has nothing to do with the fact that we will be developing PHP code. However, it
does bring us to our next requirement. Actually, it is more of a recommendation than

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[97]

a requirement. Eclipse is known to be many things, but speedy is not one of them.
Even if you ignore the debatable issue of performance of UI-based Java applications,
Eclipse is a behemoth of an application. It requires significant RAM, CPU, and disk
space. The latter is not much of an issue anymore these days. But, your development
machine should have plenty of RAM and extra processing cycles so as not to leave
you frustrated when using Eclipse.

Another recommendation I would like to make is to use at least a 20-inch display.
The PHP development and debugging perspectives divide the main window into
up to six or seven panes that all hold different information. Take as an example the
screenshot, which shows Eclipse while editing the code for this chapter. The code
editor in the center of the window is surrounded by panes, such as a hierarchical
directory and file listing or your project(s) ("PHP Explorer"), a hierarchical outline
of the resources defined by your project, such as constants, functions, and classes
("PHP Project Outline"), a structural outline of the currently viewed file ("Outline"),
a pane for looking up PHP built-in functions ("PHP Functions"), and a pane
displaying the syntactical errors Eclipse has detected ("Problems"), and so on.
You get the picture.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[98]

Again, since Eclipse is so customizable, you can change the layout and get rid of
some panes and tabs to accommodate a smaller screen. But, in my opinion, you
would be compromising away some of the features that make Eclipse so powerful.
You will be hard-pressed to run Eclipse effectively on a 7-inch netbook, but that
doesn't mean you might have to sometimes. The answer is to design your own
perspective that only contains the absolute essentials you can fit on a small screen.
When you are back to using a bigger display, you can switch back to the more
full-featured perspective.

Choosing a package
Eclipse is incredibly extensible. Aside from adding numerous plugins to enable
functionality in Eclipse, you can start out with a pre-configured Eclipse package.
There are several packages available from the Eclipse download page. For the
version that is current as of this writing, which is 3.5.1, these are the available options:

•	 Eclipse IDE for Java EE Developers (188 MB)
•	 Eclipse IDE for Java Developers (91 MB)
•	 Eclipse for PHP Developers (137 MB)
•	 Eclipse IDE for C/C++ Developers (78 MB)
•	 Eclipse for RCP/Plugin Developers (182 MB)
•	 Eclipse Modeling Tools (includes Incubating components) (366 MB)
•	 Eclipse IDE for Java and Report Developers (218 MB)
•	 Pulsar for Mobile Java Developers (112 MB)
•	 Eclipse SOA Platform for Java and SOA Developers (136 MB)
•	 Eclipse Classic 3.5.1 (161 MB)

If you are going to be doing Java development in Eclipse as well, you should
download one of the two Java-centric packages at the beginning of the list. However,
if you are going to be focusing on the much more enjoyable world of PHP, you should
start with the "Eclipse for PHP Developers" package. Since none of the packages
available from the eclipse.org site come with all the PHP goodies, you will have
to add those no matter which package you download.

Eclipse IDE download page: http://www.eclipse.org/downloads/

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[99]

After downloading the chosen package, simply uncompress the archive and move
the resulting folder to its final destination. Eclipse is pretty self-contained and does
not require an installer or a lot of external preferences files.

Adding the PDT plugin
If you have chosen to start with the "Eclipse for PHP Developers" package, you
can skip this section because you already have everything you need to get started
exploring Eclipse and PDT. However, keep reading if you started with one of the
non PHP-centric packages or you already have Eclipse installed from working
with another programming language.

Similar to Eclipse itself, you have two installation options for adding the PHP
Development Tools (PDT) plugin to your Eclipse installation. First, you can
download an archive of the plugin, extract it and put it into the "plugins"
directory inside your Eclipse folder.

However, I recommend the second way of installing PDT, which is via Eclipse's
built-in installer. After starting up Eclipse, select the Help | Software Updates menu
option. If not already selected, switch to the Available Software tab. You should see
a list of all sites from which Eclipse knows to get new software or updates to installed
components. Assuming that they are the sites that we need to install PDT, you should
go ahead and click the Add Site … button to add each of these sites in turn:

•	 http://download.eclipse.org/technology/dltk/updates-dev/1.0/

•	 http://download.eclipse.org/tools/pdt/updates/2.0/

•	 http://download.eclipse.org/releases/galileo/

The first link will get you access to the Dynamic Languages Tool, which is a
prerequisite for PDT. The second link is for PDT itself. And, the third link is
an Eclipse update site. The last site may already be in your list.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[100]

Once you expand the PDT site by clicking on the little error next to its name, you can
select either the PDT SDK Feature. Once you click the Install button, Eclipse will do
some checking and prompt you to install the required dependencies as well. After
accepting the respective licenses, Eclipse is off downloading and installing the plugins.
Although not strictly required, it is a good idea to restart Eclipse after the installation.

Now that you know how to install Eclipse plugins, take a look at the listing at the
end of this chapter for additional plugins you might want to install.

Basic Eclipse concepts
Eclipse uses certain concepts in constructing a user interface. Getting the definition of
those basic concepts out of the way, will make the following discussion much easier.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[101]

Workspace
On a physical level, your workspace is based on a folder or directory in which
you keep your projects. It also includes all external files and resources that Eclipse
knows about. However, a workspace is much more than a collection of files. It also
represents the relationships between the files, objects, and actions you can take on
them. You can think of the workspace as everything there is, but not necessarily all
you can see at any given moment.

You can have any number of workspaces. For example, you might have a workspace
for PHP projects and another for Java projects. Although, there is no requirement
that you cannot keep projects with a variety of underlying technologies in the same
workspace. Another reason to keep distinct workspaces might be to separate work
projects from personal ones. I for one, have four different workspaces right now; one
for work, a second one for work because a legacy project required a specific home
directory for compiling it, a third one for private projects, and a separate fourth
workspace for projects related to this book.

Switching between workspaces is easy; simply select the File | Switch Workspace
| Other … menu option if you are opening or starting a new workspace. Otherwise,
if you are switching to a workspace you have used before, Eclipse probably
remembered it and put the option in the Switch Workspace submenu for you to
select directly. Here is a screenshot of a typical PHP workspace in the process of
switching to another workspace:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[102]

Eclipse keeps workspace related information in a folder named .metadata in your
workspace directory. There is quite a bit of information stored in that directory and
there have been reports of the amount or nature of that data impacting the stability
of Eclipse. For example, all actions related to installing, uninstalling, upgrading, and
downgrading of plugins will be tracked meticulously in the .metadata directory.
Luckily, there is an option to launch Eclipse with the -clean command-line
argument to perform some household maintenance on that directory. After that,
Eclipse often becomes more stable again. This is how the Eclipse documentation
describes the –clean command-line option:

Cleans cached data used by the OSGi framework and Eclipse runtime. Try to run
Eclipse once with this option if you observe startup errors after install, update, or
using a shared configuration.

Following is a screenshot of me launching Eclipse with the –clean option from the
command line. Note that on my operating system, the eclipse binary is hidden
inside some directories inside the Eclipse.app directory. If you are on Windows or
Linux, you can run the –clean option on the binary directly.

The above command line will start Eclipse while cleaning various plugin related data
that has been cached on disk.

Views
Views are typically windows, screens, or tabs that allow you to interact with one
particular aspect of your workspace. For example, there are views to show object
hierarchies, display console output, interact with databases, and so on. Eclipse
comes with a couple of built-in views that are likely to be useful no matter what
kind of development you might be doing, such as an internal web browser and
navigator to display the hierarchical structure of your project files on the hard disk.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[103]

In addition to the standard views, each plugin is free to add any number of views to
your copy of Eclipse. PDT for example, adds these six views:

•	 Browser output: Since many PHP projects rely on a browser-based user
interface, it makes a lot of sense to be able to see what exactly the browser
gets to see when it interacts with your code.

•	 Debug output: PHP debuggers can generate output specifically for
debugging. This might happen automatically depending on the configuration
of the debugger or it might be caused by debug function calls you place in
the code to gain greater insight into a particular passage of code. Having a
view dedicated to this output eliminates some of the other chatter going on
(browser output, PHP warnings and errors, or console output).

•	 Parameter stack: This view is used during debugging and it displays the
values of function parameters during execution.

•	 PHP explorer: A tree structure outline of the files that make up your system.
This view starts with, but is not limited to the project's home directory. It can
include references to external files that have been added to the project.

•	 PHP functions: Rather than launching a web browser or opening a book
(unless it's this one!) to learn about a particular PHP function, PDT provides
a view that lists all PHP functions grouped by module for easy reference. See
the Other Features section towards the end of this chapter for more details.

•	 PHP project outline: This view displays all classes, constants, and functions
in your project in a tree structure and allows you to drill down the hierarchy
for more detail, such as method visibility, parameters, variables, and so on.

Also, views are not limited to a specific project. Some views might display information
pertaining to a single file; whereas, others might display information gathered from
your whole workspace. Search results and workspace-wide to-do items are examples
of views that cut across projects.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[104]

Selecting and opening a view is pretty easy and will add it to your current perspective.
Simply select the Window | Show View menu option. You can either select one of the
recently used views or select Other … to see a complete list of available views.

Perspectives
Perspectives are nothing more than strategically combined views. In other words,
one can arrange any number of views within a window and then assign the name
of a perspective to it. If at any later point in time you want to switch back to that
particular layout, all you have to do is select the name of the perspective from the
Window | Show Perspective menu.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[105]

PDT defines two perspectives, each of which includes the following views:

•	 PHP perspective
	° PHP Explorer view
	° Outline view
	° Type hierarchy view
	° Problems view
	° Tasks view
	° Console view

•	 PHP Debug perspective
	° Debug view
	° Variables view
	° Breakpoints view
	° Parameter stack view
	° Debug output view
	° Browser output view
	° Expressions view
	° Editor
	° Console view
	° Tasks

While you cannot easily create your own views in Eclipse, it is trivial to create your
own perspective. Once you have included, resized, and rearranged all the views
you wish to include in your new perspective, simply select the Window | Save
Perspective As… menu option.

You can also customize already defined perspectives by enabling or disabling
commands and shortcut icons available under that perspective. Simply go to the
Window | Customize Perspective … menu option.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[106]

A PDT sample project
For the purpose of showing off PDT's features, I have created a small sample project,
consisting of four files:

1. config/settings.xml: Application configuration settings in XML format.
2. classes/Configurable.php: An interface stipulating methods setup()

and getSetting(). By defining this interface, we leave the details such
as the source of the configuration data or the internal data structure to the
implementing class.

3. classes/Config/Xml.php: A class implementing interface Configurable and
providing implementations of methods setup() to parse the above XML file
and getSetting() to allow the application to retrieve a stored configuration
setting. This class was implemented as a singleton with the assumptions that
configuration settings don't and shouldn't be read more than once during the
execution of the application.

4. index.php: The main executable that requires the other source files,
instantiates a Config_Xml object, and outputs one of the settings just
to show it is working correctly.

This little project does no more than parsing an XML config file and providing
a method for various parts of the application to retrieve these settings as needed.
Nevertheless, this is enough to illustrate the feature PDT provides to the
object-oriented PHP developer. Here are the listings for the four source files:

config/settings.xml:

<?xml version='1.0' standalone='yes'?>
<settings>
 <application>
 <name>Converter</name>
 <homedir>/var/www/converter</homedir>
 </application>
 <logging>
 <dir>logs</dir>
 <file>debug.out</file>
 <level>3</level>
 <type>text</type>
 </logging>
</settings>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[107]

settings.xml is the XML file that the rest of our code will be parsing. There are
two groups of settings: application and logging. Each group consists of a listing
of name-value pairs where the tag name is the name and the content of the tag is the
value. For example, the first option in the logging group sets the value of the dir
option to logs.

classes/Configurable.php:

<?php
interface Configurable
{
 public function setup();
 public function getSetting();
}
?>

The interface defined by Configurable.php requires any class that implements the
interface to provide implementations of the methods setup() and getSetting().
The idea is that the setup() would handle parsing the XML file and storing the
settings as properties in a class. getSetting() would then be used as a method to
access the value of a specific setting.

classes/config/Xml.php:

<?php
class Config_Xml implements Configurable
{
 private static $instance = null;
 private $simpleXml = null;

 private function __construct($xmlFile = null)
 {
 $this->setup($xmlFile);
 }

 public function getInstance($xmlFile = null)
 {
 if (self::$instance == null) {
 self::$instance = new Config_Xml($xmlFile);
 }

 return self::$instance;
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[108]

 public function setup($xmlFile = null)
 {
 $xmlStr = file_get_contents($xmlFile);

 try {
 $this->simpleXml = new SimpleXMLElement($xmlStr);
 } catch (Exception $e) {
 echo "Unable to parse XML config file (" . $xmlFile . "):
 " . $e->message;
 }
 }

 public function getSetting($domain = 'application',
 $setting ='')
 {
 if (isset($this->simpleXml->$domain->$setting)) {
 return $this->simpleXml->$domain->$setting;
 } else {
 throw new Exception("Configuration setting
 $domain::$setting cannot be found.");
 }
 }
}
?>

The Config_XML class defined in the above listing is a singleton, which means
that one has to call the getInstance() method to obtain a reference to the only
allowed instance of the class. Config_XML implements the Configurable interface.
Specifically, the setup() method takes the name of an XML file and tries to use
PHP's SimpleXML module to parse the settings from the XML document into a
simple object-based representation. The accessor method getSetting() is then
used to return the value of a particular setting.

index.php:

<?php
require_once('includes/interfaces/Configurable.php');
require_once('includes/classes/Config/Xml.php');

$config = Config_Xml::getInstance('/path/to/appdir/config/settings.
xml');

echo 'Application name: ' . $config->getSetting('application', 'name')
. "\n";
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[109]

To exercise the above classes, I have created index.php, which starts by including
the source files of the respective classes. It then obtains a reference to the Config_Xml
singleton and asks it to parse our sample XML settings file. The last line of code
simply retrieves and outputs the value of the name setting in the application group.

PDT features
Following is a more detailed listing of what each high-level PDT feature includes:

•	 Editor
•	 Inspection
•	 Debugging
•	 PDT preferences

Editor
The PHP editor provided by PDT goes way beyond simple text editing. Since it is
aware of PHP syntax and top-level functions, it can offer functionality that other text
editors cannot. As a result, it helps developers to output code faster and with fewer
simple errors.

Syntax highlighting
PDT can parse and understand PHP. It will highlight keywords, properties and
variables; thus making code easier to read.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[110]

Code assist
Type a few letters of a PHP function or class name and PDT will present you with
matching properties or method names, complete with arguments and documentation
if available.

Code folding
Configure PDT to hide DocBlocks, include sections, methods, and so on. Rather than
showing each line of those sections, it can display only the first line and expand to
show the full listing when you click the small plus sign next to the intro line. Code
folding makes it easier to get an overview of a piece of code by temporarily hiding
irrelevant sections.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[111]

Mark occurrences
Clicking on a particular element, such as a property or method, will cause the editor
to highlight every occurrence of the element in the file currently being displayed.
This is extremely useful when trying to track how a property changes throughout the
flow of the code, for example. Read and write occurrences are being highlighted in
different colors. Also, the availability of this feature can be toggled in the preferences.

The following screenshot illustrates how the editor highlighted all occurrences of the
property $simpleXml after I clicked on it on line 11.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[112]

Override indicators
PDT displays various little icons in the margin of the current document to indicate
certain meta-info about the corresponding line in the editor. These icons include
error messages, debugging breakpoints, code folding markers, and to-do items.
Another icon that can be displayed is a small up arrow to indicate when a child class
is overwriting a parent class method. Similarly, providing a concrete implementation
of a method defined in an interface will also bring about the little arrow. This
behavior can be seen in the screenshot above on line 23 because getSetting()
implements the method of the same name from the Configurable interface.

Type, method, and resource navigation
One of the standard Eclipse features that you will quickly come to rely on is the
ability to easily locate files, methods, and types through simple pattern matching.
Rather than scrolling up and down the hierarchical file layout while hunting for the
right file, it will become second nature to simply hit the shortcut key combination
and locate the method you need by typing part of its name. All three quick lookup
options in the following screenshots are available from Eclipse's "Navigate" menu.

Typing a partial method name will quickly generate a list of matching methods as
well as the filenames and locations. Double-clicking any of the entries will result in
the corresponding file being opened in the editor.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[113]

The Open Resource dialog allows you to locate files by name. The use of wildcards
is not only allowed, but encouraged.

The last member of this trio of navigation shortcuts is the Open Type dialog,
which allows you to do a wildcard search on types, such as class or inteface names.
Obviously, Eclipse will have to know about PHP syntax to be able to extract and
index that sort of information from source files.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[114]

Inspection
PDT and Eclipse offer several views that allow you to view your project's resources
hierarchically. These views allow you to gain an overview of your projects, files,
types, methods, and properties at a glance.

Projects and files
PDT lets you work with multiple projects that are in your workspace. It makes it easy
to navigate the hierarchy of files that comprise your project.

PHP explorer
You have access to a hierarchical outline of any PHP file you are currently editing.
You can easily jump to any property or function within a class. It also makes it easier
to grasp the overall functionality of the piece of code on which you are working.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[115]

Type hierarchy
This feature really shines in the context of object-oriented development. Given
an object or class, you can ask PDT to display the type hierarchy, which shows
all parent and child classes of the object. This includes interfaces as you can see
in the following screenshot. We can see that class Config_Xml implements the
Configurable interface by providing concrete implementations of the two
methods getSetting() and setup().

This feature is very handy when trying to determine where within the object
hierarchy a particular class falls. Skipping two generations up the hierarchy to
see which methods are being provided by the parent's parent class is as easy as
double-clicking the corresponding item in the tree display of the hierarchy.

Debugging
Although PDT does not provide its own debugger, it provides support for at least
two PHP debuggers that give you powerful control over and insight into how your
scripts execute. You can set breakpoints and examine the variable stack just like in
any other full-fledged debugger.

The example later on in this section assumes that the Xdebug debugger has been
compiled as a module for the version of your PHP executable. For more detailed
instructions on how to do this, please consult the chapter on debugging techniques
and tools.

In addition to debugging your code directly, PDT also allows you to execute and
preview web pages right within the IDE. There is also functionality for debugging
from within web pages in addition to PHP source code.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[116]

PDT supports multiple configurations for running or debugging your application.
For the same application, you might have a configuration for simply running it in the
browser, executing and debugging it locally, and a third one to debug a version that
has been deployed to your staging or production server.

After you have told PDT about the debugger(s) you have installed and the web
servers you will be using in the Preferences (Eclipse | Preferences), you are ready
to start defining your configurations. Let's start by selecting the Run | Debug
Configuration … menu option. Since Eclipse supports many different kinds of
development, it is no wonder that you might be overwhelmed by numerous options
in the resulting dialog box; however, for now you can safely ignore anything that
doesn't start with "PHP".

Since our application doesn't really have a web UI, we will be debugging by
executing it directly. To do that, highlight the PHP Script option in the left hand
column of the configurations dialog and click the little icon with a plus sign to create
a new configuration. The configuration itself consists of four tabs; however, in our
case all the important information is in the first tab. Here is a capture of what your
screen should look like at this point:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[117]

We have told PDT which of our debuggers we will be using ("XDebug"), which
PHP executable ("Local PHP"), and which script to execute with that executable
(/chapter3/index.php). The path of the script to execute is relative to the project
folder. Lastly, checking the "Break at First Line" options ensures that the PHP
executable doesn't just run away with our application. Instead, we would like it
to stop at the beginning and wait for our instructions.

The other thing we might want to do is place a breakpoint at a line of the code in
which we are particularly interested. Placing a breakpoint couldn't be easier. All you
have to do is double-click the margin of the source code editor at the line where you
want to place the breakpoint. I have done so at line 27 of file Xml.php.

At this point, we are ready to debug by clicking the Debug button at the bottom of
the configuration screen. PDT will prompt you to switch to the debug perspective,
which is a perspective that is optimized for debugging. Go ahead and do so. In
addition, I would recommend selecting the little checkbox to do this automatically
from now on. The resulting screen has multiple views that will help you debug your
application. In particular, you will see following views:

•	 Debug view: As you can have multiple debug session going on
simultaneously, the view shows you a hierarchical list of all of them and the
state of the debugger for each.

•	 Breakpoints/Variables: "Breakpoints" will show you a list of files and lines
where you have placed breakpoints. You are able to toggle each of the
breakpoints. "Variables" will show you a list of all variables that are defined
in the current scope in which the application is executing. This always
includes super global arrays $_COOKIE, $_ENV, $_FILES, $_GET, $_POST,
$_REQUEST, and $_SERVER.

•	 Editor: The Editor view will automatically switch to display the currently
executing PHP file and highlight the active source code line. This is very
handy to see what the code is doing while you are examining the debug
output.

•	 Console: The debugger or your application may generate output that goes
directly to the console, which is positioned at the bottom of the window.

•	 Debug Output/Browser Output: Any output that is usually sent to the
browser will appear on the Browser Output tab. In our case however,
the application only generates console output. Output generated by the
debugger automatically or through function calls supported by the
debugger will appear in the Debug Output tab.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[118]

Of course, it is up to you to customize the debug view to your liking. However,
the default layout is able to cram a lot of information onto the screen and should
be sufficient for most users.

To better illustrate the power of the debugger, I have added a couple of lines to the
Xml.php file. The function calls xdebug_call_file(), xdebug_call_line(),
xdebug_call_function() are only supported because I have compiled support for
Xdebug into my PHP executable. The following screenshot illustrates the debug
perspective. Notice how execution has stopped at our breakpoint (now on line 30).
The Debug Output tab shows the output generated by the Xdebug specific function
calls. The Variables tab shows a list of both global and local variables and their
respective values.

The key to Eclipse in general and PDT in particular is extensibility. It should
therefore come as no surprise that PDT functions as a framework as much as it
functions as a development environment.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[119]

PDT preferences
You can further customize PDT's features by setting some preferences. The
various Eclipse plugins typically expose a slew of settings that can be changed
via the Preferences dialog. Some of these settings affect how you work in minor
ways; whereas, others can impact or even complement your development style in
a significant way. I want to highlight the settings that I consider the most beneficial
to the developer. To access any of these settings you should select the Preferences
option under the Eclipse menu. The dialog that pops up allows you
to select the plugin for which preferences can be set in a hierarchical list on the left.
For most modules, you can drill down further by expanding the listing. PHP, for
example, has the following sub-sections:

•	 Appearance
•	 Code style
•	 Debug
•	 Editor
•	 New project layout
•	 PHP executables
•	 PHP interpreter
•	 PHP manual
•	 PHP servers
•	 Templates

Appearance
The only setting provided is whether to display method return types. To be honest,
I have been having trouble getting this option to work. In theory, the PHP Project
Outline view should be listing the type of the value returned by the respective
method. However, I was unable to see any difference when toggling this option.
Moreover, I am unclear how PDT would know about the return type because a
method might return more then one type.

Code style
The following two settings affect the visual appearance and spacing of the code
you type and that is generated by Eclipse. Beyond purely cosmetic reasons, these
settings are important to comply with coding standards of your project and for
better compatibility with other editors and IDEs.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[120]

Formatter
This is where you tell Eclipse how to indent the source code whenever you hit the tab
key. This is actually an important setting because it will affect how easily your code
will be viewable and editable in other editors. According to our coding standards
developed in Chapter 1 (and commonly accepted otherwise), you should change
the default setting from indenting with tabs to indenting with four spaces.

Code templates
One immensely useful function PDT provides is to generate DocBlocks automatically
for any element in your code including classes, methods, and properties. Simply
click your cursor on the element you are looking to comment and then select
"Generate Element Comment" from the "Source" menu. PDT will generate the
appropriate DocBlock and fill in as much detail as reflection will provide about the
element. For example, when using this feature to generate the DocBlock for method
Config_Xml::getInstance(), PDT is able to put the correct variable name on the
@param line.

The templates for the actual DocBlocks and comments that are generated using this
feature can be edited on the "Code Templates" screen.

There is also an option to edit templates for code generation, but that feature has not
yet been implemented in PDT 2.0. However, I expect that in future versions you will
be able to have PDT quickly generate class skeleton or automatically add getter and
setter methods for any newly added property. This corresponds to functionality that
has been available in Eclipse for Java for a number of years.

Debug
Being able to interactively debug in a visual environment is one of the great
features of Eclipse. However, before you can debug, you have to tell Eclipse which
debugger you are using and how to interact with it. Furthermore, this section of the
preferences lets you define some default behavior as you are stepping through the
code in debug mode.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[121]

Installed debuggers
On this screen, you can let PDT know which debuggers are installed and on
which port they are listening. The correct settings on this screen are prerequisites
for successfully being able to actively step through our PHP code and debug it.
PDT comes preconfigured with settings for "Zend Debugger" and "XDebug" and
their respective default ports of 10000 and 9000.

Step filtering
Using this screen, you can specify a list of resources, such as files or directories that
will be skipped during debugging. What this means is that when you are stepping
through source files, any files found on the step filtering list will be ignored. This
comes in handy when you have a piece of code that is constantly being executed,
even though you know that it works perfectly well. Examples of code sections you
might want to exclude from stepping through include bootstrap files or class loaders.

It is possible to define path names with wildcard characters.

As of this writing, this feature is not supported in XDebug and unlikely to be
supported in version 2.x of PDT at all. However, it does work with Zend Debugger.

Workbench options
Here you can specify some preferences that dictate when to switch to or from the
debug perspectives. Whether multiple debug sessions are possible can also be set
from this screen. The default settings are typically fine here.

Editor
In a previous section, we looked at the useful features the PHP editor that comes
with PDT provides when editing source code. In this section, we will look at the
preferences that determine how those features behave. These settings are likely
the ones that have the highest impact on how you interact with your code.

Code assist
On this screen, you can fine-tune how auto-completion gets activated, what
suggestions it will present, and how to add your selection to your code.

Code folding
Here you can toggle the code folding feature overall and decide whether classes,
functions, and DocBlocks should be folded by default. I recommend not having
any element fold be default. You can always fold them later to temporarily get rid
of distracting or confusing sections.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[122]

Hovers
This screen lets you decide what the editor should display when you bring your
cursor to hover over a particular element of the source code. The Combined Hover
option, which is the default, will try to make a context-sensitive best guess. Hover
pop-ups can display debug variable values, problem descriptions, documentation,
annotations, or the source code of an element.

Mark occurrences
Here you can toggle which elements will be marked throughout the source code
when you click on them. Available options are types, class methods and declarations,
functions, constants, global variables, local variables, method exits, methods
implementing an interface, and targets of break and continue statements.

My recommendation is to keep all options enabled, unless you find yourself getting
distracted by too many items being highlighted. In that case, you can start selectively
disabling some of the options.

Save actions
Although sparse otherwise, this screen has one of my favorite options. It allows you
to enable an editor feature to automatically remove trailing white space from each
line before actually saving the file.

When juggling code snippets around by copying, cutting, and pasting them, it
always happens that you create extra whitespace. Other than making your files
slightly larger it has no other side effect other than being annoying.

Syntax coloring
On this screen you can toggle syntax coloring for source code elements; as well as
select the color and style you would like the editor to use. You are limited to the
elements supported by this feature: comments, heredoc, keywords, normal source,
numbers, PHP tags, PHPDoc sections, strings, task tags, and variables.

Task tags
It is common practice among developers to leave notes in inline comments or
'DocBlocks' to indicate that some kind of task has to be completed. For example,
you might not have enough time to implement proper input validation while
cranking out the prototype for your client. If you leave yourself a note in the
source code using one of the strings PDT knows about, it is possible for PDT
to present you with a list of tasks for your whole project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[123]

On this screen, you can define the keywords that you intend to use so that PDT can
be aware that you are creating a task tag. The default entries are @to-do, FIXME,
TODO, and XXX.

There are other Eclipse plugins that let you leverage tasks and tags by taking them
to a whole other level. You might want to take a look at the Mylyn plugin:

http://www.eclipse.org/mylyn/

For more details, see the Eclipse Plugins section later in this chapter.

Typing
Here you can toggle whether PDT automatically adds the closing equivalent for
every quote, parenthesis, brace, square bracket, PHP tag, and phpDoc tag you type.
If you are not used to it, this feature can feel like it is interrupting your coding flow.
However, I definitely recommend you take the time to get used to it because it will
end up reducing the time required to track down syntax errors because you forgot
to close the code block.

New project layout
When you create a new project from the File | New | PHP Project menu option,
you can tell PDT where you intend to keep your source files. By "source files" we
mean your classes, interfaces, libraries, and so on. You can choose to have PDT
consider the root directory of your project a source folder. Alternatively, you can
have Eclipse automatically create an "application" folder for your source files and
a "public" folder for publicly accessible resources. The "application" and "public"
folders are the defaults, but you can change those directories on this screen.

There are two situations where I recommend switching away from the default setting
of the root directory being a source folder and instead opting to separate your source
files from your publicly available files.

First, if your application will be accessible via the Web, it is common security practice
to only expose resources that you really intend to be accessible that way. All other
resources that are not meant to be executed directly should be included explicitly.

Second, if you are following the MVC architecture, you would be expected to
separate your business logic from your presentation layer. For more details on
MVC, take a look at the chapter on the Zend Framework.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[124]

PHP executables
Here you can let PDT know about the different PHP executables you intend you
use in your different projects. There is a plenty of reason to have more than one
executable. For starters, you might want to have PHP4, PHP5.x, and a beta version
of the next major version of PHP to test compatibility of your application with
different possible deployment configurations. Another possibility is that you have
multiple PHP executables that are the same version of PHP, but that were compiled
with different options. You might have a lightweight version and an everything-but-
the-kitchen-sink version. One might include many optional modules; whereas, the
other might not.

PHP interpreter
Here you can select with which version of PHP you are working. In my version of
Eclipse 3.5 with PDT 2.1.3, the choices are PHP 4 and PHP 5.1 / PHP 5.2 and PHP
5.2. Even though support for PHP 4 has been discontinued, this option continues
to be available here because many developers have to deal with that version of PHP
for existing and legacy projects. I expect that if it becomes necessary to differentiate
between higher versions of PHP to support certain features, we will see option for
PHP 6 appear here.

You can also enable ASP style tags here.

My recommendation is similar for both settings. Only enable PHP 4 if that is really
the environment in which you will have to deploy your application. If you have a
choice, you should certainly opt for PHP 5. Similarly, you should only enable ASP
style tags if that is the convention being used by an existing project. If you recall our
discussion of coding standards in an earlier chapter, we decided that ASP style tags
should generally not be allowed.

Luckily, the defaults on this screen are to use PHP 5 and disallow ASP style tags.

PHP manual
The layout of the online PHP manual follows certain conventions, which is why PDT
is able to link directly to manual pages from within hovers in the editor or the PHP
function lookup view. On this screen, you can list several URLs that host the PHP
manual. By default, only the manual on the main php.net site is listed.

http://www.php.net/manual/en/

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[125]

One of the options you have is to point PDT at a different language version of the
manual if you happen to do development in a language other than English, such as:

http://www.php.net/manual/de/

One thing I recommend is to download the manual for your version of PHP in
HTML format and extract it into a local directory. PDT allows you to reference
local directories in addition to remote URLs. That way, you always have access
to the complete PHP manual – even if you have no Internet connectivity.

The complete PHP manual is available for download in various formats and
languages at:

http://www.php.net/download-docs.php

PHP servers
For the purpose of launching, testing, and debugging specific pages within your
project, you can edit the list of PHP servers on this screen. You need to create an
entry for your web server if you are going to create a launch or debug configuration.
For more details, see the section on debugging in this chapter.

Templates
Templates are such a time-saver that it is a shame that developers are often
overlooking them. After all, we're all guilty of copy-pasting sections of code from
tutorials or other sections where we spent time implementing a certain feature
correctly. With templates, you can have those code snippets at your fingertips.
All you have to do is define a template once and associate a short name with it.
Afterwards, any time you type the name, followed by hitting Ctrl-space, Eclipse will
insert the whole template into your source file. What's better, by tabbing through the
code, the editor will allow you to customize the template in the appropriate places.
Lucky for us, PDT comes pre-defined with dozens of different templates, including
the following examples:

The shortcut cls will generate this code snippet that serves as the skeleton of a
class definition:

class ${class_name} {
 function ${function_name}() {
 ${cursor};
 }
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[126]

The shortcut itdir generates the following code to iterate over a directory:

${dollar}${dirh} = opendir(${dirname});
if (${dollar}${dirh}) {
 while (${dollar}${dir_element} = readdir(${dollar}${dirh})) {
 ${cursor};
 }
 unset(${dollar}${dir_element});
 closedir(${dollar}${dirh});
}

Take a look at the predefined templates and use them as a starting point for creating
your own.

Other features
In this section, we take a look at two additional features that don't neatly fit into
the categories we have examined up until now. First, we look at the PHP functional
reference feature, which will save many trips to the php.net site once you get used to
it. Second, we look at extending Eclipse through plugins and we take a closer look at
some of the more useful plugins for PHP development.

PHP function reference
This view provides you with a hierarchical, searchable listing of all built-in PHP
functions. If you are like me, you have benefited from the well-organized online
reference at the php.net site. However, being able to search for a function name
from within your development environment is still a great time saver. Once you
have located the function you need, you can double-click it and have it inserted
into the source file you are currently editing. Or, you can right-click and decide to
view the corresponding php.net manual page. As Eclipse has a built-in browser,
you don't need to switch to a different application to read the details of how to use
the function; as well as the often-useful comments at the bottom of the manual pages.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[127]

To add this view to your environment, select the Window | Show View |
Other menu option to bring up the Show View dialog. Then select PHP Tools |
PHP Functions.

Eclipse plugins
As mentioned before, extensibility through plugins is one of the key advantages of
Eclipse. There are many sites where you can find out about additional plugins that
might enhance your productivity. However, I'd like to recommend one site that does
a good job of collecting, listing, organizing, and describing plugins. Whether you
have a particular plugin for which you are trying to get more information or you
have a particular need to fill, 'Eclipse Marketplace' is a good place to start:

http://marketplace.eclipse.org

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[128]

Following is a list of plugins that might be helpful to PHP developers. Depending on
which base Eclipse package you chose, you may or may not have the plugin installed.

Subversive
Description:

This subversion plugin is modeled after the CVS plugin. It provides easy ways of executing
all the usual svn commands, such as:

•	 Browsing local and remote repositories, supporting various protocols, such
as https and snv+ssh

•	 Adding projects to repositories and checking out branches, tags, and trunk
to your local workspace

•	 Synchronizing your local working copy with the repository
•	 File operations to commit, update, and revert changes
•	 Merge and resolve changes via a highly functional graphical UI

Subclipse is another subversion plugin for Eclipse, but in the past, I have consistently
had better success with Subversive.
Home page:
http://community.polarion.com

Update site(s):
http://download.eclipse.org/technology/subversive/0.7/update-site/
http://www.polarion.org/projects/subversive/download/eclipse/2.0/
update-site/

Mylyn
Description:

Mylyn can connect to various issue, task, and bug trackers (insert your favorite term
here) to integrate that workflow directly into Eclipse. After all, who wants to open a
browser window for Bugzilla and another for Jira just to have to switch back to Eclipse
to actually do the work? Mylyn integrates those tasks by giving you a view to add to any
perspective. It natively supports a couple of "task repositories," such as Jira and Bugzilla,
but many different repositories are supported with additional plugins (see the Mantis
Mylyn Connector below). In addition to shared repositories, you can also work with local
repositories that don't require external systems.
Home page:

http://www.eclipse.org/mylyn/

Update site(s):

http://download.eclipse.org/tools/mylyn/update/e3.4

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[129]

Mylyn Mantis Connector
Description:

This plugin allows Mylyn to integrate with Mantis. After all, this is a book about PHP and
I would be neglectful if I weren't to mention at least one PHP based issue tracker. Besides,
Mantis is one of my favorites due to the simplicity of its workflow.
Home page:

http://mylyn-mantis.wiki.sourceforge.net/

Update site:

http://mylyn-mantis.sourceforge.net/eclipse/update/site.xml

Quantum DB
Description:

This plugin lets you connect to a number of different databases to review schema
information and run queries. It relies on JDBC drivers (Java database drivers), which there
are many of, including Oracle, MySQL, PostgreSQL, and so on. However, it is not meant as
a replacement for a full-fledged DB design tool.
Home page:

http://quantum.sourceforge.net/

Update site:

http://quantum.sourceforge.net/update-site

Zend Studio for Eclipse
Zend has a commercial IDE offering that builds on PDT. I don't necessarily want to
drum up sales for Zend, but their IDE offers a lot of added features for the professional
PHP developer. As I have mentioned at the beginning of this chapter, Eclipse isn't the
only game in town. Other development environments offer feature sets that compete
with both Eclipse/PDT and Zend Studio. However, having looked at Eclipse and PDT
in detail, it is a natural progression to at least mention Zend Studio because it directly
leverages and expands the PDT features we have discussed thus far.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[130]

You can download and purchase Zend Studio for Eclipse from zend.com. The
download comes with a 30 day free trial after which you have to purchase a license
to continue using the product. However, 30 days should be enough to evaluate
the product and make a buying decision. At the time of this writing, a license for
Zend Studio for Eclipse ranges from $399 to $717, depending on how many years
of upgrades and support you want to include. There are also volume discounts
available if you plan on setting up a whole team with the same IDE. You can find
the download here:

http://www.zend.com/en/products/studio/downloads

Now let's take a look at the default interface Zend Studio gives you. As it is based on
Eclipse and PDT, this should appear pretty familiar by now.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[131]

If you take a look at Zend's site, you can see their own take on the differences
between PDT and Zend Studio. Following are the issues that I consider the
most significant.

Support
With Zend being a commercial entity, you might be able to benefit from a different
level of support. Personally, I am the type of guy to try and figure things out myself
by researching and looking behind the scenes. But, if you want to save time and
effort, with Zend Studio, you have the added option of reaching out to commercial
support by opening a trouble ticket or picking up the phone.

Refactoring
Zend Studio allows you reorganize your project by renaming and moving files,
methods, and properties. Often when you do this in PDT, it breaks your application
because there is some reference or occurrence that you neglected to update, no
matter how careful you are. Zend Studio handles the grunt work for you. No need
to try and do a global search-replace. Zend Studio gives you control over what and
how to update your code.

Code generation
Writing code is a creative endeavor; especially if you do it at will—but not always.
Some tasks are repetitive and mundane. It's when you have to spend a lot of time
on those tasks that you wish you could simply delegate them to someone else.
Code generation lets you do that—sort of. Zend Studio provides three kinds of
code generation:

•	 Getter/setter methods: After defining properties of a class, you can
selectively generate the getter and setter methods while specifying the
visibility for each of them.

•	 Overriding/implementing of inherited methods: Using reflection, Zend
Studio knows which methods are defined in parent classes and interfaces.
Using a simple wizard, it lets you select any of those methods and generate
a skeleton implementation for each.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[132]

•	 A wizard interface for generating new elements: Adding new
classes or interfaces is easy as the wizard prompts you for visibility,
constructor/destructors, phpDocumentor DocBlocks, parent
classes/interfaces, and which methods to inherit.

PHPUnit testing
In addition to aiding you in the creation of PHPUnit tests at the same time you create
your code (see code generation above), Zend Studio also gives you a visual interface
for running your test suite or individual tests and to inspect the result.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 3

[133]

PhpDocumentor support
Having read the previous chapter, you are aware of the importance and benefits of
creating phpDocumentor DocBlocks in your code (you did read the whole chapter,
didn't you?). Zend Studio not only generates DocBlock skeletons when generating
code, such as new classes or methods, it also prompts the developer to add detail
to the DocBlock each time he adds a new element by hand.

Zend Framework integration
In one of the later chapters, we will be looking at using frameworks in our
development with particular focus on the excellent Zend Framework. Zend Studio
lets you create new Zend Framework projects based on the ZF's implementation of
MVC. ZF libraries and modules are automatically added to the include path and
there are wizards for generating new ZF elements:

•	 Zend Action Helper
•	 Zend Controller
•	 Zend Controller Test Case
•	 Zend Module
•	 Zend Table
•	 Zend View
•	 Zend View Helper

In my opinion, support for the Zend Framework is one of the strongest arguments
for considering the jump from Eclipse/PDT to Zend Studio. If you rely on ZF in just
about every PHP project you undertake, Zend Studio might be the way to go.

Zend server integration
If your organization uses Zend Platform for deploying PHP applications in production
and you are using ZP's ability to monitor and test the environment, you might benefit
from the integration Zend Studio offers in this area. It lets you view test results
generated in Zend Platform and inspect the corresponding code in the editor and
debugger. All this is pretty powerful stuff and you are unlikely to find this kind of
integration elsewhere, but unless you are heavily invested in Zend Platform, which is
another commercial offering, you cannot benefit from the features Zend Studio offers
in this area.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

The Eclipse Integrated Development Environment

[134]

Summary
For those who until now have not been using an integrated development environment
to write PHP, I hope that this chapter was a good introduction to the benefits you
can reap by investing the time to learn such a tool. All the little conveniences, such as
code completion, syntax checking, debugging, add up to real time savings and quality
improvements. As a result, you will be able to develop better code faster.

For those who have been using an IDE already, perhaps you came across a couple of
tips and tricks that you didn't know were possible. It really pays to invest the time to
properly learn the tools with which you write the code that pays your bills.

We also got to take a closer look at the great effort that both the Eclipse Foundation
and the PHP Development Tools (PDT) team have produced. Even if you decide
that Eclipse with PDT is not the right tool for your every day needs, Eclipse is a great
tool to be familiar with because it continues to evolve, improve, and find its way into
an increasing number of IT shops. Eclipse's greatest strength is its flexibility to add
functionality via plugins. Due to that, there is no telling what kind of development it
will be used for in the future.

Lastly, I don't expect you to blindly accept that Eclipse is the right tool for you.
Your needs and requirements for a PHP development environment are possibly
quite different from my own. However, with what you have learned in this chapter,
you will have a good understanding of what to look for in a solid IDE. At this point,
I encourage you to take a survey of what other developers are using. Find out why
they chose what they did. After collecting the information you will be in a good
position to make a decision on what IDE is best suited for the way you work.
Hopefully, this chapter showed you how to ask the right questions.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version
Control

My challenge in writing this chapter was to make it relevant to PHP development.
There are great books that discuss source code and version control in general and
I didn't want to rehash in one chapter what those books cover in much more detail.
For example, if you want to learn more about Subversion in detail, you can read the
excellent "Version Control with Subversion." In addition to being available in print,
you can access a free online version of the book here:

http://svnbook.red-bean.com/

Instead, in this chapter, I want to go over the most important concepts and techniques
with specific focus on making it part of your everyday workflow as a PHP developer.
The questions I want to answer include:

•	 How should I structure my PHP application when using Subversion?
•	 How can I integrate other PHP tools to automate various processes

with Subversion?
•	 What PHP tools are available for working with Subversion?
•	 What problems do these tools solve?

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[136]

Common use cases
Here are a couple of use cases that typify how you can leverage Subversion in your
day-to-day development activity.

Scenario 1: After a phone call with a panicked client, you are forced to access the
production server to fix an issue that is affecting thousands of users. Unfortunately,
after a couple of edits, the page returns a 500 HTTP error, which probably means
that you made it worse than before. Unfortunately, in your rush to fix the problem,
you didn't make a proper backup of the file(s) you were editing and have no way
of reverting to the previous version. For the time being, let's ignore the fact that you
probably shouldn't be working on your production environment. After all, we have
all done it—even if it is wrong.

Scenario 2: That open source project you started while commuting an hour on the
train every day has been kicked into overdrive. SourceForge.net named it project
of the month and suddenly you have several qualified volunteers that want to
contribute code, do translations of the user interface, and work on documentation.
Overnight, you are not only faced with having to coordinate with several other
people wanting to make changes to your source code, you also have to deal with
the fact that they are located in different geographical locations and are possibly
working on the same files simultaneously. Sure, you can have them send you patch
files for everything they do, but then you might as well quit your day job because
your project just graduated from hobby to time and money pit.

Scenario 3: In an effort to track down how an especially elusive bug was introduced,
it is necessary to determine which developer contributed which part of the code.
Being able to step through the source code in reverse chronological order would
be a valuable tool in this situation.

A brief history of source code control
The Revision Control System (RCS) tool is a lightweight utility for versioning
individual files. All revisions, access logs, permissions, and so forth are being kept
in a single text file, which is really easy to create on the fly. I have used RCS to
version server config files. That way, you can easily back out of any changes quickly
in case you break the configuration and the service goes down completely. It also
makes it easy to review and revert to previous configurations even if it is long
after you have already forgotten the actual changes you made to the file.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[137]

You can visit the official RCS homepage as a starting point for learning more about
this tool. There, you can also find download links to the current source code, binaries
for various platforms, and the original paper that inspired the creation of RCS:

http://www.cs.purdue.edu/homes/trinkle/RCS/

RCS comes with a cast of supporting utilities that turn its basic functionality into
a functioning version control system, including:

•	 ci: Check a file into RCS
•	 co: Retrieve a file from RCS
•	 rcsfile: Describes the file format employed by RCS
•	 rcsdiff: Analyze the differences between two revisions of the same file
•	 rlog: Outputs detailed information about a file, such as paths, names,

revisions, logs, access list, and branches; as well as entries for each revision
•	 rcsmerge: Merging different versions of a file
•	 rcsclean: Deleting abandoned working files

There is not enough space to cover all the RCS tools in full detail, especially
considering that we will shortly be moving on to bigger and better things. However,
I think the following example will give you a feeling of how to use RCS and the fact
that it is still relevant even after more than 25 years since it was first conceived. The
following example assumes that you have the above list of executables installed on
your system and that you wish to start versioning your default PHP script, index.php.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[138]

Following along with the commands and their resulting actions in the above
example, we start out by listing the contents or our working directory with ls -al,
which contains only the index.php file. We then create a directory named "RCS"
with mkdir RCS, which will be used by the rcs utility to store all RCS files. A single
file will be created for each file that we are versioning with RCS. Next we check our
index.php file into RCS with the ci index.php. Listing the directory contents again
reveals that the file is now gone.

At this point, index.php only resides in RCS's repository and we need to
use the checkout command co –l index.php to get it back into our working
directory. The optional -l argument locks the file and ensures that no other
user can check in a revision while we have an active lock on it.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[139]

After using an editor to make some modifications to the file (vi index.php), we can
use the rcsdiff index.php command to see the differences between our modified
version and the most recent one in the RCS repository.

Satisfied with our changes, we check the file back into the RCS repository with
ci -l index.php while keeping a working copy in our directory due to the use
of the -l switch.

Lastly, we use the rlog index.php command to get a summary of the actions
we have taken thus far.

Obviously we have skipped over a lot of options and features of RCS, but I'm
hoping that the above example serves not only as an overview of RCS, but also
as an introduction to the concepts involved in versioning and source code
management. In an upcoming section, we will explore these and other concepts
in more detail.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[140]

CVS
The main reason we covered RCS in the previous section was to set the stage for our
next trip down memory lane. As useful as RCS was and continues to be, it has some
shortcomings that prevent it from scaling up and being used for projects involving
multiple developers. But, as things go in the open source community, someone
needing a more advanced tool had the skill and time to create this tool. In this case,
that someone was Dick Grune and the tool he created was CVS.

Initially, the Concurrent Versioning System (CVS) was not much more than a
wrapper around RCS; a collection of scripts that added some features and provided
a more powerful interface, but one that essentially continued to call on RCS to do the
work behind the scenes. However, that architecture was replaced after a couple of
years by one where all the underlying file manipulation is being done by code that
is part of the CVS executable.

Among many small improvements, some of the major features CVS offered over RCS
include the following:

•	 Support for projects: RCS's approach was file-centric. In contrast, CVS
focused on the whole project. With the introduction of CVS, developers
were able to take actions that affected every file in the project. Suddenly,
it became easy to check hundreds of files from the repository, make some
changes, review changes to multiple files, and commit those changes back
to the shared repository. It was also possible to update one's local version
of the project with the changes submitted by other developers.

•	 Client-server architecture: CVS made it possible for the repository to reside
in one location and for the developers working on the project to be in any
number of locations. As long as there was network connectivity whenever
it became necessary to interact with the server, the developers could work
anywhere and anytime.

•	 Branching: Once you start dealing with different versions of a software
product, it quickly becomes inevitable to deal with different branches of
the underlying code base. The model of branching introduced by CVS is
being followed by most source code control and versioning systems that
have come after it. For a more detailed description of branching, please
see the list of concepts and terminology later on in this chapter.

These improvements were huge. All of a sudden, big, geographically dispersed
development teams had a standardized tool for managing their source code. Not
surprisingly, CVS quickly become the de facto standard in source code control.
Versions of it exist for every major platform.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[141]

I intentionally deferred a description of a developer's typical workflow with CVS for
when we get into the discussion of Subversion because it is essentially unchanged
between the two tools.

As mentioned above, CVS builds on RCS to provide functionality for whole
projects instead of just individual files. Unfortunately, this file-centric approach
of the underlying tool; as well as the fact that CVS is getting up there in age, has
translated into some shortcomings. Specifically, following are some common
complaints users leverage against CVS:

•	 Insufficient support for directories: In CVS, directories are just containers.
They can't be versioned, especially not in regards to the various versions of
the files they contain.

•	 No atomic commits: When checking in multiple files at once, say all files that
needed to be modified to add a certain feature, atomic commits would ensure
that either all files get committed properly or none at all. In CVS, it is possible
to end up with an inconsistent code tree if the commit is unable to complete
for any reason, such as loss of connectivity or a power outage.

•	 No local copies of base revisions: This means that every time a developer
wants to use the status, revert, or diff commands, they require connectivity
to the repository, which translates into a significant inconvenience and forces
you to modify your natural workflow.

•	 Conflicts break code: Conflicting code from different versions of a file
often requires manual resolution. In contrast, Subversion (as of release 1.5)
includes conflict resolution (merging) and it won't let you commit files with
unresolved conflicts. Along those same lines, CVS does not include support
for atomic commits.

•	 Binary files are not handled gracefully: Each version of a binary file,
such as an image, compiled executable, or audio clip, is being stored
in full. Although CVS is able to store only the differences between
versions for text files, it is not able to do the same for binary files
despite the fact that those algorithms exist.

Furthermore, binary files have to be explicitly marked as such to avoid
mangling by keyword expansion and translation of line-endings.

Despite the welcome feature set of CVS, there were enough annoyances for users
and developers to try to improve on the existing tool.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[142]

Introducing Subversion
Subversion was conceived as a replacement for CVS. Rather than try to fix CVS,
which was being held back in its evolution by its legacy underpinning, the developers
set out to create a new tool from the ground up. The idea was to make it significantly
similar to CVS so that developers would feel right at home and the learning curve,
while switching from one tool to the other, would be minimal. Subversion is not
a drop-in replacement for CVS, but rather an evolution of the ideas and concepts
first successfully realized by CVS. At that, it has been very successful. Subversion
is generally known as CVS without the annoyances.

There are many resources available on the web to learn more about Subversion,
but your starting point should be the project's home page:

http://subversion.tigris.org

Client installation
As with most open source packages, there are essentially two ways of getting it
installed on your system. First, you can download and compile the source code.
If you're not completely comfortable with the build process, run into trouble, or
you simply want to simplify the installation, I encourage you to go for a binary
package instead. Unlike the source code, the binary packages are not being
maintained by the Subversion project, but rather by contributors. Binary packages
are available for just about every major platform and typically lag behind official
source code releases by a couple of days.

Whichever path you choose for installing Subversion, you should probably start
at the project's download page:

http://subversion.tigris.org/getting.html

Another thing to consider is that Subversion is based on client-server architecture.
This means that the Subversion server will need to run on the machine that will
host your repository. If you are working for or with a company, you might want
to check whether a Subversion server is already available. If so, you will only need
a client, of which there is a great variety. However, if you are setting up your own
server for the first time, you will need the source code or one of the binary packages
mentioned previously.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[143]

Server configuration
Many readers will have an existing Subversion repository with which to start work.
For those that have to install and configure the server portion of Subversion from
scratch, I urge you to refer to the free and excellent "Version Control with Subversion"
mentioned earlier in the chapter. I will not be able to cover that topic in detail in this
chapter, however, I do want to summarize the available architecture options.

Although Subversion was build to be network layer agnostic, there are currently
only two widely used options: svnserver and Apache with mod_dav_svn.
Both options essentially expose a Subversion API that can be wrapped by client
applications into IDE plug-ins, shell extensions, or dedicated Subversion clients.

Apache with mod_dav_svn
The venerable Apache HTTP server combined with the mod_dav_svn extension
provides a solid implementation for accessing Subversion over the WebDAV
protocol. Because it leverages Apache's extensibility, you get features such as SSL
encryption, logging, and web-based repository browsing for free. This option is
slightly more complex to configure and not as fast in terms of network operations
as the svnserve option described below.

svnserve
The second option, svnserve, is a fast and lightweight server process that speaks
a custom protocol. It is easy to set up and configure and generally runs faster than
the Apache with mod_dav_svn option described above. While it does support
encryption, it doesn't provide quite as many additional benefits as the first option.

You also have the option of using SSH as a front-end to svnserve to handle
authentication. In that case, svnserve's own user account database is replaced
by system accounts against which the SSH server process will authenticate.

Subversion concepts
Following is a short glossary of terms used by source code control and versioning
systems in general and Subversion in particular. Subversion's primary interface is the
command line. Although various other dedicated Subversion clients and plug-ins for
other applications exist, I think it is important to first learn what is going on behind the
scenes. Later on in this chapter we will take a look at how to interact with Subversion
using a graphical user interface. In particular, we will take a closer look at one of
the two Subversion plug-ins offered for Eclipse, the development environment
we discussed in the previous chapter.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[144]

Repository
A repository is a central location where the master copy and all previous versions
of all files are stored. It also holds information about users, comments, logs, actions
taken, and so on. A repository gives you a way to store all that info, but it neither
dictates how you organize your projects within the repository nor does it expect
you to organize the project's files in a particular way. Nevertheless, there are certain
conventions that most developers follow that make it easy to perform various tasks
related to source code management. It also makes it easier for any newcomers to
find their way around the repository.

Tags
A tag is a name for a particular collection of versions of the files in your project.
This was an important concept in CVS where each file has its own version counter.
In Subversion, however, all files in a revision have the same version number. Thus,
when you tag a revision in Subversion you merely create an alias for that revision.
Typically tags might be release-1.2 or beta1-rc2.

Tagging in Subversion becomes more interesting when you assemble files from
different revisions. This is not as uncommon as you might think it is. For example,
to assemble the new version of your software product, you want to use the
most recent code checked in by the developers. Unfortunately, the new hotshot
programmer you hired did not read this book and was consequently not able to
complete the update to the reporting module. You decide to roll out the product
without the new reporting features and pull the most recent stable revision of the
reporting module code from the repository. You now have a combination of new
and old code and it makes sense to assign this collection of project files a name by
tagging it.

Trunk
The main branch of your project is called the trunk. Typically, the top-level of your
project would contain a directory called "trunk." This is not a requirement, but rather
done by convention.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[145]

Branches
A branch is nothing more than a copy of all or part of your project's code. If you
think of your code as path through time, a branch would be a second path that
diverges from the original. A branch can in itself be branched again to create a
hierarchical tree structure.

(main development path(trunk)

Time

merging branch 1

back into trunk
branch 1

branch 2

branch 3

Branches are typically created to be able to work on a copy of the main code either
temporarily or permanently without interfering with development happening on
the trunk.

When a branch was created to temporarily support some custom development, it
is common practice to merge (see definition as follows) the diverging branch back
into the trunk. In other cases, branches are created because the code permanently
diverges from the main branch, the trunk. An example of a permanently diverging
branch might be a release.

By convention, Subversion repositories are typically structured such that branches
are stored in a separate directory that is parallel to the trunk.

Working (Local) copy
Checking out the project code from the repository creates a local copy of the
whole project. The developer will be making any changes to this local working
copy. The working copy should be updated periodically with changes submitted
to the repository by other developers to ensure that the two copies are not diverging
too much. The idea is that changes to the local copy will eventually be committed
back to the repository and made available to other developers. Before committing
changes, the developer will have to resolve any conflicts between the repository
and his local copy.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[146]

Merging
Merging is the activity of resolving conflicts between a developer's local working
copy and the corresponding code in the repository. Whenever a developer updates
his working copy by retrieving new changes to the project in the repository since
the last update, Subversion will make an effort to automatically merge any changes
if possible. However, at times it is impossible for Subversion to know how to resolve
conflicts. In those cases, the developer will have to examine the code and manually
resolve the differences and thus merge the two versions of a file.

Revisions and versions
The terms revision and version are often used interchangeably; however, the correct
terminology used by Subversion is revision. A revision constitutes an incremental
change to the code. Correspondingly, the revision number for the whole repository
increases by one each time a revision is committed.

In contrast, software releases are typically given a release number, which associates
the release with a set of features.

Updating
Updating refers to the act of retrieving changes to the project's files in the repository
by downloading them to the developer's local working copy. During the update,
changes will be merged into the local working copy either automatically if possible
or manually by the developer.

Developers should update their local working copy regularly to avoid the two versions
of the code from diverging too much and minimizing the risk of incompatibilities.

Comparing
Comparing refers to the activity of systematically stepping through the differences
between two different revisions of the same file or two different files. This is typically
done during merging to resolve a conflict. However, Subversion's support for
visually comparing two versions of a file also comes in handy when trying to retrace
the incremental changes to a file. Comparing is also referred to as "diffing" two files
or folders and uses an algorithm to detect and highlight the differences. It can even
be used to create a patch to transform one version of the file into the other.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[147]

History/Log
You can (and should) accompany each commit with a comment. Viewing the history
of a file involves looking at these comments, actions taken, date, and other files
affected. It's a way of viewing the transformations a file has undergone over time.
You can also view this information for the whole project rather than only a single file.

Annotating code
Annotated source code output will display any revision of a file with the name of the
developer responsible for each line of code and the revision number when it was last
changed or added.

Following is some sample output as produced by the Subversion's aptly named
blame command that is used to generate annotated source code listings. The first
column contains the revision number in which the corresponding line of code was
last changed. The second column holds the name of the developer, followed by the
line of code itself:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[148]

Reverting
Subversion retains a "pristine" local copy of each file that was checked out into
the local workspace from the repository. As the developer starts making changes
to the file, this hidden copy of the file remains unchanged. Consequently, the two
files further diverge with more changes that the developer makes. Reverting means
discarding all local changes and starting over with the file the way it was when
originally checked out of the repository.

Committing
Once changes have been made to the developer's local working copy, the change
will have to be communicated back to the central repository before they can become
available to other developers on the team. During or before the process of committing
the changes, it is often necessary for the developer to update his working copy and
resolve any differences before being allowed to perform the commit operation.

Subversion command reference
"Version Control with Subversion" does a fine job of documenting all Subversion
commands, including all optional parameters, in great detail. The same can be said
for the many man pages that come with Subversion. Rather than simply repeating
that information, based on those sources, I would like to present a more concise
reference to the most frequently used commands to get you started quickly. Once
you require additional commands or more detail on a particular command, you can
consult one of the two free resources mentioned.

svn
svn is the command-line client used by developers to interact with the repository
and their local working copy. Below is the complete list of svn subcommands
because these are the tools developers use on a daily basis. Consequently, you
should probably spend some time familiarizing yourself with all of them.

Command: svn add [--auto-props] [--depth ARG] [--force] [--no-auto-props] [--no-
ignore] [--parents] --quiet (-q)] [--targets] FILENAME LWC_PATH

Accesses: Repo, LWC Changes: LWC
Description: Add a file, folder (recursively), or symbolic link to the repository

during the next commit.
Example: % svn add ./myfile.php

A myfile.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[149]

blame

Command: svn blame/praise/annotate/ann [--extensions (-x) ARG] [--force]
[--incremental] [--revision (-r) ARG] [--use-merge-history (-g)] [--verbose
(-v)] [--xml] TARGET

Accesses: Repo Changes: LWC
 List the specific TARGET file with each line being preceded by the author's

name and the revision when it was changed.
Example: % svn blame https://secure.waferthin.com/myproject/

trunk/index.php
156 dirk <?php
156 dirk
157 dirk // including bootstrap file

cat

Command: svn cat [--revision (-r) REV] TARGET
Accesses: Repo Changes:
Description: Output file contents.
Example: % svn cat -r 164 \

 https://svn/svn/svn-hooks/branches/nt-feat/pre-commit

changelist

Command: svn changelist [--changelist ARG [--depth ARG] [--quiet (-q)] [--recursive
(-R)] [--remove] [--targets ARG] CLNAME TARGET

Accesses: LWC Changes:
Description: Create and assign a name to a logical grouping of files in the local

working copy.
Example: svn changelist ticket312 file1.php file2.php

...
svn commit –changelist ticket312

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[150]

checkout

Command: svn checkout/co --depth ARG [--force] [--ignore-externals]

[--quiet (-q)] [--revision (-r) REV] URL[@REV]... [PATH]
Accesses: Repo, LWC Changes: LWC
Description: Check project out for repository and creates local working copy. Can take

multiple directories to check out.
Example: % svn checkout -r 164 \

 https://svn/svn/svn-hooks/branches/php-nt-feature

cleanup

Command: svn cleanup [--diff3-cmd CMD] [PATH…]
Accesses: LWC Changes: LWC
Description: Recursively remove locks and resume incomplete operations. Run this if

you encounter a working copy locked error.
Example: % svn cleanup ./lwc_project_dir

commit

Command: svn commit/ci --changelist ARG [--depth ARG] [--editor-cmd ARG]
[--encoding ENC] [--file (-F) FILE] [--force-log] [--keep-changelists]
[--message (-m) TEXT] [--no-unlock] [--quiet (-q)] [--targets FILENAME]
[--with-revprop ARG] [PATH...]

Accesses: Repo Changes: Repo, LWC
Description: Send changes from your local working copy to the repository.
Example: % svn commit –m "Fixes for bug 312." ./parser.php

copy

Command: svn copy/cp [--editor-cmd EDITOR] [--encoding ENC] [--file (-F) FILE]
[--force-log] [--message (-m) TEXT] [--parents] [--quiet (-q)] [--revision (-r)
REV] [--with-revprop ARG] SRC[@REV]... DST]

Accesses: Repo, LWC Changes: Repo, LWC
Description: Copy files or directories (recursively). Both, source and destination, can

be a local working copy path or a repository URL. Used to create branches
(which are just copies).

Example: % svn copy https://svn/svn/svn-hooks/trunk \
 https://svn/svn/svn-hooks/branches/php-nt-feature

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[151]

delete

Command: svn delete/del/remove/rm [--editor-cmd EDITOR] [--encoding ENC]
[--file (-F) FILE] [--force] [--force-log] [--keep-local] [--message (-m) TEXT]
[--quiet (-q)] [--targets FILENAME] [--with-revprop ARG] PATH/URL...

Accesses: Repo Changes: Repo, LWC
Description: Delete items in local working copy on next commit or items from the

repository immediately.
Example: % svn delete ./parser_old.php

% svn commit ./parser_old.php

diff

Command: svn diff/di --change (-c) ARG [--changelist ARG] [--depth ARG] [--diff-cmd
CMD] [--extensions (-x) "ARGS"] [--force] [--new ARG] [--no-diff-deleted]
[--notice-ancestry] [--old ARG] [--revision (-r) ARG] [--summarize] [--xml]
[-c M | -r N[:M]] [TARGET[@REV]...]

Accesses: Repo, LWC Changes:
Description: Display differences between two files or different revisions of the same file.
Example: % svn diff –r 126:129 parser.php

export

Command: svn export [--depth ARG] [--force] [--ignore-externals] [--native-eol EOL]
[--quiet (-q)] [--revision (-r) REV] [-r REV] URL/PATH1[@PEGREV]
[PATH2]

Accesses: Repo Changes: Destination Path
Description: Exports a clean copy of the directory referenced by the URL or PATH1

argument. This command can export from repositories or local working
copies. Use this command to deploy or install an application.

Example: % svn export –r 250 https://svn/svn/svn-hooks/trunk\
 /usr/local/SVN/hooks

help

Command: svn help/h/? [SUBCOMMAND...]
Accesses: Changes:
Description: View built-in help.
Example: % svn help diff

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[152]

import

Command: svn import [--auto-props] [--depth ARG] [--editor-cmd EDITOR]
[--encoding ENC] [--file (-F) FILE] [--force] [--force-log] [--message (-m)
TEXT] [--no-auto-props] [--no-ignore] [--quiet (-q)] [--with-revprop ARG]
[PATH] URL

Accesses: Repo, LWC Changes: Repo
Description: Recursively imports a local directory into the repository.
Example: % svn import –m "landing initial version of project" ./

cool_project https://ourcompany.com/svn/trunk

info

Command: svn info [--changelist ARG] [--depth ARG] [--incremental] [--recursive
(-R)] [--revision (-r) REV] [--targets FILENAME] [--xml] [TARGET[@
REV]...]

Accesses: Repo, LWC Changes:
Description: Display array of info about file(s) in the local working copy or

the repository.
Example: % svn info ./parser.php

list

Command: svn list/ls [--depth ARG] [--incremental] [--recursive (-R)] [--revision (-r)
REV] [--verbose (-v)] [--xml] [TARGET[@REV]...]

Accesses: Repo, LWC Changes:
Description: List files in a directory in the repository.
Example: % svn list https://ourcompany.com/svn/proj/trunk/docs

lock

Command: svn lock [--encoding ENC] [--file (-F) FILE] [--force] [--force-log]
[--message (-m) TEXT] [--targets FILENAME] TARGET

Accesses: Repo Changes: Repo, LWC
Description: Supply a reference to local working copy file(s) to lock corresponding

file(s) in the repository. Locked files prevent other users from committing
changes. See "unlock" command.

Example: % svn lock parser.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[153]

log

Command: svn log [--change (-c) ARG] [--incremental] [--limit (-l) NUM] [--quiet (-q)]
[--revision (-r) REV] [--stop-on-copy] [--targets FILENAME] [--use-merge-
history (-g)] [--verbose (-v)] [--with-all-revprops] [--with-revpropARG—
xml] [PATH]

Accesses: Repo Changes:
Description: Display log messages for file(s).
Example: % svn log parser.php

merge

Command: svn merge [--accept ARG] [--change (-c) REV] [--depth ARG] [--diff3-
cmd CMD] [--dry-run] [--extensions (-x) ARG] [--force] [--ignore-
ancestry] [--quiet (-q)] [--record-only] [--reintegrate] [--revision (-r) REV]
sourceURL1[@N] sourceURL2[@M] [WCPATH]

Accesses: Repo, LWC Changes: LWC
Description: Compare two sources (a branch and trunk, for example) and apply the

differences to a working copy. Use this command to merge a branch back
into trunk.

Example: % svn merge –r 224:226 parser.php

mergeinfo

Command: svn mergeinfo [--revision (-r) REV] SOURCE_URL[@REV] [TARGET[@
REV]...]

Accesses: Repo, LWC Changes:
Description: Display merge info (past or potential) for files or directories.
Example: % svn mergeinfo \

 https://ourcompany.com/svn/svn-hooks/trunk \
 https://ourcompany.com/svn/svn-hooks/branches/newfeat

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[154]

mkdir

Command: svn mkdir [--editor-cmd EDITOR] [--encoding ENC] [--file (-F) FILE]
[--force-log] [--message (-m) TEXT] [--parents] [--quiet (-q)] [--with-revprop
ARG] PATH/URL

Accesses: Repo Changes: LWC, Repo
Description: Create a directory in the repository or the local working copy.
Example: % svn mkdirk ./library

% svn commit ./library

move

Command: svn move/mv/rename/ren [--editor-cmd EDITOR] [--encoding ENC]
[--file (-F) FILE] [--force] [--force-log] [--message (-m) TEXT] [--parents]
[--quiet (-q)] [--revision (-r) REV] [--with-revprop ARG] SRC DST

Accesses: Repo, LWC Changes: Repo, LWC
Description: Move files or directories in the local working copy or the repository.
Example: % svn move ./parser.php includes/libraries/

propdel

Command: svn propdel/pdel/pd [--changelist ARG] [--depth ARG] [--quiet (-q)]
[--recursive (-R)] [--revision (-r) REV] [--revprop] PROPNAME [PATH]

Accesses: Repo, LWC Changes: Repo, LWC
Description: Remove a property from files or directories.
Example: % svn propdel contributed-by-ben-inc ./libraries

propedit

Command: svn propedit/pedit/pe [--editor-cmd EDITOR] [--encoding ENC]
[--file (-F) ARG] [--force] [--force-log] [--message (-m) ARG] [--revision (-r)
REV] [--revprop] [--with-revprop ARG] PROPNAME TARGET

Accesses: Repo, LWC Changes: Repo, LWC
Description: Edit a property assigned to one or more files.
Example: % svn propedit contributed-by-ben-inc ./parser.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[155]

propget

Command: svn propget/pget/pg [--changelist ARG] [--depth ARG] [--recursive (-R)]
[--revision (-r) REV] [--revprop] [--strict] [--xml] PROPNAME [TARGET[@
REV]...]

Accesses: Repo, LWC Changes: Repo, LWC
Description: Output property value.
Example: % svn propget contributed-by-ben-inc ./libraries/

proplist

Command: svn proplist/plist/pl --changelist ARG] [--depth ARG] [--quiet (-q)]
[--recursive (-R)] [--revision (-r) REV] [--revprop] [--verbose (-v)] [--xml]
[TARGET[@REV]...]

Accesses: Repo, LWC Changes: Repo, LWC
Description: List properties assigned to one or more files in the working copy.
Example: % svn proplist ./parser.php

propset

Command: svn propset/pset/ps [--changelist ARG] [--depth ARG] [--encoding ENC]
[--file (-F) FILE] [--force] [--quiet (-q)] [--recursive (-R)] [--revision (-r)
REV] [--revprop] [--targets FILENAME] PROPNAME [PROPVAL | -F
VALFILE] PATH...

Accesses: Repo, LWC Changes: Repo, LWC
Description: Assign a property and corresponding value to one or more files or

directories in the local working copy or the repository.
Example: % svn propset contributor \

 contributed-by-ben-inc parser.php

resolve

Command: svn resolve [--accept ARG] [--depth ARG] [--quiet (-q)] [--recursive (-R)]
[--targets FILENAME] PATH...

Accesses: Changes: LWC
Description: Replace conflict file and remove conflict artifacts.
Example: % svn resolve --accept mine-full parser.php

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[156]

resolved

Command: svn resolved [--depth ARG] [--quiet (-q)] [--recursive (-R)] [--targets
FILENAME] PATH...

Accesses: Changes: LWC
Description: Removes conflict artifacts. Does actually change files to resolve conflict.
Example: % svn resolved parser.php

revert

Command: svn revert --changelist ARG] [--depth ARG] [--quiet (-q)] [--recursive (-R)]
[--targets FILENAME] PATH…

Accesses: Changes: LWC
Description: Reset file(s) in local working copy to base revision.
Example: % svn revert parser.php

status

Command: svn status/stat/st [--changelist ARG] [--depth ARG] [--ignore-externals]
[--incremental] [--no-ignore] [--quiet (-q)] [--show-updates (-u)] [--verbose
(-v)] [--xml] [PATH…]

Accesses: Repo, LWC Changes:
Description: Output status and info on changes to local working copy files.
Example: % svn status ./libraries

switch

Command: svn switch/sw [--accept ARG] [--depth ARG] [--diff3-cmd CMD] [--force]
[--ignore-externals] [--quiet (-q)] [--relocate] [--revision (-r) REV]
[--set-depth ARG] URL[@PEGREV] [PATH]

Accesses: Repo, LWC Changes: LWC
Description: Associate your local working copy with a different repository location.
Example: % svn switch https://ourcompany.com/svn/branch/newone .

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[157]

unlock

Command: svn unlock [--force] [--targets FILENAME] TARGET…
Accesses: Repo, LWC Changes: Repo, LWC
Description: Unlock target file(s). See "lock" command.
Example: % svn lock parser.php

update

Command: svn update/up [--accept ARG] [--changelist] [--depth ARG] [--diff3-cmd
CMD] [--editor-cmd ARG] [--force] [--ignore-externals] [--quiet (-q)]
[--revision (-r) REV] [--set-depth ARG] [PATH…]

Accesses: Repo, LWC Changes: LWC
Description: Updated local working copy with changes committed to the repository

since the last successful update.
Example: % svn update

svnadmin
The svnadmin is the administrators' toolkit. In addition to subcommand allowing
you to make backups, inspect, and repair repositories is the ability to create one.

create

Command: svnadmin create [--bdb-log-keep] [--bdb-txn-nosync] [--config-dir DIR]
[--fs-type TYPE] [--pre-1.4-compatible] [--pre-1.5-compatible]
REPOS_PATH

Description: Create a new repository at the specified path.
Example: % svn create /usr/local/SVN

dump

Command: svnadmin dump [–deltas] [--incremental] [--quiet (-q)] [--revision (-r) REV]
dump REPOS_PATH

Description: Dumps the whole repository to STDOUT in a portable file format suitable
for migrating repositories and backing them up.

Example: % svnadmin dump /usr/local/SVN > svn_backup.6-30-09.
dump

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[158]

Additional svnadmin subcommands not covered here in detail include: crashtest,
deltify, help, hotcopy, list-dblogs, list-unused-dblogs, load, lslocks,
lstxns, recover, rmlocks, rmtxns, setlog, setrevprop, setuuid, upgrade,
and verify.

svnlook
svnlook is a utility for querying info about a repository. It only 'looks' and doesn't
make any changes to the repository. The subcommands available to target specific
information include: author, cat, changed, date, diff, dirs-changed, help,
history, info, lock, log, propget, proplist, tree uuid, youngest.

Here is an example of how the author subcommand behaves. The other subcommands
behave in very much the same fashion.

Command: svnlook author [--revision (-r) REV] [--transaction (-t) TXN] REPOS_PATH
Description: Print the author of the (most recent) revision to the repository.
Example: % svnlook author –r 125 /usr/local/SVN

svnserve
svnserver is server executable that speaks Subversion's custom network protocol.
It is one of the options you have for enabling remote access to your repository.
svnserver has no subcommands.

svndumpfilter
This command line utility operates on existing Subversion dump files. Using
subcommands and optional arguments, it can selectively remove paths/files
from a dump file. Subcommands are: exclude, include, and help. Here is an
example of how to exclude the paths containing test_scripts from a dump
file while creating a new dump file:

% svndumpfilter exclude test_script \

 < svn_7-1-09.dump \

 > svn_notests_7-1-09.dump

svnversion
This command line utility outputs summary revision information of what is currently
contained in your local working copy.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[159]

Creating a Subversion project
Nothing illustrates the use and usefulness of Subversion as much as an example.
Let's create a small project and see it through the whole Subversion workflow.

Subversion allows you to execute external scripts to affect some of its actions. These
scripts are called hooks. I have put together a small project where we create two of
these hooks; namely a pre-commit hook and a post-commit one. I imagine you can
already guess when these hooks will be executed. Hooks are discussed in more detail
later in this chapter. Following is a short description accompanying each of the four
files in the project.

The pre-commit script will be executed just before a changeset is being committed
to the repository. On one hand, if the script terminates with exit code 1, the commit
will be aborted and the output from STDERR will be displayed to the user. On the
other hand, if the script returns exit code 0, the commit will complete as requested.
In our case, we are running two checks to decide whether to allow the commit
command. First, we disallow empty comments. Second, we use the PHP_CodeSniffer
pre-commit hook to enforce the Zend Framework coding standard in our source
code files.

Also worth a note is the use of svnlook, which is a Subversion utility to retrieve all
kinds of info about the repository and individual files. In our pre-commit script, we
are using it to retrieve the comment being submitted with the commit command.

/pre-commit:
#!/usr/local/apache2/php/bin/php
<?php
// class for command line parsing
require_once('includes/classes/Cli/Options.php');

// path to local svnlook executable
define('SVNLOOK', '/usr/local/bin/svnlook');

// path to local PHP_CodeSniffer pre-commit hook script
define('PHPCSPC', '/usr/local/apache2/php/bin/scripts/
 phpcs-svn-pre-commit');

// get object reference and parse current command line
$options = Cli_Options::getInstance();

// make sure we were given the two arguments we need to continue
if (count($options->getArguments()) < 2) {
 fwrite(STDERR, "Error: " . $options->getScriptName() . " requires
 two parameters.");
 exit(1);

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[160]

}

// get repository and transaction passed in from
// Subversionas as command line arguemtns
list($repos, $txn) = $options->getArguments();

// get latest log message
exec(SVNLOOK . " log -t '$txn' '$repos'", $svnlookOutput);

if (is_array($svnlookOutput)) {
 $svnlookOutput = trim(implode("\n", $svnlookOutput));
}

// make sure log message is not empty
if (empty($svnlookOutput)) {
 fwrite(STDERR, "Error: log message is required.");
 exit(1);
}

// see if PHP_CodeSniffer ok's our code
exec(PHPCSPC . " --standard=Zend --tab-width=4 '$repos' -t '$txn'",
 $phpcsOutput, $phpcsReturnValue);

if (is_array($phpcsOutput)) {
 $phpcsOutput = trim(implode("\n", $phpcsOutput));
}

// did PHP_CodeSniffer return an error?
if ($phpcsReturnValue == 1) {
 fwrite(STDERR, "phpcsOutput: $phpcsOutput");
 exit(1);
}

// everthing went fine
exit(0);
?>

In contrast to pre-commit, the post-commit script gets executed just after the
commit command has been processed. Although it is too late to allow or disallow
the commit, we can use it to send out an informative e-mail to individual developers,
managers, or a mailing list distribution account. Composing a nicely formatted
e-mail and sending it out is actually being handled by svnnotify, an open source
Perl script that has been maintained over several years for just that purpose.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[161]

post-commit:

#!/usr/local/apache2/php/bin/php
<?php
// class for command line parsing
require_once('includes/classes/Cli/Options.php');

// path to local svnnotify executable
define('SVN_NOTIFY', '/opt/local/bin/svnnotify');

// get object reference and parse current command line
$options = Cli_Options::getInstance();

// make sure we were given the two arguments we need to continue
if (count($options->getArguments()) < 2) {
 fwrite(STDERR, "Error: " . $options->getScriptName() . " requires
 two parameters.");
 exit(1);
}

// get repository and revision passed in from
// Subversionas as command line arguemtns
list($repos, $rev) = $options->getArguments();

// send post-commit email(s)
exec(SVN_NOTIFY . " --from dirk@waferthin.com --to dirk@waferthin.com
 --handler HTML::ColorDiff -d --repos-path '$repos' --revision
 '$rev'");
?>

If you have been reading the code for the pre-commit and post-commit scripts
above, you will have noticed the use of the Cli_Options class. This is a utility
class, implemented as a singleton, for parsing command-line arguments and
options. Although we only use it to retrieve arguments needed by svnlook
and svnnotify, it also supports parsing of options and flags.

includes/classes/Options/Cli.php:

<?php
class Cli_Options
{
 private static $instance = null;
 private $scriptName = null;
 private $supportedOptions = array();
 private $optionValues = array();
 private $arguments = array();

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[162]

 private function __construct($supportedOptions)
 {
 // required for getopt() support
 if (!function_exists('getopt')) {
 throw new Exception("getopt() is not available.");
 }

 $this->setSupportedOptions($supportedOptions);
 $this->processCommandLine();
 }

 public static function getInstance($supportedOptions = array())
 {
 if (self::$instance == null) {
 self::$instance = new Cli_Options($supportedOptions);
 }
 return self::$instance;
 }

 public function setSupportedOptions($supportedOptions)
 {
 if (!is_array($supportedOptions)) {
 throw new Exception("Supported command line options must
 be passed in as an array.");
 } else {
 $this->supportedOptions = $supportedOptions;
 }
 }

 public function getSupportedOptions()
 {
 return $this->supportedOptions;
 }

 public function getScriptName()
 {
 return $this->scriptName;
 }

 public function getArguments()
 {
 return $this->arguments;
 }

 public function getArgument($i = 0)
 {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[163]

 return $this->arguments[$i];
 }

 public function processCommandLine($args = null)
 {
 // if no command line was given, pull in global one
 if ($args === NULL) {
 $args = $GLOBALS['argv'];
 }

 // parse options
 $opts = getopt(implode('', $this->supportedOptions));

 // store the script name
 $this->scriptName = array_shift($args);

 // remove options from $args array
 foreach ($opts as $opt => $arg) {

 $allowed = str_replace(array(':', $opt), '',
implode($this->supportedOptions));

 $max = strlen($allowed);

 $key = key(preg_grep("'^-$opt([$allowed]{0,$max}|$arg)$'",
$args));

 // process option & store it
 $this->processOption($args[$key]);

 unset($args[$key]);
 }

 // reorder array keys
 $args = array_values($args);

 // store arguments
 $this->arguments = $args;
 }

 protected function processOption($option = '')
 {
 // remove dash
 if ($option{0} == '-') {
 $option{0} = '';
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[164]

 // does the option have an argument?
 if (strstr($option, ':')) {
 list($key, $value) = explode(':', $option, 2);
 $this->optionValues[$key] = $value;

 } else {
 $this->optionValues[$option] = true;
 }
 }

 public function getOptionValue($option)
 {
 // is the option supported?
 if (in_array($option, $this->supportedOptions) ||
 in_array($option . ':', $this->supportedOptions)) {
 return $this->optionValues[$option];
 } else {
 throw new Exception("Unsupported option requested.");
 }
 }
}
?>

Cli_Options.php is a generic class for parsing command line arguments to scripts
wrapping PHP's built-in getOpt() function.

Since the constructor method is private, the static getInstance() method is the
only way to instantiate the object. If an instance of the class doesn't already exist,
getInstance() will create it by calling the constructor and return the resulting
object. The constructor itself checks whether the getOpt() function is defined in
this version of PHP because without it the class will not work. The constructor
also accepts an array of strings as a parameter that determines which command
line options will be supported when parsing the command line. The last thing the
constructor does is to call the processCommandLine() method, which is where it
gets interesting.

After obtaining a reference to the command line arguments array to be processed,
processCommandLine() uses getOpt() to parse the supported options and stores
them in an associative array $allowed. It also stores the name of the executing
script in a variable. It then iterates over the arguments, processing one at a time
by removing it from the array and parsing any argument to the option using the
utility method processOption().

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[165]

In the end, we are left with an associative array $optionValues that holds the
argument for a given option. The remaining methods are merely setters and getters
for the name of the executing script, the arguments, and most importantly the values
of the options given on the command line.

test.php is a command-line script used to test Cli_Options. Simply execute it
with a couple of command line arguments and switches to see how they are being
handled by the Cli_Options utility class.

test/test.php

#!/usr/local/apache2/php/bin/php
<?php
require_once('../includes/classes/Cli/Options.php');

$options = Cli_Options::getInstance(array('i', 'v', 'h', 'p:'));
$options->processCommandLine();

// testing script name parsing
echo 'script name: ' . $options->getScriptName() . "\n";

// testing option value parsing
echo "p:" . $options->getOptionValue('p') . "\n";

// testing argument parsing
echo "first argument: " . $options->getArgument(0) . "\n";
?>

test.php starts out requiring the Cli_Options class listed previously. It then
obtains an instance of the class and tells it that 'i', 'v', 'h', and 'p' are acceptable
command line options and that 'p' requires an argument, which is indicated by
the colon following the 'p'. After processing the command line, the script outputs
the name of the script (test.php), the argument given with the 'p' command line
option, and the first argument.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[166]

Now that we have spent some time putting together the initial version of our
project let's add it to an existing repository. We start by creating the commonly used
directories branches, tags, and trunk. We then put all our files into the trunk with the
two hook scripts (pre-commit and post-commit) in the root directory, the test.php
script into a test directory, and lastly the Options.php into includes/classes/Cli/.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[167]

Now that we have the initial layout of our project, let's add it to our local repository
using svn's import command:

We're using the –m switch to supply a comment. Also, I added the desired directory
name at the end of the repository URL because the import command processes the
contents of the local directory, also named svn-hooks, but not the directory itself.
Depending on your Subversion setup, you should get prompted for your credentials
before being allowed to import a project or do anything else with the repository.

Now that we have our project safely stored in Subversion, we no longer need the
original. Assuming that we intend to commit future enhancements back to Subversion,
we will shortly be checking the project out of the repository again. For now, we will
delete the original project folder to prevent us from accidentally working with that
version and then having to take extra steps to commit our changes.

$ rm -rf ./svn-hooks

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[168]

Basic version control workflow
All files that constitute a project are assembled at a central location. Development
group members are able to authenticate before accessing any part of the project
files. They download all or some of the files of the project:

Start work

on project

Check out

project

Make Code

Changes

Update Working

copy

Automated

Merge

Conflict

Exists?

Finished?

Commit Changes

No

Manually

Resolve

Conflicts

Repository

Yes

Yes

No

Hopefully a picture (really a diagram in this case) says a thousand words. However,
it might make sense to step through the typical Subversion workflow.

As a developer joins or starts a project, he checks the code of the project out of the
repository. This means copying all files to his local workspace. This way, he can
work without constantly being tied to the repository. As part of his main work
activity of programming, he makes changes to the code and tests them.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[169]

Periodically, it becomes necessary for the developer to update his local working copy
by connecting to the central repository and downloading new changes committed by
other developers since the last time he performed such an update (or checkout). This
is done to ensure that the code he develops will be compatible with the contributions
of the other developers. It is even possible for the developer to have to update his
working copy with his own changes if he uses more than one working copy, say one
on his work machine and another at home.

In many cases, Subversion is able to merge changes automatically without requiring
input from the developer. However, the developer should still examine the changes
to make sure there are no unanticipated conflicts with his as yet uncommitted code.
If there are conflicts, Subversion cannot resolve on its own, the developer will be
prompted to manually resolve those conflicts before continuing.

After going through multiple iterations of making changes and synchronizing
with the repository, the developer will reach a point where his development has
been completed and he should then commit his changes back to the repository.

Let's pick up work on our svn-hook project to see the above workflow in action. First,
we check out the project for us to have a repository-aware local copy of the code:

If you paid close attention to the above example, you will have noticed that we
check out the trunk of the project, but we put it into a local directory named after
the project itself. This is simply a naming convention I follow for projects I work
on. If I were to check out a branch, I probably would have named the local folder
accordingly, something like "svn-hooks-windows-branch."

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[170]

Next, let's make some changes to our project, by adding a destructor method and
adding some inline comments to the constructor. After making those changes,
we want to update our local working copy.

The "C" preceding the file name signals a conflict. Apparently, someone else has
modified the Options.php file in such a way that Subversion is unable to merge
his/her changes into our local working copy without our involvement. We need
to investigate further. First, let's take a look at the contents of the directory where
the problem file resides.

There are actually four versions of the same file and looking at the file sizes, they are
all different. Here is what happened. Subversion encountered a conflict and so as not
to lose any changes while providing us with the information we need to resolve the
conflict, it created these four files:

•	 Options.php.r161 is revision 161 of the file. This is our base revision.
In other words, this is the revision we checked out of the repository,
but before we made our changes.

•	 Options.php.r163 is revision 163 of the file. This is the most recent revision
as it is in the repository right now and the one that is causing a conflict with
our local version.

•	 Options.php.mine is the file from our local working copy to which
we made the changes. Subversion renamed it from Options.php to
Options.php.mine when it detected the conflict.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[171]

•	 Options.php is our file pre-commit file, but with the conflict section marked
up using the diff utility. Here are the relevant lines in the code:

<?php
class Cli_Options
{
 private static $instance = null;
 private $scriptName = null;
 private $supportedOptions = array();
 private $optionValues = array();
 private $arguments = array();

<<<<<<< .mine
 // private constructor for singleton
=======
 // TODO: no comment for this constructor?
>>>>>>> .r163
 private function __construct($supportedOptions)
 {

Now we can tell what happened. It all has to do with comments. Someone who
committed his changes to the repository under revision 163, added a TODO item
asking the developer to add a comment describing the constructor method. My
own comment (.mine) conflicted with that line. Not knowing the actual meaning
of the conflicting lines, Subversion did not know how to resolve the conflict and
instead alerted us.

Let's use the blame command to find out who added that comment.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[172]

Apparently user "Paul" did a code review and noticed that I had neglected to
properly comment the constructor.

How do we resolve the conflict? We could manually edit the Options.php file to
how we want the code to look. However, since our change is essentially a response
to Paul's comment, even though we didn't know about it until we tried to commit,
we would like to be able to tell Subversion to go ahead with our version. That is
exactly what the resolve command does. After resolving the conflict, we are free
to commit our changes to the repository.

This command also removes the conflict artifacts. For additional options this
command offers, please see the manual.

A closer look at the repository
As mentioned before, the repository is the central place where Subversion keeps
all information, including the files (current and past versions), tags, branches,
meta-info, and so on. You can basically think of a repository of a file system
with memory. Just like in a file system, projects, folders, and files are organized
in a hierarchical tree structure.

From a Subversion client, you can perform all kinds of actions on those files, including
adding, deleting, changing, and resolving conflicts. Subversion will keep track of
all your actions and revert to any previous state. In a sense, you get infinite undo!

Data store
Internally to the repository, there are two backend engines that can be used to
store the files: Berkeley DB (BDB) and the normal flat file storage supported by the
underlying operating system (FSF). If you are familiar with MySQL, you can think of
these options as the storage engine underlying a table definition.

While BDB was used during the initial development of Subversion, support for
FSF was added in version 1.1 and quickly became the default. FSF provides more
flexibility when it comes to accessibility and reliability. It also makes moving

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[173]

repositories across platforms a snap. In contrast, you cannot copy the BDB-based
repository to another operating system and expect it to work. For most purposes,
you should stick with FSF as the default. However, that is not to say that BDB has
some nice features to offer as well. For a more detailed look at BDB in Subversion,
please consult the online manual.

Thankfully, clients of the repository are blissfully unaware of the choice of data
store. Only when something goes wrong, such as a system crash where actions on
the files in the repository are interrupted mid-process, does it fall to the repository
administrator to step in.

You choose the data store with a simple command line switch when you create the
repository. See the options for the svnadmin create command for more details.

Layout
The repository provides you with the ability to store your files and projects; as well
as all their history. But, it does not tell you how to organize them. If you so choose,
you can dump every single project or file into the top-level of the repository, but that
would quickly lead to chaos as projects and files get mixed up. The repository is not
unlike the file system of the machine you use to program. Some people have their
desktop or home directory littered with hundred of files. Others have everything
organized and neatly categorized. Naturally, there is a lot of room in between.

Your best bet is to devote some time to choosing the layout before creating the
repository. Following are two diagrams to illustrate the most commonly adopted
repository layouts: multiple projects within a single repository and a single project
per repository.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[174]

This first option reduces the time required for administration because you are
dealing with only one repository. With this option, your hook scripts will have
to be aware of individual project requirements. For example, you might want to
send a notification email when a developer commits a piece of code to Project1,
but not Project2. You can only achieve that by integrating that logic into the
hook script. In contrast, the next option does not suffer from this drawback.

With this second option, you would have a single project per repository. You still
have the option of organizing sub-projects in corresponding directories of the trunk
directory and this makes sense when sub-projects are tightly coupled or related. This
is the layout you encounter most often.

If you think back to how we added our sample project to our repository, you might
realize that we went with the first option. We added a project folder containing
"trunk", "branches", and "tags" directories to an existing repository.

Branching and merging
In this section, we will be looking at the concepts and practical implications of
branching your code. Some might consider this an advanced feature, however,
since mastering these concepts gives you such a powerful tool, it is well worth
spending your time on. If you are working in a team environment or you have
the need to support multiple versions of the same project, you will want to pay
attention now.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[175]

What is a branch?
You create a branch of the code when you tell Subversion that you want to fork off
the main development path, the trunk, and make a separate parallel branch of code.
You can think of Subversion making a copy of all the files in the project and letting
you work on that copy instead of the original. Any changes you commit back to the
repository will modify the copy of the files in the branch you are working on, not the
trunk. Of course, this implies that other developers will not be affected or benefit from
any changes you commit unless they are working in the same branch as you are.

Why branch?
Let's look at some of the reasons for creating a branch of your trunk. After all, it will
result in more work having to maintain two separate lines of development.

One reason to branch is because you have two different sets of requirements that
will have to be implemented with the existing code base. For example, it has not
been that long that MySQL AB, the company developing the popular open source
database MySQL was acquired by Sun Microsystems, which in turn was acquired by
Oracle. Considering the commercial nature of Oracle, you might have some doubts
regarding their commitment to open source in general and the further advancement
of MySQL in particular. Luckily, since MySQL has been made available under an
open source license, it is trivial to start with the most recent official release and create
your own branch. Assuming you have the skill and time to significantly advance
the development of a relational database system, you can now start your work on
"OurSQL" – or whatever you want to call your new project. In this scenario, you are
probably permanently branching away from the trunk of the project and will not
have to merge changes later on.

Another reason to branch might be that a developer on your team has been asked to
implement an elaborate feature that touches upon many parts of the project and is
therefore likely to interfere with the work of other developers working on unrelated
tasks. In this case, you can create a branch for the developer to do his or her work.
The intention of this approach is to merge the changes to the branch back into the
trunk after coding has been completed and thoroughly tested.

Another scenario to consider is that after a successful launch of version 2 of your
project, you are making great progress towards version 3 when a number of
unfortunate bugs are discovered that really require you to release a fix. One way
to do this is to branch the code at the version 2 tag. You can then make the fixes
to the version 2 code base, release a revision to that version, say v2.0.1, and later
merge those same fixes into trunk if necessary.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[176]

How to branch?
Creating a branch is pretty straightforward. Before you make any changes to your
branch it is nothing more than a copy of the version with which you start. It should
therefore come as no surprise that we need to use svn's copy command to create a
branch. Although the command's syntax supports making local copies/branches,
the preferred way of doing it is remotely by using remote repository URLs for both
the source and the target of the copy operation.

Continuing our svn-hook example, let's branch the trunk of the project so that we
can work on implementing a feature to syntax check PHP scripts before they are
being committed. This is equivalent to running the CLI version of PHP with the
-l command line switch. Here is the Subversion command for creating the branch:

As far as the developer is concerned, there are now two separate copies of the
project: the original in the trunk directory and a newly created copy in the
branches/php-ling-feature directory. However, Subversion is smart about
copying files. To save space, it only creates a pointer to the original file. This is
the equivalent of a shortcut, alias, or symbolic link—depending on which
terminology you are used to. As long as both copies are the same, there is really
only one file that can be accessed from two different directory paths. However,
as soon as one of the files changes, Subversion creates a second file to track those
changes. This approach is generally referred to as cheap copies.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[177]

Maintaining and merging a branch
Now that we have created a branch, let's check it out of the repository and start
working on the lint-checking feature.

We now make some changes to the pre-commit script. First we add a function that
can retrieve a list of files that are being committed. From that list, we omit files that
are being deleted. Furthermore, we have the ability to limit the list to certain file
extensions (".php" comes to mind) and exclude any file names matching a certain
pattern. This function was adapted from code present in the
phpcs-svn-pre-commit script.

// ... other code …
// function uses svnlook to get list of files
// adapted from phpcs-svn-pre-commit
function getPhpFileList($repo,
 $txn,
 $allowedExtensions = array(),
 $disallowedPatterns = array())
{
 // Get list of files in this transaction.
 $command = SVNLOOK . " changed $repo -t '$txn'";

 $handle = popen($command, 'r');
 if ($handle === false) {
 echo 'ERROR: Could not execute svnlook' . $PHP_EOL;
 exit(2);
 }

 $contents = stream_get_contents($handle);

 fclose($handle);

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[178]

 // Do not check deleted paths.
 $contents = preg_replace('/^D.*/m', null, $contents);

 // Drop the four characters representing the action which precede
 the path on
 // each line.
 $contents = preg_replace('/^.{4}/m', null, $contents);

 $files = array();

 $allowedPattern = implode('|', $allowedExtensions);
 $disallowedPattern = implode('|', $disallowedPatterns);

 foreach (preg_split('/\v/', $contents, -1, PREG_SPLIT_NO_EMPTY) as
$path) {

 // No need to process folders as each changed file is
 checked.
 if (substr($path, -1) === '/') {
 continue;

 // only keep allowed file extensions
 } elseif (empty($allowedPattern) &&
 !preg_match("/($allowedPattern)$/", $path)) {
 continue;

 // do NOT allow certain file name patterns
 } elseif (!empty($disallowedPattern) &&
 preg_match("/($disallowedPattern)/", $path)) {
 continue;

 // this one's a keeper
 } else {
 $files[] = $path;
 }
 }
 return $files;
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[179]

We commit that function to Subversion and continue with our modifications. Now
we add the code to process the list of files output by the above function and run a
syntax check on each file using PHP CLI binary defined at the top of the file. Here
are the lines of code we are adding:

// … other code …
// path to local PHP CLI executable
define('PHPCLI', '/usr/local/apache2/php/bin/php');
// … other code …
// get list of PHP files
$phpFiles = getPhpFileList($repos, $txn, array('commit'));

// run syntax for check each PHP file
list($totalSyntaxOutput, $totalSyntaxReturnValue) = array('', 0);
foreach ($phpFiles as $phpFile) {

 // svnlook command to get file contents
 $fileContentsCommand = SVNLOOK . " cat -t '$txn' '$repos'
'$phpFile'";

 // run syntax check
 list($phpSyntaxOutput, $phpSyntaxReturnValue) = array('', 0);
 exec($fileContentsCommand . ' | ' . PHPCLI . ' -l',
 $phpSyntaxOutput, $phpSyntaxReturnValue);

 // add return values
 $totalSyntaxReturnValue += $phpSyntaxReturnValue;

 // append output
 if (is_array($phpSyntaxOutput) && count($phpSyntaxOutput) > 0) {
 $totalSyntaxOutput .= "Syntax error in file '$phpFile':" .
 PHP_EOL;
 $totalSyntaxOutput .= trim(implode(PHP_EOL, $phpSyntaxOutput));
 }
}
// did PHP syntax check return an error?
if ($totalSyntaxReturnValue > 0) {
 fwrite(STDERR, "PHP CLI syntax check output:" . PHP_EOL .
"$totalSyntaxOutput");
 exit(1);
}
// … other code …

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[180]

That completes our enhancements to the pre-commit script. Once again, we commit
our changes, but we also want to merge the branch back into the trunk. Before
merging, the revision graph for the pre-commit file looks like this:

To merge our branch back into the trunk, we start with an up-to-date copy of the
trunk and then use the merge command:

% svn merge --reintegrate ^/branches/svn-hooks-php-lint

From here on, all developers will see our changes in the trunk.

Branching workflow
The following diagram describes the process we just went through when we
branched, developed in our branch, and merge our branch back into the trunk.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[181]

Start Work

On Project

Create

Branch

Work on

Branch?

Yes

No

Checkout Branch Checkout Trunk

Repository

Normal Subversion

Workflow

Merge Trunk

Into Branch?

Merge Trunk

To Branch?

Finished?

Merge Branch

to Trunk

Update Working

Copy

Branch Done

Branch

Trunk
Normal Subversion

Workflow

Merge Trunk

To Branch

Yes No

Yes

Yes

No

No

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[182]

As work on the project starts, we create a branch of the trunk on which to do our
development. For a developer to work on the branch, he will have to check it out
of the repository. We are now following the activity depicted on the left side of
the above diagram. Any changes to the files will also be committed back to the
branch. The regular Subversion workflow of coding, updating the local working
copy, merging and committing changes continues until work on the trunk has been
completed. At that point, the developer has the option of merging the branch back
into the trunk, thus integrating the changes.

In comparison, the right side of the diagram depicts a Subversion workflow of
checking out the trunk and working on it.

UI clients
There are all kinds of Subversion clients available that will let you interact with a
remote repository. In this section, I want to give a brief introduction to a select few
that are especially interesting or relevant.

Eclipse plug-ins
Since we devoted a whole chapter to exploring Eclipse with the PDT plug-in as an IDE
for PHP development, I think it is only fitting that we follow this up with a look at the
state of Subversion support in Eclipse. Essentially there are two competing plug-ins:
Subclipse and Subversive. I'm happy to say that users have been benefiting from a little
competition between the two. Both are quite mature, stable, and feature-rich. Although
I have used both of them, I had a little more luck with Subclipse in my most recent
Eclipse installation. Consequently, the following screenshots are from that plug-in.
However, Subversive will look almost identical because they both build upon Eclipse
Team Provider Architecture.

You can do everything with these plug-ins that you can do from the command
line. This includes, importing / exporting projects, browsing remote repositories,
synchronizing projects to reflect recent changes, update/commit/revert code changes,
examine log and history data, and merge changes/resolve conflicts. In some cases,
having a graphical UI is of tremendous benefit. For example, the activity of resolving
conflicts is greatly simplified by these utilities. Not only do they show you two
different versions side-by-side, they also highlight the differences and let you copy
code from one revision to the other (or vice versa) at the click of a button.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[183]

Here is a screenshot of Subclipse's repository exploring perspective:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[184]

Checking out a project from the repository is easy with a wizard interface for
creating the local project in Eclipse:

Lastly, one of the real strengths of these plug-ins within a visual IDE is merging
changes or resolving conflicts:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[185]

To install either of these plug-ins, take a look at the description of Eclipse's "Software
Updates …" feature in the chapter on IDEs.

You can download and learn more about these Eclipse plug-ins from their respective
home pages:

Subversive: http://www.eclipse.org/subversive/

Subclipse: http://subclipse.tigris.org

TortoiseSVN
TortoiseSVN is Subversion client implemented as a Windows shell extension.
The main reason I want to mention it here is because it is completely independent
of an IDE or other tool. That and the fact that the implementation is quite elegant
explains that TortoiseSVN has found wide use among Windows users working
with Subversion.

WebSVN
WebSVN is one of the sub-projects of the main SVN project. The developers have
done a great job of creating a web-based interface for viewing one or more repositories.
Of course, it is freely available under the GPL. Better yet—it was written in PHP.
Therefore, if you have to make any code changes or want to contribute to the project,
you will feel right at home. You can visit the WebSVN home page here:

http://www.websvn.info/

Among others, WebSVN offers the following features as mentioned on their site:

•	 Intuitive interface closely matching the SVN approach
•	 Templating system allowing you to customize the look of any page
•	 File listings with colorized syntax
•	 Blame view
•	 Log and history views and search capability

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[186]

Here is a screenshot of the page displaying the projects in my repository. As you can
see, I navigated into the trunk of our sample project:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[187]

The next screenshot illustrates colorized syntax when viewing an individual source
file. In this case, we are looking at file Options.php, which contains the definition for
class Cli_Options:

Next we have a screenshot of WebSVN showing the side-by-side differences between
two revisions of the same file:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[188]

To see who is responsible for each line of code and in what revision, WebSVN has a
nice page for showing output from the SVN blame command:

And finally, here is the page displaying log messages for successive revisions of a
particular file:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[189]

A demo of the latest official release of WebSVN is available online at:

http://demo.websvn.info/

Remember how we used the svnnotify script in our post-commit hook script to
send a notification e-mail when a file had been submitted to the repository? Using
the -U --revision-url switch, we can get svnnotify to include link to the repository.
Although this can be a direct Subversion link, it can also be a link to WebSVN. That
way, anyone on the recipient list will be able to click the link and view the file in his
browser with all the amenities WebSVN provides.

Subversion conventions and best
practices
This section is a combination of things we have learned in this chapter and best
practices typically associated with software development in a team environment
and with the help of Subversion.

•	 Use the convention of organizing your code into three folders: "trunk",
"branches", and "tags." Loosely coupled projects should get their own
structure; whereas tightly coupled projects can share the same folder
threesome.

•	 Commit and update often. Many small conflict resolution cycles are usually
much easier than having to resolve major conflicts at the end of your tasks
development cycle. Frequently committing your code also serves as a
backup. As a rule of thumb, commit your code before you call it a day and
preferably also before you take lunch. However, don't commit code that will
break existing functionality.

•	 Write descriptive and informative commit comments. Reading commit
comments is much faster than having to read multiple files of code when
trying to figure out what was done.

•	 Use branches to keep the trunk stable while implementing extended features.
Also use branches for diverging, but parallel lines of development.

•	 Use pre-commit and post-commit hooks for automated auditing. As seen
in our example, you can enforce coding standards and initiate small code
reviews using hooks and other add-on scripts.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[190]

Customizing Subversion
There are many ways of customizing Subversion and there is no point in covering
them all here because the online manual does an excellent job of documenting them.
However, I do want to take a look at some feature that I use personally on a daily
basis, simply because they add so much to my workflow. Also, as you will see,
some of these features connect back to other tools we are examining in this book.

Hooks
During many of the action Subversion takes, you can ask that execution be handed
off to an external executable either before or after the action occurs. These points
where you can interject yourself into the actions of Subversion are called hooks.
Pre-commit hooks execute before the respective event in the repository and
post-commit hooks execute after.

When you create a repository, Subversion automatically creates a hooks directory
that contains a template for each of the different kinds of hooks that are possible.
Take a look at the hooks directory of my own repository:

There are a total of nine template files ending in .tmpl and two actual hooks, which
lack the ".tmpl" file extension in the above listing. None of the templates will actually
be executed because there are two things you need to do when turning a template
into a working hook. First, you must remove the file extension from the filename so
that it exactly matches the name of the hook. Second, you have to assign the correct
ownership and permissions to the hook file. The file has to be executable by the
owner of the Subversions process. In my case, I am accessing the repository locally
as user "dirk." Most of the time, Subversion commands will be executed under the
login of the user performing the action.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[191]

Lets turn our attention to the two hooks that have been implemented in this
repository, namely the pre-commit and the post-commit hook.

Enforcing coding standards with a pre-commit hook
If you look back on the chapter on coding standards, you might recall that we
learned to use the PHP_CodeSniffer tool to check our source files for compliance
with our chosen standard. With the help of a pre-commit hook, we can now go a step
further and enforce this process. We will create a hook that will check the code being
committed against a specified coding standard (defined in the PHP_CodeSniffer
format). If the code passes the test, it will get committed to the repository. However, if
PHP_CodeSniffer finds something wrong with the code, it will return a corresponding
error message to the user and prevent the commit process from completing. Thus, we
can ensure that only source files adhering to your standard make it into our repository.

The following code listing is a shell script that is based on the pre-commit.tmpl in
the hooks directory. I omitted some of the comments for brevity, but you can always
look at the original template for more detail. This script will run in a Linux/Unix
environment, but a .bat script for Windows would follow the same logic.

#!/bin/sh
PRE-COMMIT HOOK
#
The pre-commit hook is invoked before a Subversion txn is
committed. Subversion runs this hook by invoking a program
(script, executable, binary, etc.) named 'pre-commit' (for which
this file is a template), with the following ordered arguments:
#
[1] REPOS-PATH (the path to this repository)
[2] TXN-NAME (the name of the txn about to be committed)
REPOS="$1"
TXN="$2"

Make sure that the log message contains some text.
SVNLOOK=/usr/local/bin/svnlook
$SVNLOOK log -t "$TXN" "$REPOS" | \
 grep "[a-zA-Z0-9]" > /dev/null || exit 1

Check that the file being committed conforms
to the coding standard employed by our project.
/usr/local/apache2/php/bin/scripts/phpcs-svn-pre-commit
--standard=Zend --tab-width=4 "$REPOS" -t "$TXN" >&2 || exit 1

All checks passed, so allow the commit.
exit 0

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[192]

Our pre-commit script requires two command line arguments to do its work;
the Subversion process invoking it will supply both. First, it needs to know
which repository to work with. Second, it needs to know the file that is supposed
to get committed.

After running through all the checks, the script exits with one of two exit codes:
1 indicates a problem and 0 indicates that all the checks passed. Moreover, any
messages written to standard error will be shown to the user.

The first check our script runs is to see whether a log message was entered with the
commit. I encourage everybody to do that. It saves other developers from having to
"diff" the code to figure out what was changed. We are actually using another tool in
the Subversion arsenal here, namely the svnlook command. svnlook lets you query
your repository or individual files therein for specific information. In this case, we
are using it to retrieve the comment submitted by the user along with his commit
command. A simple pattern match using the grep command then tells us whether
the comment is empty or not.

The second check executes the PHP_CodeSniffer pre-commit script. The command
line arguments to that script should look familiar if you were paying attention to the
chapter on coding standards. We're basically telling the script to validate against the
Zend coding standard and to require indentations to use four spaces instead of tabs.

Here is what happens when I try to commit a file without a comment. After
supplying a comment, my script then does not pass the Zend Framework coding
standard test:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[193]

But, why are we bothering with shell script? Isn't this a book about PHP? Right you
are—which is why the sample project that we have been developing throughout this
chapter contains a replacement for the previous script. At this point, all we have to
do is export the svn-hooks project into the "hooks" directory of our repository and
change the permissions to make the two scripts executable:

The new pre-commit script is a PHP-based drop-in replacement for the existing shell
script. However, it has the added benefit that it also does a syntax check on files
with the .php extension before allowing them to be committed.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Source Code and Version Control

[194]

Notifying developers of commits with a post-
commit hook
By exporting our svn-hooks project into the repository's "hooks" directory, we also
installed the post-commit script. Its job is to generate an informative e-mail detailing
each commit transaction. You will have to modify it slightly to specify the e-mail
address(es) to send these notifications. See the listing of the script earlier in the
chapter for more details. Once it is working correctly, you will be receiving e-mails
similar to the following one:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 4

[195]

Summary
Remember the three scenarios I posed in the introduction to this chapter. With
all that you have learned about Subversion, the solution to those problems should
appear much less daunting. Assuming that you have been using Subversion or
a similar version control system to develop your project, let's revisit those
scenarios now.

Scenario 1: After accidentally messing up a file on a production server, you can
simply pull the revision of the file you need from the remote repository—effectively
reverting the local changes.

Scenario 2: Switching your open source project from a single developer to a
distributed team becomes a snap after you put the project into Subversion and give
the volunteering developers access using svnserve to get up and running quickly.

Scenario 3: Being forced to review development efforts, you can easily use
Subversion's blame command and ability to access past revisions to see how
and when the bug was introduced. Armed with that knowledge, you can work
to improve the development process to prevent a similar problem from occurring
in the future.

If you haven't been using it already, I hope that the examples and explanations in
this chapter have inspired you to start working with Subversion to manage your
source code and versions.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging
I started debugging the first time I was asked to code the obligatory "Hello World"
program. It's just something that comes with the territory. If you write code, you
create bugs. Hopefully you will be able to find most of them by the time your code
reaches your application's users.

There are many kinds of bugs that range in complexity from glaringly obvious to
nearly impossible to figure out. Knowing that they are out there hiding in your code,
we will look at tools for finding and eradicating them in this chapter. Specifically,
we will look at configuration options, constants, and functions that are useful when
debugging. Armed with that knowledge, we will construct a general-purpose class
we can include in our projects for easy debugging. Finally, we will learn how to use
Xdebug and Eclipse to interactively debug code running locally or on the server.

First line of defense: syntax check
One of the first things PHP does when you ask it to execute a piece of code is a
syntax check. Basically, it goes through the code and makes sure that it conforms to
the basic grammar of the language. Some of the questions the parser asks include:

•	 Does a semicolon terminate every statement?
•	 Do all the function calls reference functions that actually exist in

PHP's namespace?
•	 Are all language constructs in the code known to the parser?

If any problems are detected, the interpreter will generate an error message that
is often detailed enough to pinpoint the problem and fix it. If you are reading the
chapters of this book in order, you will already have seen the output of the syntax
check in the chapter on Subversion. If you recall, we created a pre-commit hook
script that checks the syntax of PHP scripts before they are being allowed to be
committed to the repository.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[198]

The syntax check happens automatically when the interpreter starts up, but we can
also invoke it separately without having it go on to actually execute the code. When
using the PHP command line interface (CLI), the -l switch does the job. Consider the
following, intentionally buggy "Hello World" script:

<?php
echo "Hello World!'
?>

We can easily run a syntax check from the command line as follows:

The error message basically says the script was terminated before the parser thought
it should be. This is actually a good example of how the line number doesn't always
correspond to the cause of the problem. The error message points the finger at line
5, but that is simply the closing PHP tag and the last line of the script. Perhaps the
problem occurs two lines before that when we didn't terminate our echo statement
with a semicolon. Let's fix that and run the syntax check again. Unfortunately, this
time we're getting the exact same error output again.

Obviously there are additional problems. Furthermore, the error message isn't
terribly helpful in finding the root of the problem. Luckily, our script isn't terribly
complex to say the least. The problem has to lie with our single line of code. A close
inspection reveals that we have mismatching quotes. We start the string literal with
a double quote, but end it with a single quote. This rather confused the PHP parser
and explains the odd error message. To us it is obvious what our intent was, but PHP
has no idea whether we simply forgot to add a closing single quote, start the quote,
change the single quote to a double one, or even have one type of quote inside the
other so as to avoid having to escape them. All PHP sees is the beginning of a string
literal, but no end. Since strings can span multiple lines, the parser encounters the
end of the script without finding the closing quote, which is why the line in the error
message points at the end of the script. Why it complains of line 6 instead of line 5,
which is the last line of the script, I honestly don't know.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[199]

Now that we have found our second bug, let's run the syntax check one more time.

We're in good shape now—at least as far as the syntax is concerned. PHP certifies
that the script will do something. Whether it is what we intended it to do is another
question. The PHP parser doesn't know anything about our intent. If we meant
for the script to solve differential equations, we failed miserably. I'm exaggerating,
of course, but the point is still valid. Just because our code passes a syntax check,
doesn't mean that there aren't much more subtle faults in our logic that we will have
to correct. We'll be looking at tools to help us do that later in this chapter.

Logging
One of the most useful and equally underused tools for trouble-shooting PHP are
log files. PHP can be configured to write all kinds of information and detail to a
system-wide log file that will be a valuable resource when the time comes to track
down some illusive bugs.

There are several reasons you should be using and reviewing log files regularly,
including the following:

•	 Log files give you access to historical debug info. If you receive an error
report, but are unable to duplicate the problem yourself, you can consult
the log file(s) to see if there is anything that was recorded at the time of
the incident.

•	 Log files contain cumulative information. Error messages in the browser
describe the state of the code at a particular point in time—often at the time
when it crashed. In contrast, log files span a period of time that can range
from a few seconds to months or even years. Having access to so much
historical data lets you learn about the frequency and severity of issues with
your code. For example, when considering whether to spend the resources to
fix a bug that you estimate will take two days to correct, you might consult
the log files to see how frequently users encounter the bug. If it turns out that
the bug is non-critical and only one user has encountered it over last twelve
months, you might opt to forego fixing it or at least assign a low priority to it.
Using some regular expressions and log analyzer software, you can compile
some highly informative data about your application that you would not be
able to access otherwise.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[200]

•	 Log files let you keep error messages and debug information away from
users' browsers. A visitor to your site being shown an error message simply
makes your site look amateurish.

PHP's log file is different from the ones your web server
generates. Apache, for example, typically generates two log files.
The first one is to record which resources are accessed when,
by whom, and how. The second Apache log file contains errors
generated by Apache and its modules. This might include output
generated by PHP, but is not nearly as detailed for the purpose
of debugging PHP as the log file generated by PHP.

Configuration options
Let's take a look at the PHP config options that you can set in the php.ini file and
how they affect where, when, and how information is written to the PHP log file. All
of these options have been available since PHP 4.3.2. Furthermore, all of the options
with one exception can be set in the system-wide php.ini file, Apache's httpd.
conf/.htacces, or PHP scripts. The only exception is the xmlrpc_errors option,
which can only be set in the main php.ini config file.

In this section of the chapter, we will only be focusing on the configuration options
relevant to error logging and debugging. For a complete list of options, please
consult the online PHP manual. You can also quickly retrieve a list of all options;
as well as their global and local settings, using the array ini_get_all() function.

You can refer to the section on Error Handling and Logging of the online PHP manual
at php.net for a detailed description of all the error-related configuration options. In
the following table, I would like to simply present the settings for each of the options
that I recommend for both development and production environment.

Option Description Dev. Prod.
error_reporting

The level of detail to display in the
log messages.

E_ALL |
E_STRICT

E_ERROR

display_errors Toggle the sending of log messages
to STDOUT where it is typically
visible in the user's browser.

On Off

display_startup_
errors

Toggle the display of errors during
PHP's startup phase regardless of
the display_errors setting.

On Off

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[201]

Option Description Dev. Prod.
log_errors Toggle logging of errors to server's

error log.
On On

log_errors_max_len Maximum number of bytes in error
message (0 = unlimited).

0 0

ignore_repeated_
errors

Toggle display of the exact same
error message more than once in a
row.

Off Off

ignore_repeated_
source

Toggle display of same error
message if it occurs on different
source code lines / files.

Off Off

report_memleaks Toggle display or memory leaks
(requires debug compile).

Off Off

track_errors Toggle whether to store the
last error message in variable
$php_errormsg – limited to
scope where error occurred.

On On

html_errors Toggle plain text vs. HTML
formatted messages with links to
PHP functions in the manual (uses
docref_root and docref_ext).

On Off

xmlrpc_errors Toggle formatting of error messages
in XML-RPC format.

Off Off

xmlrpc_error_number Toggle use value of the XML-RPC
faultCode element for error number.

Off Off

docref_root Base URL for the PHP manual
(remote or local) (used by
html_errors).

http://
www.php.
net/
manual/
en/

docref_ext File extension of manual pages
(used by html_errors).

.php

error_prepend_string String to output before the error
message.

error_append_string String to output after the error
message.

error_log Error log directory path and
filename.

/var/
log/php_
errors.
txt

/var/
log/
php_
errors.
tx

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[202]

Since settings in the php.ini file affect all sites, you might want to set default
settings in that file and then rely on site-specific settings to override them. A simple
way of doing that is to have an include file that uses the ini_set() function to
configure error handling and logging depending on the site's environment. Here
is such a file that supports a Development environment and a default environment
(presumably for production purposes):

init_environment.php (excerpt below):

<?php
// logging & error settings for development
if (ENVIRONMENT == 'Development') {

 // level of log detail
 ini_set('error_reporting', 'E_ALL | E_STRICT');

 // display errors in browser
 ini_set('display_errors', 'On');

 // ... more dev settings (see code download for more) ...

// default logging & error settings
} else {
 // level of log detail
 ini_set('error_reporting', 'E_ERROR');

 // ... more default settings (see code download for more) ...
}
?>

Customizing and controlling config options:
PhpIni
The above listing is a quick and easy solution, but with a little more effort, we can
construct a solution that is both more flexible and powerful. Here are the additional
requirements. First, the above solution might work well in a quick procedural script,
but a more object-oriented solution will be more flexible and extensible. So, let's
wrap everything into a class. Second, the actual settings should not be hard-coded in
the class itself because you shouldn't have to change your code each time you need
to tweak your debug settings. Doing so would make it increasingly difficult to reuse
that class in different parts of your application at the same time. Instead, settings
should be pulled in from one or more external configuration files. This way, you
are separating configuration from code and can use the same class multiple times

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[203]

at once. Third, we want to be able to easily support multiple configuration files and
environments. Fourth, it would be nice if we can override any of the configuration
settings—on the fly. Lastly, we want this class to be able to tell us about any of the
settings, such as the default or current setting.

With these requirements in mind, let's take a look at class PhpIni listed as follows:

<?php
class PhpIni
{
 // initialize current development to null
 public $environment = null;

 // initialize location of config file(s) to empty array
 public $configDirs = array();

 // initialize active settings to empty array
 public $activeSettings = array();

 // define default settings for each environment defined
 // by this class (can be overriden later)
 public $defaultSettings = array();
 // constructor sets the location of the config files
 public function __construct(array $configDirs = array())
 {
 if (count($configDirs) > 0) {
 $this->configDirs = $configDirs;
 }
 }
 // applies the settings for the current environment
 // optionally overrides defaults with custom settings
 public function applySettings(array $customSettings = array())
 {
 // reset current settings
 $this->activeSettings = array();

 // get list of ini files
 $iniFiles = $this->getIniFiles();

 // initialize default settings
 $this->defaultSettings = array();

 // read all ini files
 foreach ($iniFiles as $iniFile) {
 // merge all default settings

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[204]

 $this->defaultSettings = array_merge($this-
 >defaultSettings, parse_ini_file($iniFile, TRUE));
 }

 // merge ini files with custom settings
 $this->activeSettings = array_merge($this-
 >defaultSettings[$this->environment], $customSettings);
 // apply settings
 foreach ($this->activeSettings as $directive => $value) {
 ini_set($directive, $value);
 }
 }
 // returns array of all config directories
 public function getConfigDirs()
 {
 $this->configDirs = $configDirs;
 }

 // set array of config directories at once
 public function setConfigDirs(array $configDirs = array())
 {
 return $this->configDirs;
 }

 // push a directory onto the end of configDirs array
 public function addConfigDir($newConfigDir)
 {
 array_push($this->configDirs, $newConfigDir);
 }

 // returns the currently set environment
 public function getEnvironment()
 {
 return $this->environment;
 }

 // set the current environment
 public function setEnvironment($environment)
 {
 $this->environment = $environment;
 }
 // return the default setting in a given environment
 (or current one)
 // throws an exception if either environment or setting are
 undefined

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[205]

 public function getDefaultSetting($setting, $environment = null)
 {
 // use current environment if none given
 if ($environment === null) {
 $environment = $this->getEnvironment();
 }

 // check whether the environment exists
 if (!array_key_exists($environment, $this->defaultSettings)) {
 throw new Exception("Environment '$environment' not
 defined.");

 // check whether the setting exists
 } elseif (!array_key_exists($setting, $this->defaultSettings[$
environment])) {
 throw new Exception("Default setting '$setting' in
 environment '$environment' is not defined.");
 // return the requested default setting
 } else {
 return $this->defaultSettings[$environment][$setting];
 }
 }
 // return the value of the setting how it was actually set
 // WARNING: only works if setting was set with this class
 public function getActiveSetting($setting)
 {
 // check whether the setting exists
 if (!array_key_exists($setting, $this->activeSettings)) {
 throw new Exception("Setting '$setting' is not currently
 defined throug __CLASS__.");

 // return the requested setting
 } else {
 return $this->activeSettings[$setting];
 }
 }
 // given all directories in configDirs, this method finds
 // and returns all files ending in .ini in those directories
 public function getIniFiles()
 {
 // initialize array of ini files
 $iniFiles = array();

 // loop over directories
 foreach ($this->configDirs as $dir) {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[206]

 if (is_dir($dir)) {
 // open directory ...
 if ($dirHandle = opendir($dir)) {

 // ... and iterate of the file therein
 while (($file = readdir($dirHandle)) !== FALSE) {

 // check file extension
 $pathParts = pathinfo($dir .
 DIRECTORY_SEPARATOR . $file);
 if ($pathParts['extension'] == 'ini') {

 // we found a .ini file
 $iniFiles[] = $dir . DIRECTORY_SEPARATOR
 . $file;
 }
 }
 closedir($dirHandle);
 }
 }
 }
 return $iniFiles;
 }
}
?>

The basic idea is that we have an array of directories that can hold configuration
files. This array is stored in $configDirs and there are getter/setter methods
getConfigDirs() and setConfigDirs(). Additionally, there is a convenience
method addConfigDir() to push another configuration directory onto the end
of the $configDirs array. Furthermore, the constructor takes an optional array
of configuration directories to initialize $configDirs.

Provided that we have properly populated the list of configuration directories, the
getIniFiles() method iterates over those directories and looks for files having
the file extension .ini and returns a list of such files with complete paths in an
array. If we wanted, we could make the class more flexible by letting the user define
acceptable file extension rather than hard-coding that only .ini files are acceptable.

You may have already noticed the getter/setter methods for the $environment
variable. Specifying the environment you want to use is required because we will
be supporting an unlimited number of environments. This is probably a good time
to look at the actual config file(s).

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[207]

config/error.ini (excerpt):

[DEVELOPMENT]
; description of development environment
description = Development environment for pre-production use and
debugging
; level of log detail
error_reporting = E_ALL | E_STRICT
; ... more development settings (see code download for more) ...

[PRODUCTION]
; description of production environment
description = Production environment optimized for security
; level of log detail
error_reporting = E_ERROR
; ... more default settings (see code download for more) ...

For a complete listing of the above file, please consult the file config/error.ini in
the code download package accompanying this chapter.

The options and values should seem familiar by now. However, what should also be
familiar to you is the format of the file. That is because it is the same format used by
PHP's own config file, php.ini. The reason we chose this format is because parsing
it is built into PHP in the form of the parse_ini_file() function. As we will see
shortly, this convenient function does a lot of work for us and saves us from the
unnecessary headache of dealing with parsing and validating a custom or obscure
file format.

If the optional second parameter is set to TRUE, parse_ini_files() parses the
section heading as well and returns an associative array with the section names
being the key for the settings array. This is exactly what we want for our purposes.

Getting back to our PhpIni class—all our preparation of defining directories
with configuration files and setting the environment comes together in the
applySettings() method, which does a number of useful things. To start, it gets all
eligible .ini files from getIniFiles(). It then uses method parse_ini_files()
to read all possible settings and environments into the $defaultSettings property.
Knowing which environment the user requested, it then stores all settings that are
actually going to be applied in property $activeSettings. Next, if the user has
passed custom settings into the applySettings() method, they will be added to the
$activeSettings array and will override any default settings. The last thing this
method does is to actually apply all settings saved in the $activeSettings property.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[208]

Once the config files have been parsed and the settings have been applied, it makes
sense to call the methods getDefaultSetting() and getActiveSetting() at any
time in your program to check any of the settings.

PhpIni example
Here is a little script that illustrates how to instantiate and use the PhpIni class:

<?php
// include PhpIni class
require_once('classes/PhpIni.php');

// instantiate PhpIni object
$phpIni = new PhpIni(array('/my/projects/config/dir'));

// set the environment
$phpIni->setEnvironment('DEVELOPMENT');

// apply all settings from the .ini files,
// but override config setting 'error_log' with a custom value
$phpIni->applySettings(array('error_log' => '/custom/dir/for/project/
php_errors.txt'));

// output information about the environment
echo "Current environment (" . $phpIni->getEnvironment() . "): "
 . $phpIni->getActiveSetting('description') . "\n";

// current setting for 'error_log'
echo "Current setting for 'error_log' in this environment: "
 . $phpIni->getActiveSetting('error_log') . "\n";

// default setting for 'error_log' in current environment
(DEVELOPMENT)
echo "Default setting for 'error_log' in this environment: "
 . $phpIni->getDefaultSetting('error_log') . "\n";

// default setting for 'error_log' in inactive environment PRODUCTION
echo "Default setting for 'error_log' in Production environment: "
 . $phpIni->getDefaultSetting('error_log', 'PRODUCTION') . "\n";
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[209]

After instantiating a PhpIni and telling it to look for config files in /my/projects/
config/dir, we tell it that we want to work with the DEVELOPMENT environment.
After that, it's just a matter of calling applySettings() with a custom error_log
file location. Finally, we output various settings to confirm that everything is
working as desired. Here is the output of our PhpIni test script:

As useful as the PHP error log file is, it can become a problem when left
to grow without being monitored. Like all log files, PHP error logs should
be monitored not only for content, but also for size. Log files should be
archived periodically so they don't grow too big and become a problem
for the server (production or development). Besides, if you don't intend
to monitor your log files, why bother enabling them and having them
generate all this useful information?

Outputting debug information
So far, we have been focusing on the error messages PHP generates. Initially
we looked at the output of the parser as it validates the source code syntax before
trying to execute it. After that, we learned about logging in PHP—how it works,
how to customize, and how to leverage to our benefit. Next, let's try to add to the
information to give us more clues if something goes wrong. In particular, there
are several built-in functions and constants that can be used for this purpose. Let's
start by discussing these functions and constants and then try to integrate them
into a class that will give us additional information and conveniences when
debugging code.

Functions
There are several core PHP functions that are helpful in outputting and formatting
debug information. I would expect that you are familiar with at least some of the
functions listed below, but familiarizing yourself with some of the others will help
you to choose the ones that most closely match your needs.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[210]

echo(string $arg1 [, string $...] / print(string $arg)
For simply outputting values of variables or state information to the screen or
browser, nothing beats the simplicity of echo or print(). Which one you use is
entirely up to you. echo is slightly faster, but print() has a return value. Both of
these differences are irrelevant to our purpose. However, I will say that you will
see more echo than print statements in PHP code in general. For whatever reason,
it appears to have become the de facto standard.

var_dump(mixed $expression [, mixed $expression
[, $...]]) and print_r(mixed $expression [, bool
$return= false])
These two functions will output information about their argument. If the argument is
an array or object, they will traverse the hierarchy and display information about the
components as well. However, there are some important differences.

Generally speaking, print_r() is a bit easier to read. It also takes an optional second
argument that returns the information rather than outputting it to the browser. You
can get the same result from var_dump() if you combine it with PHP's output control
functions for output buffering (see functions ob_start() and ob_end_flush()).

The other important difference is that var_dump() will give you a bit more
information. Specifically, it will tell you the data type of a variable or property
and its size. Let's look at a quick example:

<?php
class VDump
{
 // private, protected, and public properties
 private $path = '/this/way';
 protected $extensions = array('csv', 'txt');
 public $file = null;

 // constructor
 public function __construct($file)
 {
 $this->$file;
 }

 // private method
 private function getPath()
 {
 return $this->path;
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[211]

 // protected method
 protected function getFile()
 {
 return $this->file;
 }

 // public method
 public function getPathAndFile()
 {
 return $this->getPath() . '/' . $this->getFile();
 }
}

// instantiate sample object
$vdump = new VDump('data.csv');

// var_dump example ...
var_dump($vdump);

// print_r example ...
// ... same as:
// echo print_r($vdump, TRUE);
print_r($vdump);
?>

Here is the output you get from executing the above example code:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[212]

As you can see, although print_r()'s output is cleaner, var_dump()'s is more
informative. What is also interesting to note is that both functions have access to
and display information about private properties. Unfortunately, neither function
displays any information about the methods of the class.

highlight_string(string str [, bool return]) and
highlight_file(string filename [, bool return])
The highlight_string() function outputs a syntax-highlighted string of
the first argument passed to it. highlight_file() does the same thing for
source code in a file. The following relationship is true: highlight_string
(file_get_contents(filename)) == highlight_file(filename). Either
function will return rather than output the string if the optional second parameter
is TRUE. These functions are extremely useful when displaying the lines of code
surrounding an error. However, they can clearly be a security risk and should under
no circumstance be used outside a development environment. After all, you do not
want to display any production code in the browser and provide an attack vector
to any would-be hacker of your site.

get_class([object object])
Given an object as argument, this function returns the name of the class or FALSE if
the argument is not an object.

get_object_vars(object object)
This function returns an associative array of the properties of an object that are
visible from the scope from which the function was called. The property name and the
corresponding value constitute the key-value pairs of associative array being returned.

get_class_methods(mixed class_name)
This function returns an array of method names of the class that was passed in as a
parameter. Note that get_class_methods() will only return the names of methods
that are visible from the current scope.

get_class_vars(string class_name)
Similar to the preceding method, get_class_var() returns an associative array of
properties and their default value as specified in the definition of the class. Note that
only the properties that are accessible from the current scope will be returned. In
other words, private and protected properties will not be returned when
get_class_vars() is being called from outside the class.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[213]

debug_backtrace()
Any time this function is called, it generates an associative array containing a
combination of the output of some of the functions mentioned in this section; as
well as some of the magic constants listed below. Specifically, the array includes
the following keys: function, line, file, class, object, type, and args.

debug_print_backtrace()
Although the names of the functions are quite similar, debug_print_backtrace()
provides much more detail than its cousin debug_backtrace(). This function is
much more akin to what you might be used to in other programming languages in
terms of a backtrace. Output consists of eval() expressions, included/required
files, and functions calls to bring code execution to the line of execution from which
the debug_print_backtrace() function was called.

exit([string status]) or exit (int status)
When debugging, you often want to terminate the flow of execution after it gets to
the trouble spot and you have to output your debug information. Most of the time
you will want to call exit() to stop execution. However, did you know that you
can also use exit() to output your debug info? For example, exit("Result was:
$result\n") will output a debug statement with the value of $result and then exit
the program.

The other version of exit() takes as argument an integer which will be returned
by the program when it terminates. Exit status 0 means that the program terminated
normally; whereas, any integer greater than zero indicates an error condition.

Magic constants
Magic constants are constants that are automatically defined for an executing script.
Their respective values depend on which file, class, method, and line of the script is
currently being executed.

__FILE__: This stands for the absolute path and name of the file that contains the line
on which the constant occurs.

__LINE__: This constant contains the line within the file in which it occurs.

__CLASS__: It contains the name of the class in which the constant occurs. It is
empty if it occurs outside of a class.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[214]

__DIR__: This constant represents the absolute path to the directory containing the
file in which the constant occurs. This is equivalent to dirname(__FILE__). (New in
PHP 5.3.0).

__FUNCTION__: This constant is non-empty in top-level functions and methods of
classes. It contains the name of the function or method.

__CLASS__: If used inside a class, this constant holds the name of the class. Outside
of any class, it is empty.

__METHOD__: The __METHOD__ magic constant is identical to __FUNCTION__ with
the only difference that I'm aware of is that it also returns the name of the class if
used within a method of that class.

__NAMESPACE__: This constant holds the name of the current name space. (New in
PHP 5.3.0).

Writing our own debugging class
Now that we have a nice arsenal of functions and constants that can give us more
information about trouble spots in our code, let's see how we can best use them.
Of course, there is nothing wrong with putting echo() and exit() statements in
your code to output a variable or array. It's a quick way to confirm any suspicions
you might have about the behavior of your code already. However, if you want to
see more information without having to write much debug code on the spot, it is
convenient to have a reusable class that will take care of that for you.

Functional requirements
Let's start with some requirements that we would like to see to make this class both
simple to use and powerful for debugging at the same time. First, the code that needs
to be included or executed should be as small and compact as possible. Having
everything in a single file or class would be ideal.

Second, this utility should be invoked easily. Instead of having to write a lot of
additional code to output the debug info we need, our little helper should be at our
command with a single line of code to invoke it.

Third, it should be able to handle different output formats. Primarily, I would like
it to output HTML because most PHP applications are web-based and viewing our
debug output in a browser would allow us to organize the information a little better.
However, it should also be able to output debug information in plain text so we can
use it from the command line when debugging scripts on the server directly or when
writing command line scripts.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[215]

Fourth, in addition to using this utility for spot-checking our code, it should be able
to handle exceptions as well. Hopefully, the code you have been writing is taking
advantage of exceptions. After all, exceptions are the preferred way of handling
condition out of our control in PHP 5.x and higher. Besides, exceptions represent an
easy way to collect and display a lot of information about the state of the executing
program at the point in the logical flow where the exception occurred.

Fifth, since various core PHP functions and various modules generate errors instead
of exceptions, it would be a nice feature if we could include such errors in our debug
output. Just like exceptions being thrown by native PHP methods or our code, errors
can represent unforeseen circumstances in the execution of our program.

Sixth, in addition to displaying information about currently executing line of code,
we would want to look at the sequence of functions and methods executed to arrive
at the current line of code. This is called a backtrace and often consists of several
methods or functions calling each other.

Lastly, in addition to the debug information associated with exceptions and errors,
we want to be able to have our utility output any additional variables, objects,
or data structures we deem useful in diagnosing the problem.

DebugException
With that somewhat demanding list of requirements, please take a look at the code
in the following listing:

<?php
class DebugException extends Exception
{
 const PLAIN = 0;
 const HTML = 1;

 public static $sourceCodeSpan = 10;
 public static $outputFormat = self::HTML;
 public static $errorScope = E_ERROR;

 protected $addedDebug = array();

 public function __construct($message, $code = 0)
 {
 // make sure everything is assigned properly
 parent::__construct($message, $code);

 // additional debug info?
 if (func_num_args() > 2) {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[216]

 $this->addedDebug = array_slice(func_get_args(), 2);
 }
 }

 public function __destruct()
 {
 // intentionally left blank
 }

 // to be called statically once to handle all exceptions & errors
 public static function init()
 {
 // handle all exceptions with this class
 set_exception_handler(array('DebugException',
 'exceptionHandler'));

 // handle all errors with this class
 set_error_handler(array('DebugException', 'errorHandler'),
 self::$errorScope);

 // auto-detect / guess the output format
 if (php_sapi_name() == 'cli') {

 // plain text for CLI use
 self::$outputFormat = self::PLAIN;

 } else {

 // HTML output otherwise
 self::$outputFormat = self::HTML;
 }
 }

 // unregister error and exception handlers
 public static function unInit()
 {
 // pop exception handler stack
 restore_exception_handler();

 // pop error handler stack
 restore_error_handler();
 }

 // turn errors into DebugExceptions

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[217]

 public static function errorHandler($number,
 $message,
 $file,
 $line,
 $context)
 {
 // convert error to excepton and throw it
 $debugException = new DebugException($number, 0, $context);

 // transfer info to DebugException
 $debugException->file = $file;
 $debugException->line = $line;

 // throw the new DebugException
 throw $debugException;
 }

 // catching regular exceptions
 public static function exceptionHandler($exception)
 {
 // explicitly call this class's __toString()
 self::output($exception);
 }

 // collects & outputs the debug info
 public static function output(Exception $exception)
 {
 $output = array();

 // output file name and line number
 $output[] = array('Summary:', 'An exception occurred in file
 ' . basename($exception->getFile())
 . ' on line ' . $exception->getLine() . '.');

 // output message
 $output[] = array('Error message: ', $exception-
 >getMessage());

 // get source code of file that threw exception
 $sourceExcerpt = self::getSourceExcerpt($exception-
 >getFile(), $exception->getLine());

 $output[] = 'Source code excerpt of lines ' .
 $sourceExcerpt['start']

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[218]

 . ' through ' . $sourceExcerpt['end'] . ' of file
 ' . $exception->getFile() . ':';

 // highlight syntax for HTML output
 if (self::$outputFormat == self::HTML) {
 $output[] = array('', highlight_string(implode('',
 $sourceExcerpt['source']), TRUE));
 } elseif (self::$outputFormat == self::PLAIN) {
 $output[] = implode('', $sourceExcerpt['source']);
 }

 // get backtrace nicely formatted
 $formattedTraces = self::getFormattedTrace($exception);

 // get additionally debug info nicely formatted
 $output = array_merge($output,
 self::getFormattedDebugInfo($exception));

 // format output depending on how $outputFormat is set
 // output HTML first
 if (self::$outputFormat == self::HTML) {

 // have a show/hide link for each trace
 for ($i = 0; $i < sizeof($formattedTraces); $i++) {
 $output[] = '<a href="" onclick="var bt = document.
getElementById(\'backtrace' . ($i + 1) . '\');if (bt.style.display ==
\'\') bt.style.display = \'none\';else bt.style.display = \'\';return
false;">Backtrace step ' . ($i + 1) . ' (click to toggle):';
 $output[] = self::arrayToTable($formattedTraces[$i],
 'backtrace' . ($i + 1));
 }

 echo self::arrayToTable($output, null, 'Debug Output',
 FALSE);

 // output plain text
 } elseif (self::$outputFormat == self::PLAIN) {

 // merge traces into output array
 $output = array_merge($output, $formattedTraces);

 // flatten the multi-dimensional array(s) for simple
 outputting
 $flattenedOutput = self::flattenArray($output);

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[219]

 echo implode(PHP_EOL, $flattenedOutput);
 }
 }

 // extracts +/- $sourceCodeSpan lines from line $line of file
 $file
 public static function getSourceExcerpt($file, $line)
 {
 // get source code of file that threw exception
 $source = file($file);

 // limit source code listing to +/- $sourceCodeSpan lines
 $startLine = max(0, $line - self::$sourceCodeSpan - 1);
 $offset = min(2 * self::$sourceCodeSpan + 1, count($source) -
 $line + self::$sourceCodeSpan + 1);

 $sourceExcerpt = array_slice($source, $startLine, $offset);

 if ($startLine > 0) {
 array_unshift($sourceExcerpt, "<?php\n", "// ...\n");
 }

 // return source excerpt and start/end lines
 return array('source' => $sourceExcerpt,
 'start' => $startLine,
 'end' => $startLine + $offset);
 }

 // creates array containing formatted backtrace
 // uses syntax highlighting for source code if
 // $outputFormat is HTML
 public static function getFormattedTrace(Exception $exception)
 {
 // init output array of formatted traces
 $formattedTraces = array();

 // get traces from exception
 $traces = $exception->getTrace();

 // init counter
 $count = 1;

 // iterate over traces
 foreach ($traces as $aTrace) {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[220]

 // skip the method where we turned an error into an
 Exception
 if ($aTrace['function'] != 'errorHandler') {

 // init output for this trace
 $output = array();

 $output[] = "Backtrace step $count:";

 // output class if given
 if (array_key_exists('class', $aTrace)) {
 $output[] = array('Class: ', $aTrace['class']);
 }

 // output type if given
 if (array_key_exists('type', $aTrace)) {
 $output[] = array('Type: ', $aTrace['type']);
 }

 // output function if given
 if (array_key_exists('function', $aTrace)) {

 $output[] = array('Function: ',
 $aTrace['function']);

 // output argument to function
 if (array_key_exists('args', $aTrace)) {
 $output[] = array('', 'with argument(s): ' .
 implode(', ', $aTrace['args']));
 }
 }

 // get source code of file that threw exception
 $sourceExcerpt =
 self::getSourceExcerpt($aTrace['file'], $aTrace['line']);

 $output[] = 'Source code excerpt of lines ' .
 $sourceExcerpt['start']
 . ' through ' . $sourceExcerpt['end'] . '
 of file ' . $aTrace['file'] . ':';

 // highlight syntax for HTML output
 if (self::$outputFormat == self::HTML) {
 $output[] = array('', highlight_string(implode('',

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[221]

$sourceExcerpt['source']), TRUE));
 } elseif (self::$outputFormat == self::PLAIN) {
 $output[] = implode('', $sourceExcerpt['source']);
 }

 $formattedTraces[] = $output;

 // increase step counter
 $count++;
 }
 }
 return $formattedTraces;
 }

 // formats the variables & objects passed to the constructor
 // and stored in $addedDebug. Uses syntax highlighting for
 // source code if $outputFormat is HTML
 public static function getFormattedDebugInfo(Exception
 $exception)
 {
 // init output array
 $output = array();

 // only the DebugException class has the addedDebug property
 if (get_class($exception) == __CLASS__) {

 if (count($exception->addedDebug) > 0) {
 $output[] = 'Additional debug info:';
 }

 // iterate over each variable
 foreach ($exception->addedDebug as $addBug) {
 foreach ($addBug as $debugLabel => $debugVar) {

 // format with print_r
 if (self::$outputFormat == self::HTML) {
 $output[] = array($debugLabel, '<pre>' .
 print_r($debugVar, TRUE) . '</pre>');
 } elseif (self::$outputFormat == self::PLAIN) {
 $output[] = array($debugLabel,
 print_r($debugVar, TRUE));
 }
 }
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[222]

 }
 return $output;
 }

 // converts an array of items to output to an HTML table
 // expects format:
 // array('some text here', <- single cell on row 1
 // array('label', $value), <- two cells on row 2
 // (label and value)
 // .);
 public static function arrayToTable(array $contents = array(),
 $id = null,
 $caption = null,
 $hideByDefault = TRUE)
 {
 $html = '';

 // open table tag
 if (count($contents) > 0) {
 $html .= '<table style="width: 100%;border: 2px solid
 $html
.= ($hideByDefault) ? 'none' : '';
 $html .= ';"';
 $html .= ($id != null) ? " id=\"$id\"" : '';
 $html .= ">\n";
 }

 // add caption
 if (!empty($caption) > 0) {
 $html .= '<caption><h2>' . htmlentities($caption) .
 "</h2></caption>\n";
 }

 $rowCount = 1;
 $rowColors = array('#fff', '#ccc');

 // iterate over input array
 foreach ($contents as $row) {
 $html .= "<tr style=\"background: " .
 $rowColors[($rowCount % 2)] . ";\">\n";

 // split arrays into label and field
 if (is_array($row) && count($row) >= 2) {
 $html .= '<td>' . htmlentities($row[0]) .
 "</td>\n"

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[223]

 . '<td>' . $row[1] . "</td>\n";

 // output single strings on a row by themselves
 } else {
 $html .= '<th colspan="2" style="text-align: left;">'
. $row . "</th>\n";
 }

 $html .= "</tr>\n";

 $rowCount++;
 }

 // close table tag
 if (count($contents) > 0) {
 $html .= "</table>\n";
 }
 return $html;
 }

 // takes a multi-dimensional array and flattens it for plain text
 output
 public static function flattenArray(array $inputArray = array())
 {
 $outputArray = array();

 // iterate over input array items
 foreach ($inputArray as $item) {

 if (is_array($item)) {
 // use recursion to traverse the hierarchy
 $outputArray = array_merge($outputArray,
 self::flattenArray($item));
 } else {
 array_push($outputArray, $item);
 }
 }
 return $outputArray;
 }
}

DebugException::init();
?>.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[224]

There is a lot to absorb so let's take it one step at a time. The first thing you will notice
is that the DebugException class we are defining extends PHP's built-in Exception
class. That way, we can more or less treat it like any other exception in our code.

We start the class by defining two class constants that serve as labels to the two
types of output formatting we will be supporting, namely HTML and plain text.
The property $outputFormat should be set to the value of either of those two
constants and we initialize it to be HTML. The assumption is that most of the time
we will be using this utility class in a web-based debug session.

There are two additional static properties. First, $sourceCodeSpan is an integer that
indicates the number of lines preceding and following an error line number that will
be extracted from the source file and displayed to the user. Second, $errorScope
determines which errors will be intercepted by our class and converted to an
exception. Possible values for $errorScope correspond to the valid setting for
error_reporting in the php.ini configuration file.

Since we are extending the Exception class, our constructor requires the exact
same arguments as the parent class and calling the parent constructor is the first
thing we are doing. However, using the func_num_args() and func_get_args()
functions we are able to support additional parameters to the constructor. To be
precise, we allow any number of additional arguments that will simply be stored in
the $addedDebug property. The idea is that we can pass any variables or objects that
we wish to display in our debug output to the constructor when we instantiate and
throw our DebugException class.

The init() method is crucial to the way the DebugException class operates. It sets
two static methods to be the exception and error handler. What this means is that the
method DebugException::errorHandler will be called for any error that occurs in
our application. Analogously, execution will be handed off to the DebugException
::exceptionHandler() method whenever the interpreter encounters an uncaught
exception, including a DebugException. What this means in practice is that we only
have to throw an exception at the line in our code where we want to generate debug
output for the DebugException class to take over. In other words, all errors and
exceptions will be handled by our class and to intentionally generate debug output
all we have to do is generate one such error or exception. We will see how that is
actually done in an example following the walk-through of the code.

The other thing that the init() method does is that it tries to make an educated
guess as to whether the output is best rendered in HTML or PLAIN format. The
php_sapi_name() function provides information about the SAPI (Server Application
Programming Interface) with which the currently running PHP executable was built.
Chances are that php_sapi_name() will return cli if we're running a script from the
command line. For simplicity, we assume that all other SAPIs signal that HTML output
should be generated.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[225]

As the DebugException class registers itself as the handler of all exceptions and
errors, we provide a convenient method for undoing that in case you want to continue
execution of your code unchanged after generating debug info. The uninit() method
complements the init() method and uses the restore_exception_handler() and
restore_error_handler() methods to unregister itself and reinstate the previous
exception and error handlers.

Now we come to the static methods that are actually invoked in case an uncaught
error or exception is encountered. The DebugException::errorHandler() method
is straightforward. It takes the parameters generated by an error and uses them to
throw a new DebugException. We can do this because exceptions and errors are
quite similar in terms of the information they generate. Both have a message,
a filename, a line number, and a backtrace of other functions called for execution
to arrive at the line where the error or exception occurred.

The DebugException::exceptionHandler() method is even simpler. It takes any
exception passed in, which should be any uncaught exception in our code, and
passes it to the static method DebugException::output().

The output() method is where most of the heavy lifting is done. It basically
takes an exception and starts assembling an array of information to be displayed
at the end of the method. It does all this by functioning as a dispatcher for
five additional methods: getSourceExcerpt(), getFormattedTrace(),
getFormattedDebugInfo(), arrayToTable(), and flattenArray(). We'll defer
a detailed discussion of these helper methods until after having looked at the
output() method.

First, the method output() summarizes the error message, filename, and line number
in plain English. It also uses utility method DebugException::getSourceExcerpt()
to extract a partial source code listing of the file in which the error or exception
occurred. If the $ouputFormat property is set to HTML, the hightlight_string()
function will be used to apply syntax highlighting to the source code excerpt.

Another integral part of our output is the backtrace of functions or methods that
were called from the top level of our script to get to the point where the exception
or error occurred. Unless your object hierarchy is flat, it can happen pretty quickly
that various objects are calling methods of other objects. Before you know it, your
code has traversed seven or eight methods that all make their way into the backtrace.
Viewing that much output can be overwhelming and confusing. The detail to help
you fix your code might be lost in a flood of information.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[226]

The output() method enlists the help of the DebugException::getFormattedTra
ce() method to pull in information about each trace, which is formatted similar to
the main exception/error information in that it contains a filename, line number, and
a source code excerpt. Since each backtrace can provide quite a bit of information and
there may be any number of these backtraces, we employ a little JavaScript to toggle
the visibility of each backtrace. By default, the user only sees a hyperlink for each trace
that will show the whole trace when clicked.

Next, the DebugException::getFormattedDebugInfo() method is in charge of
aggregating the additional debug variables that were passed to the constructor of
our class.

At the end, the only thing left is for the output() method to display the information
that was collected in the $output array. If the requested output format is PLAIN, it
will use the flattenArray() method to convert our multi-dimensional output array
to a one-dimensional and simply implode the array of text. However, if the requested
format is HTML, it will use DebugException::arrayToTable() to organize the
output in an HTML table to make it more visually appealing and easier to read.

Having worked through the actions of the output() method, let's take a look
at the cast of supporting methods that are doing much of the work. First,
getSourceExcerpt() takes the absolute path to file on the server and a line number
as input. It then reads that file and tries to extract the line number from the input
parameter and any number lines preceding and following it. The default of how
many additional surrounding lines to be returned is 10 and it is specified in the
DebugException::$sourceCodeSpan property. The method is smart enough to know
if fewer lines are available because the target line number is too close to the beginning
or end of the file. The getSourceExcerpt() returns an array containing the source
code extract; as well as the number of the first and last line actually extracted.

Next, getFormattedTrace() iterates over the array of backtraces. For each trace, it
extracts the class, type, and function name. Finally, it also uses getSourceExcerpt()
to include some lines of code surrounding the trace point.

getFormattedDebugInfo() starts off by checking the class of the exception
being passed as a parameter. Since the $addedDebug property belongs to the
DebugException class, we only need to proceed if the exception is of that class.
However, once we have established that we are dealing with the correct class, we
simply iterate over $addedDebug and use the print_r() function to return a human
readable representation of the value of each item.

The second to last method we need to cover is arrayToTable(). This method will
be invoked only when the $outputFormat property is set to HTML. Its purpose is
to convert an array of output data to an HTML table for easier reading. The method
expects an input array where each item corresponds to a row in the table to be

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[227]

constructed. There are two options for each item in the array. If the item is an array,
it will be assumed that the first item in the sub-array is the label and the second item
is the value. All other items in the sub-array will be ignored. The label and value
will be converted to an HTML table row with two cells. Alternatively, if the item
in the output array is not an array, it will simply be printed on an individual row
of the table. arrayToTable() also takes some optional arguments: an ID to assign
to the table for easier manipulation using JavaScript, a caption, and a Boolean flag
determining whether the content of the table will first be rendered hidden or not.

Finally, the last method to look at is flattenArray(), which takes our
multi-dimensional output array of debug info and converts it to a one-dimensional
one that can be easily imploded to generate plain text output. This method is only
used when $outputFormat is set to PLAIN, which is typically the case when you are
working from the command line or saving the output to a log file.

Using DebugException
Wow—that was certainly a lot to digest! Luckily, for all the code we had to absorb,
actually using the DebugException class couldn't be easier. All we have to do is
include the class before we want to use it, registering the exception and error handler
methods by calling DebugException::init(), and throwing a DebugException
whenever we want to generate some output. Let's look at the simple example in
the following listing:

<?php
require_once('classes/DebugException.php');

class DebugExample
{
 private $imHiding = FALSE;

 public function trySomething()
 {
 $this->somethingWrong('dead');
 }

 public function somethingWrong($bang)
 {
 $ie = array('just' => 'something',
 'to' => 'output',
 'for' => 'the',
 'Debug' => 'Exception');

 throw new DebugException("exceptions are no good!",
 null,

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[228]

 array('A local associative array' =>
 $ie,
 'The current object is class '
 . __CLASS__ => $this));
// throw new Exception("exceptions are no good!");
// trigger_error("errors are no good!");
 }
}

$debugExample = new DebugExample();

$debugExample->trySomething();
?>

The DebugExample class in the above listing doesn't really serve any purpose other
than to illustrate our DebugException class. After including the DebugException
class and instantiating DebugExample, the code calls method trySomething(),
which in turn calls method somethingWrong(). We're doing this merely to generate
a backtrace. Inside somethingWrong() we then proceed to throw a DebugException.
Note how the third argument to the constructor contains additional variables that we
would like to be displayed in the debug output.

If we were to throw a regular exception at this point, the output displayed in the
browser would look something like this:

The way a regular exception gets displayed is only somewhat informative. Much
of the available information is being omitted and what is being displayed is not
organized very well. Now let's take a look at the output our DebugException
class generates:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[229]

As you can see, the new format is much more complete and informative. For starters,
it includes source code excerpts that let you inspect the code right there in the
browser without having to switch to your development environment. It also includes
a complete hierarchy of backtraces. However, so as not to clutter the initial display,
they are hidden until you decide to view them by clicking on the corresponding link.
The above screenshot shows the second backtrace while the first one is still hidden.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[230]

There is also a section for "Additional debug info" that displays the extra parameters
we passed to the DebugExceptions's constructor. And the best part of it is that all
this happens without having to write any code in the file we are debugging.

What happens if PHP encounters an error or exception rather than us throwing an
exception on purpose? You'll be happy to know that the output looks nearly identical.
Although, we do lose the ability to pass in additional debug variables to be displayed.

As you know from our discussion of the DebugException class, it can also generate
plain text output. Obviously you lose some of the niceties of the HTML version, but
you still get the source code excerpts, backtraces, and thoughtful organization. All
you have to do to enable plain text output is to set the $outputFormat property to
PLAIN before any of the output gets generated.

<?php
require_once('classes/DebugException.php');

DebugException::init();
DebugException::$outputFormat = DebugException::PLAIN

// debug output will be in plain text …
?>

Here is the same debug output formatted for plain text display. It is long enough
that it made sense to only show the beginning and end while still gaining an
understanding of the functionality of the underlying code.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[231]

The way I use the DebugException class is that I include it in my bootstrap file or
a particular source file during development. Any exception or error will be displayed
nicely formatted. If I need more info at a particular line in the code, all I have to
do is throw a DebugException and pass it to all variables I wish to display in the
third parameter.

Remember to remove all references to the DebugException class
before deploying to production. Exposing your source code and
filesystem information to end-users in this way poses a serious
security vulnerability.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[232]

DebugException: Pros and cons
With everything the DebugException class does for us, we have also taken a couple
of shortcuts that should not be ignored. First, how the information can be viewed is
integrated into the class itself. We are essentially trading a tight coupling between
the formatting of the output and the actual data against compactness. If we wanted
to support additional ways of outputting, writing to a log file for example, we pretty
much have to modify the class. DebugExample is not exactly a shining example of
object-oriented design, but it is very compact and easy to use. That design decision
was made intentionally. If you wanted to use DebugException as the basis for your
own small debugging framework, you will probably want to create some classes to
hold backtraces and other debug data and other classes to handle the view layer.

If you go back a couple of pages and review our original design goals, you will see
that we have achieved all of them. DebugException is small and compact, easy to use,
and generates both HTML and plain text output. The HTML version takes advantage
of source code highlighting and dynamically showing/hiding content via JavaScript.
Moreover, DebugException handles regular (uncaught) exceptions and converts errors
to exceptions, which are then handled by the class itself. Finally, it displays backtraces,
source code excerpts, and any number of additional debug variables.

Introducing Xdebug
So far we have been talking about debugging PHP scripts by outputting info at one or
more places in your code. Now it is time to look at a professional tool that will facilitate
that activity. It also allows us to take things a step further.

Xdebug is a Zend extension that is able to hook into the internals of the PHP
interpreter. With that ability comes added power over simply outputting debug
information with echo statements. Among its many features, in this chapter we
want to focus on the ones specifically designed to find, diagnose, and fix bugs. In
particular, we will be looking at improved output of stack traces, function traces, and
variables; as well as support for interactively debugging scripts locally and remotely.

In addition to the Xdebug features to be discussed below, it offers the following tools
that we will look at in other chapters of this book:

•	 Code Profiling allows you to optimize the performance of your application
•	 Code Coverage Analysis feature will be used to test applications

Xdebug is an Open Source project that was started and is being maintained by the
main developer, Derick Rethans. This debugger has been around since about 2003
and is at version 2.0.5, which is PHP 5.3 compatible, as of this writing. It runs on Mac,
Linux, and Windows and you can find out more about it at http://www.xdebug.org/.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[233]

Installing Xdebug
The preferred way of installing Xdebug is via PECL. PECL is a sister repository to
PEAR and both share the same packaging and distribution system. While both PECL
and PEAR command line clients support the same set of commands, they differ in
which repository they access. Following is an excerpt of the output generated when
using the PECL command to install Xdebug:

In addition to the PECL repository, there are other options for installing Xdebug.
Windows users can download precompiled modules. The second option is to check
the source code out of the project's CVS repository and compile it yourself. Detailed
instructions for compiling the code can be found on the xdebug.org website.

Assuming the PECL installation ran without complaining, restart Apache, and check
your phpinfo() output. To see your phpinfo() output, create the following simple
PHP script and view it in your browser. It will display many details about how PHP
was compiled, installed, and configured.

<?php
phpinfo();
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[234]

You should see Xdebug mentioned in the copyright/powered by box just below the
summary information near the top of the page.

Further down the page, you will also see a section listing all the Xdebug configuration
variables. Here is a shortened version of that section:

You shouldn't use any other Zend extension at the same
time as Xdebug—especially debuggers. They will most likely
conflict with each other.

If there is no mention of Xdebug in your phpinfo() output, it means that Xdebug
was not installed properly. Here are a few pointers on where to start troubleshooting
the installation:

•	 Make sure that you properly restarted your web server after installing Xdebug.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[235]

•	 Check that your active php.ini file contains a line telling PHP to load
the extension:

(replace zend_extension with zend_extension_ts on system thread-safe
installations of PHP prior to version 5.3). Also, make sure that the path in the
above line points to an existing file.

•	 Scan you web server's and PHP's log files for any startup or
initialization errors.

•	 Consult Xdebug's online installation documentation:
http://xdebug.org/docs/install

Configuring Xdebug
I'm using Xdebug 2.0.5 to write this chapter. This version lists 44 configuration
parameters in the phpinfo() output. Rather than looking at each and every
configuration directive, we will limit ourselves to the ones that affect our task of
debugging an application. Besides, the complete list of configuration directives can
be viewed on the xdebug.org site.

Since Xdebug is a Zend extension, you can configure it by putting configuration
settings in your php.ini file. Xdebug contains a default for each possible configuration
option, which can then be overwritten in php.ini. Furthermore, you can then
overwrite these settings in Apache's httpd.conf/.htaccess file or use the ini_set()
function in any of your scripts to modify the behavior of Xdebug and the output it
generates. Here is the Xdebug specific section I added to my php.ini config file:

[xdebug]
; tell PHP where to find the Xdebug extension and load it
zend_extension=/usr/local/apache2/php/lib/php/extensions/no-debug-non-
zts-20060613/xdebug.so
; protection
xdebug.max_nesting_level=100
; what to show when outputting variables & debug info
xdebug.show_local_vars=1
xdebug.collect_params=1
xdebug.var_display_max_children=128
xdebug.var_display_max_data=1024

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[236]

xdebug.var_display_max_depth=5
xdebug.dump.COOKIE=*
xdebug.dump.FILES=*
xdebug.dump.GET=*
xdebug.dump.POST=*
xdebug.dump.REQUEST=*
xdebug.dump.REQUEST=*
xdebug.dump.SESSION=*
; enable & configure remote debugging
xdebug.remote_enable=1
xdebug.remote_host=127.0.0.1
xdebug.remote_port=9000
xdebug.remote_port=xdebug.remote_handler=dbgp
xdebug.remote_mode=req
xdebug.remote_log=/tmp/xdebug_remote.log
xdebug.remote_autostart=0
xdebug.idekey=dirk
; configure profiler - disabled by default, but can be triggered
xdebug.profiler_enable=0
xdebug.profiler_enable_trigger=1
xdebug.profiler_output_dir=/tmp
xdebug.profiler_output_name=xdebug.out.%s

Remember that PHP can have multiple .ini configuration files.
Often, this depends on which SAPI (Server Application Programming
Interface) you are using. For example, if you are using PHP from
the command line, you are likely using the CLI SAPI, which will
by default look for the php-cli.ini config file. If Xdebug is not
responding as expected, you might want to make sure that you added
the configuration settings to the correct .ini file.

With the default settings in place, you can then fine-tune the configuration in your
scripts on an as-needed basis.

<?php
// configure Xdebug locally

ini_set('xdebug.var_display_max_children', 3);

ini_set('xdebug.var_display_max_data', 6);

ini_set('xdebug.var_display_max_depth', 2);

class DebugExample { … }
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[237]

At this point, I hope that you are thinking back to the beginning of the chapter where
we discussed the management of different sets of configuration settings. You might
want to create a .ini file dedicated to your application's Xdebug setting. You can
then have separate sections that correspond to environments, such as development,
production, profiling, and so on.

Immediate benefits
Once Xdebug is configured properly, you can get some of the benefits it provides
without having to do much.

var_dump() improved
First, Xdebug overwrites our old friend, the var_dump() function. The new and
improved var_dump() function installed by Xdebug formats the output nicer and
employs some other formatting and syntax highlighting to make the information
easier to digest. Here is an example of what var_dump() output looks like without
and with Xdebug enabled.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[238]

var_dump() settings
The following Xdebug configuration settings affect the behavior of the var_dump()
function installed by Xdebug:

Setting Description Recommended value

xdebug.var_display_
max_children

Number array elements and
object properties to display.

128 (128)

xdebug.var_display_
max_data

Maximum string length for
values of object properties,
array elements, and values of
variables.

1024 (512)

xdebug.var_display_
max_depth

How many levels to descend
the object / array hierarchy.

5 (3)

Errors and exceptions beautified
The second out-of-the-box benefit Xdebug provides is that errors and uncaught
exceptions will be formatted and displayed in HTML. This is similar to the
DebugExceptions class we constructed previously. Here is an example of the
resulting output when throwing an exception in our DebugExample class without
registering DebugException and after enabling Xdebug. Notice how the output
includes a listing of variables in local scope when the exception was thrown; as
well as a dump of all local and global variables.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[239]

Stack trace settings
The following table lists some of the settings that affect how and what information is
displayed in the stack trace when Xdebug encounters an error or exception. Rather
than presenting a complete listing of all configuration settings, we will focus on the
ones that are used most commonly and ones where it pays to change them from their
installation default.

Setting Description Recommended value

x Whether to output
superglobals listed in xdebug.
dump.*.

1 (1)

xdebug.dump.* List of superglobals to dump
if xdebug.dump_globals is
enabled.

xdebug.dump.COOKIE=*

xdebug.dump.FILES=*

xdebug.dump.GET=*

xdebug.dump.POST=*

xdebug.dump.
REQUEST=*

xdebug.dump.
REQUEST=*

xdebug.dump.
SESSION=*

xdebug.dump_once Whether to dump superglobals
on all errors or only on the
first one.

1 (1)

xdebug.dump_undefined Whether to include empty
superglobals in dump.

1 (0)

xdebug.show_local_
vars

Whether to dump all variables
defined in the local scope
(includes top-most scope).

1 (0)

xdebug.collect_params Whether Xdebug should
record variable names & values
passed to functions.

2 (0)

xdebug.collect_
includes

Whether to show names of
include/require<_once> files
in trace files.

1 (1)

Since stack traces make use of the var_dump() function when outputting
information, the var_dump() settings affect the appearance of stack traces as well.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[240]

Protection from infinite recursion
If you have a piece of code where a method is being called recursively without the
exit condition ever evaluating to TRUE, PHP can quickly exceed its allocated resources,
which can result in unpredictable behavior, such as PHP segfaulting or in extreme
cases the server locking up.

Luckily, Xdebug provides a configurable limit on the number of recursive calls that
are allowed. Here is the corresponding configuration setting:

Setting Description Recommended
value (default)

Xdebug.max_nesting_level Maximum number of successive
recursive function calls.

100 (100)

Remote debugging
One of the most powerful feature Xdebug provides is that of remote debugging. In this
context, the term "remote" is somewhat misleading. It simply means that the code is
executing in PHP and that the debugger code in the Xdebug extension on the server
communicates with a separate debug client. It may be that the debug client and server
are on separate machines, but it is not a requirement. If you have your development
set up with a web server, such as Apache, executing locally, you can easily have debug
client and server running on the same machine. This is the same as a web server and
browser running on the same machine. Take a look at the following diagram:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[241]

The above diagram illustrates the scenario of development workstation and
development web server being two physically different machines. To start things
off, the developer would open a web browser and request the page that is being
debugged from the server (marker 1). This typically happens over standard port
80. The web server then determines that PHP is responsible for generating the
requested page and hands processing off to the PHP executable (marker 2). This
might happen based on the file extensions that are associated with PHP, for example.
Within PHP, Xdebug figures out that it is supposed to start an interactive debug
session. The developer is able to communicate this request to Xdebug by including
an extra parameter in the URL. Now that Xdebug has claimed responsibility, it tries
to open a connection to the host and port, usually port 9000, listed in the Xdebug
configuration settings (marker 3). In this case, the machine running the debug client
is the developer's workstation, but that is not a requirement.

The remote debugger provided by Xdebug is most likely what you have come to
expect if you have used debuggers in other programming languages, such as C++ or
Java. It allows you to issue commands to step through the code one line at a time. At
any point, you can examine the variables and data structures that have been defined.
It also allows you to set breakpoints where code execution will stop and give you an
opportunity to evaluate and/or modify the state of the application before proceeding.

Remote server debug configuration
Before we can do any real remote debugging, we have to configure and enable that
feature in Xdebug. Here are the configuration settings that determine the behavior of
the debugger on the server:

Setting Description Recommended
value (default)

xdebug.remote_enable Toggle remote debugger. 1 (0) – as needed

xdebug.remote_host The host name or IP address
of the machine where the
debug client is running.

localhost
(localhost)

xdebug.remote_port The port on which Xdebug
tries to connect to the debug
client.

9000 (9000)

xdebug.remote_handler The debug protocol
which Xdebug will use to
communicate with the debug
client. Valid settings are
php3, GDB, and the dbgp.

dbgp (dbgp)

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[242]

Setting Description Recommended
value (default)

xdebug.remote_mode Determines when Xdebug
initiates the connection to the
debug client. Valid settings
are jit (on error condition)
and req (as soon as the
script starts execution).

req (req)

xdebug.remote_log Absolute path to file where
all debug communications
will be appended.

/tmp/xdebug_remote.
log

xdebug.remote_autostart Whether Xdebug will always
try to connect to the debug
client.

0 (0)

xdebug.idekey The idekey on the server and
the client must match.

phpdebug ()

Remember to restart the web server after adding or changing the debug settings.

Debugging client configuration
Once the debugger is running on the server, it is time to fire up the client. Well, first
we have to find a client that speaks the DBGp protocol we have configured previously.
Luckily there are about twenty options available as of this writing. Xdebug even comes
with a simple command line implementation of a DBGp client; however, using that
version doesn't exactly make debugging a whole lot easier than using echo statements.
The debug client executable that installs along with Xdebug can be used to interact
with the server, but you have to know the commands to type on the command line and
it is hard to grasp much information with purely text-based output. Furthermore, the
responses are in XML, which adds an extra layer of complexity.

What we need is a debug client that takes some of the complexity out of the protocol
and lets us focus on understanding and trouble-shooting our application. Tying back
to one of the tools featured in another chapter, we'll use Eclipse with the PDT plug-in
to give us a graphical UI for our debugging efforts. Although it is a bit challenging
to locate all the settings required to get PHP debugging working in Eclipse, once you
have it set up correctly, it works like a charm. What's more is that you will pretty
much have to specify the same settings no matter which debug client you end up
choosing. Following are the dialog boxes and their respective locations in Eclipse's
menus that we need to configure remote debugging.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[243]

1. We have to let Eclipse know about our remote server. We do this via the
PHP Servers screen located at Preferences | PHP | PHP Servers. This list of
servers is used for a number of things, but we need to add our remote server
here so we can later refer to it in our debug configuration.

As part of defining a PHP Server, we also need to map a directory on our local
workspace to a corresponding URL. You can do this under the Path Mapping
tab from "Preferences | PHP | PHP Servers". For our purposes, I am mapping
the code for this chapter to the URL http://phpdebug which actually resolves
to localhost on my development machine.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[244]

2. We need to let Eclipse know about the debugger and its protocol we plan on
using. PDT actually comes pre-configured with two debuggers, Xdebug and
Zend Debugger. You can review and edit the complete list of debuggers by
going to Preferences | PHP | Debug | Installed Debuggers. Similar to the
servers, we have to make sure that our debugger appears in this list before
we can use it in our debug setup.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[245]

We should also review the detailed settings for Xdebug, the most important
of which is the debug port. The Max array depth and Max children settings
correspond to similarly named Xdebug configuration variables.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[246]

3. We need to tell Eclipse where it can find any local PHP executables. Eclipse
will use the executable for parsing and syntax checking of the source code
files. To edit or add to the list of PHP executables, open the Preferences |
PHP | PHP Executables menu option.

4. Now that we have all the preliminary setup out of the way, we can pull
all the pieces together for the debug configuration for our project. Not
surprisingly, the debugger, server, and PHP executable we defined in the
prior steps make an appearance in this screen that you can find by going to
Project | Properties | PHP Debug.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[247]

5. Let's select the Run | Debug Configurations option to define a debug
launch configuration for our project. Select PHP Web Page and click on the
document icon with a plus sign on it to create a new launch configuration.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Debugging

[248]

6. Now you can launch a debugging session from the previous dialog. Or, you
can always start the same session by clicking on the little bug icon in the
toolbar and select the name of the debug configuration you just defined. As
soon as you do that, Eclipse will bring up the page to be debugged in the
default browser (Preferences | General | Web Browser) and offer to switch
to the PHP Debug Perspective.

This is what we have been working for. We can now use the little icons in the
debug view to step through the code one line at a time, step into functions, step
over function, step out of functions, and inspect all local and global variables at
the same time.

Setting a breakpoint is as easy as double-clicking in the margin. The little blue circle
indicates a breakpoint and the Breakpoints view keeps track of all the breakpoints
you have placed.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 5

[249]

Summary
Just like programming itself, debugging is an art form. Also, the longer you do
it, the better you get at it. After several years of developing software, experience
and intuition will tell you which portion of the code to zoom in on when there is
trouble. At the same time, experience isn't the only way to get better at debugging.
Having the right tools at one's disposal and the knowledge to use them can cut
down on debugging time significantly and can thus get you back to writing code
more quickly. Hopefully, between learning to manage error logging configurations,
developing a custom debug class that handles all exceptions and errors, and
learning how to debug remotely, there are a few things we talked about in this
chapter that you added to your arsenal.

I think that most developers who are not using a debugger are doing so because they
think they don't need it. I'll be the first to admit that you can get a lot done with the
combination of echo(), var_dump(), and exit(). However, there is something to
be said for having all the debugging goodness wrapped into a nice GUI that is able
to organize so much information in a digestible format. Another advantage of using
a debugger is that you don't have to modify your code unlike when you insert
var_dump() calls into your source files.

Hopefully, the concepts covered in this chapter will already make you better at
debugging your code. Nevertheless, there are plenty of other tools and techniques
out there that can make you even more efficient in hunting down those bugs. Ideally,
you will use what you have just learned and use it as a starting point for building
your own set of tools that are well suited to the way you like to work.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks
Frameworks are a big topic because frameworks tend to be big (not all, though). We
can't talk about all the available PHP frameworks because it would take too much
space and time. That would be another book (or series). We can't even do any one of
the frameworks justice in this chapter, but that is also not necessary for our purposes.
There are three things I want to achieve in this chapter:

•	 Show you why you should consider using a framework
•	 Help you in determining which framework would be a good fit
•	 Create a sample project using a framework

Writing your own framework
Writing a framework is almost a rite of passage for most PHP developers. Granted,
most frameworks don't end up being as comprehensive as the Zend Framework,
but that doesn't mean they are not frameworks.

I have personally been through this cycle and I know several other developers that
have done the same. You start by realizing that the same basic problems need to be
solved in most of the applications you work on. Initially, you copy code to solve
the problem from one project to another. Then you start to make enhancements and
before you know it, you're working on your own framework.

Eventually, you come to realize that maintaining and optimizing a framework is
a lot of ongoing work. Especially when you realize that some of your early design
decisions are creating some problems in the long run. At this point, most developers
start looking at and using other frameworks. Or better yet, you can start contributing
to your framework of choice and have a say in the direction it takes and the features
that get implemented.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[252]

Let's consider some basic advantages and disadvantages of using frameworks:

•	 Advantages
	° Jump-start development
	° Faster development due to code reuse
	° Cut down on errors by using proven code
	° Provide infrastructure and make it easy for other developers

to get started
	° Provide design patterns for code quality and to speed up

development

•	 Disadvantages
	° Makes design decisions for you (good and bad)
	° The time it takes to learn the framework or to set it up for

each project

If you think about it a bit, you can probably easily add several more pros or cons
to the above list. Let's take it a step further and frame our discussion in terms of
the criteria you should consider when choosing a framework.

Evaluating and choosing frameworks
Depending on which source you trust (Google, Wikipedia, various PHP websites,
and so on), there are around 50+ PHP frameworks available at the time of this
writing. That is why I want to try and provide some criteria for finding one that
will work best for you.

Most of the criteria for evaluating and choosing a framework discussed in this section
apply not only to frameworks, but also to any software project in general. Availability
of documentation and code quality are examples of such criteria. Other criteria are
more closely related to the nature of a framework. The development philosophy and
paradigms, for example, will have an impact on how you end up developing your own
code at times, frameworks will nudge you to doing things a certain way. You have to
be aware of those biases in order to make an informed decision.

Community and acceptance
One thing to look for is the breadth and depth of the communities that have grown
around the framework. There are really two distinct communities that typically
spring up around a framework—developers and users.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[253]

The more users who have invested time and resources into learning and using the
framework, the easier it will be to get support if something goes wrong. However,
while the sheer number of adopters is important, the caliber should be a factor as
well. You want experienced, qualified, and motivated users to partake in the project.
That way, if small bug fixes are required, experienced users can jump in and provide
a solution rather than to simply report the problem.

The second community is made up of developers that participate in the core
development of the framework itself. Here, too, you want to make sure that the
community is large, active, and talented. For example, you want to be certain that
the departure of a core team member does not bring the project to a halt. Also,
framework developers should be experienced enough to address user concerns,
incorporate emerging technologies, and turn out quality code.

Feature road map
What is the process for making design, architecture, and feature changes? Who gets
to decide what feature gets implemented next or what bug fixes will be put on the
fast track? The answers to these questions will greatly affect the future direction of
the framework.

Some frameworks are driven by a small number of core developers. If they are
the ones making the decisions, the quality of the resulting outcome directly
corresponds to their competence. That can work out very well. If the core team
is supremely competent, they will most likely design and code a framework that
will do a beautiful job. On the flip side, having a small core team that makes the
decisions and handles the coding also means that losing one or more team members
can jeopardize the survival of the framework or at least jeopardize the development
schedule. Furthermore, it also means that the team is lacking perspective. For a small
group to anticipate all the needs of a large group using the framework is likely to
result in some requirements being overlooked.

Other frameworks take a more democratic approach. Anybody that has something to
contribute to the discussion can do so. In the end however, the decisions have to be
made by qualified participants. Voting rights might be limited to official contributors
to the project, but a public forum will allow different perspectives to be considered.

Personally, I lean towards the more democratic approach because it allows the
people that actually use the framework to shape its direction. Ideally, new features
get proposed and discussed in a public forum. Ideas are allowed to gestate before
being turned into specifications. The more community members provide informed
input, the better it is for everybody. A similar process should be in place for
analyzing and criticizing technical specifications. Eventually, someone will have
to decide what gets implemented and how, for the community at large to benefit.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[254]

Documentation
Before you commit to a framework, make sure you look at the developer and/or user
documentation the project puts out. If the documentation is lacking, you will likely
have to invest serious time in figuring out how things work by digging through
source code and searching the Web. This pretty much negates one of the main
reasons for having a framework—rapid development.

You want to be able to isolate the features of the framework you want to implement,
look them up in the documentation, and pick up what you need to know without
having to resort to any additional resources.

Hopefully, the documentation has been collected in a central location, which is
the case with a user manual and API documentation. You are losing a lot of the
convenience if you have to sift through hundreds of support forum messages to find
an answer that you should be able to easily look up in a table of contents or index.

Lastly, documentation doesn't have to be coming from the project itself. It's nice
to have free documentation, but if there are books available that do the job, that is
probably acceptable as well. Either way, you want to make sure that the learning
curve is not made any steeper than it already is by the lack of easily accessible and
centralized documentation and examples.

Code quality
Being a developer, you should have no problem judging the quality of the code of
the framework—especially after reading this book. It might not read exactly like your
own code, but it is critical that the code be well thought out, easy to understand, and
follow commonly accepted principles. After all, how can you be expected to build
your own application on top of a framework that is made up of questionable code?

The easiest thing to do is to download the framework and start opening up some
files. Here are some of the things I typically look for when doing a code survey:

•	 Plenty of helpful inline comments
•	 Use of object-oriented principles: inheritance, interfaces, and so on.
•	 Try-catch statements
•	 Short methods
•	 A minimum of required configuration and setup

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[255]

You want to be able to peruse the source and come away thinking you would be
proud turning out this kind of code. There is still no guarantee that it works correctly
or suits your purpose, but it is a step in the right direction.

Coding standards and compliance
Although this criterion is closely related to overall code quality, I decided that it
deserved its own treatment. As you already know from the corresponding chapter,
coding standards have various benefits, but it becomes even more important in
the case of a project that is being used and contributed to by many users. Coding
standards become essential when contributions come from many different sources
because they make integration of the code and reading it so much easier.

If you look at the prominent PHP frameworks, they all have their own coding
standard. Some decide to spell their standards out in more detail. Others leave a lot
of freedom to the individual developers. Either way, a coding standard will make it
much easier for everybody's code to work together.

Also, if you ever have to consult the source code to see exactly how a feature works
(or why not), you will have a much easier time navigating the source code tree if
it follows a common layout and files adhere to a naming convention that has been
spelled out.

Project fit
When comparing frameworks, you should start with a list of requirements for your
application that you would expect the framework to handle for you. The more those
requirements are met, the better the framework meets your needs.

There are frameworks that try to anticipate just about any need a developer might
have while creating an application. Others are more narrowly focused in that they try
to solve one specific problem. Zend Framework is an example of the former; whereas,
Propel is an example of the latter. ZF offers many modules and continues to expand at
a rapid pace. Propel, on the other hand, focuses on providing an ORM layer.

If you have a very specific need, you might not want to burden your project with
a large framework. In that case, you might as well select the one framework that
best addresses your need. However, if you are looking to leverage several of the
framework's modules and anticipate adding more as your application grows, you
probably want to look at frameworks that try to cover the gamut.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[256]

Easy to learn and adapt
Not having to solve the same problems over and over again for each project you
undertake is a big motivation for using a framework. Just about everybody that
develops software for a living has to justify the time spent on various tasks, whether
it is to oneself or the person signing the paycheck. You can reasonably expect to have
to spend some time to become familiar with the conventions, ideology, and specific
tools of a framework, but you don't want it to slow you down too much.

Similarly, you will eventually encounter situations where the framework comes
up short. If it is a solution that you expect to require again in the future, you will
probably want to extend the framework rather than to code a one-off solution
specific for your project. The question then becomes how easy is it to extend the
framework and add the functionality you need? Did the designers of the framework
plan for others to be easily able to extend the functionality? Is it easy to overwrite
existing classes or implement interfaces to implement what you need?

Here are some signs that the framework may not be resulting in the time saving
benefits for which you have been hoping:

•	 You find yourself consulting the same manual page over and over again.
This might be a sign that the underlying concepts are too complex to be
practical or that the documentation is insufficient.

•	 You discover that you have to implement several other features that
you had not anticipated. Perhaps the modules of the framework are
too tightly coupled?

•	 Does it seem like the easiest way of adding or changing functionality
is to modify the framework's own code?

Open source
With PHP being an interpreted rather than a compiled programming language, it
is kind of hard not to distribute the source code with an application. However, it's
not impossible. There is a group of tools that allow developers to hide, obfuscate,
or encrypt their code. Also, just because you have access to the source code doesn't
mean that you are allowed to make changes. Depending on the license under which
the framework is being distributed, you may or may not be allowed to modify and
redistribute the source code.

Considering that we as PHP developers are benefiting from a whole stack of open
source software (PHP, Apache, Linux, MySQL and so on) and the benefit we are
getting from being able to change the source code if we want to, I prefer frameworks
(and most other software I use) to be distributed under some flavor of liberal open
source license.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[257]

Familiarity
There is something to be said for using a tool you already know can do the job.
Consider the programming language(s) we use. All the time we invest in learning
the features and idiosyncrasies of a programming language such as PHP pays off in
the long run as we are able to produce better code faster. It is for that reason that the
average developer doesn't switch his preferred language in which to code every year
or so.

I would argue that the same applies to frameworks. If you already know how to use
one framework, it may not be worth switching to another one if it is only expected to
bring incremental improvements in functionality. If you know something well, stick
with it until you can make a strong case for making a change.

Don't get me wrong, with the speed at which technology and the Internet change,
we all have to stay vigilant and adopt new technologies. But, I would argue that we
should go through a learning phase with each new technology before committing to
it. Make an informed decision and leverage the strengths you already have.

Their rules
Developers of framework tend to make certain decisions for you. In an attempt
to solve a problem or provide a tool to address a certain need, they are likely to
implement it a certain way. More often than not, the solution they provide works
well for the majority of the users. However, that doesn't mean that it will work
well for you.

Popular PHP frameworks
Application development frameworks and comparing the feature they provide is a
big topic—one that probably deserves its own book. Besides, considering the pace
at which new frameworks have been springing up lately and at which features have
been added to existing ones, such a comparison would quickly become outdated. For
that very reason, this chapter is about giving you the tools to evaluate frameworks
and choose the one best suited to your, your team's, or your application's needs.
However, at the same time, it would be unforgivable not to at least mention the
frameworks that have been working so hard at creating a following. Keep in
mind that the following list is merely a subjective sampling of the more popular
frameworks at the time I wrote this. Simply because a given framework does not
appear on this list does not mean you should dismiss it from your consideration.

In no particular order, I want to quickly summarize the following frameworks: Zend,
CakePHP, CodeIgniter, Symfony, and Yii.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[258]

Zend
 Zend Framework is a collection of loosely coupled components that first

 saw the light of day in 2005. It is being distributed under a New BSD
license. It was started and continues to be sponsored by Zend Technologies.
However, ZF has added a number of big name sponsors to its roster, including IBM,
Google, Microsoft, and Adobe Systems. According to the project's website, here are
some of the design goals and benefits of using ZF:

•	 Simplicity and extensibility
•	 Well-tested code base
•	 Loosely coupled components and flexible architecture
•	 Zero configuration to start
•	 Support for latest Web 2.0 technologies:

	° AJAX
	° Search
	° Syndication
	° Web services

•	 Best practices through unit testing, code coverage analysis, and use of
coding standards

•	 Continuously growing groups of components that address areas such as:
	° Model-View-Controller(MVC)
	° Rapid Application Development (RAD) and tooling
	° Database interaction
	° Internationalization and localization
	° Authentication, authorization, and session management
	° Consuming and exposing web services
	° Mail, formats, and search
	° Overall infrastructure

For more information on the project and to download a copy of its latest release
version, you should visit their site here:

http://framework.zend.com/

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[259]

CakePHP
CakePHP is an open source framework that has been available since

 2005 under an MIT license. It was inspired by Ruby on Rails and
 shares much of the design philosophy with that framework. Some of the
 features of CakePHP as publicized on the project's website include:

•	 Model-View-Controller (MVC) architecture
•	 Application scaffolding (MVC-centric code generation)
•	 Command line utilities for generating code
•	 Support for easy handling of HTML, Forms, Pagination, AJAX, JavaScript,

XML, RSS, and so on
•	 Support for Access Control Lists (ACL), authentication, routing, URL

mapping, model validation
•	 Components to help with security, session, and requests

For more information on the project and to download a copy of its latest release
version, you should visit their site here:

http://cakephp.org/

CodeIgniter
 CodeIgniter is a framework being developed by EllisLab,

 Inc. and has been available since 2006. The framework is
 being distributed under a home-brewed variety of an
Apache/BSD-style open source license. According to the project's website, CI's claim
to fame includes the following:

•	 Small footprint
•	 Fast performance
•	 Broad compatibility with various hosting environments and versions of PHP
•	 No requirements for:

	° Use of the command line
	° Coding rules
	° Complex configuration
	° A custom templating engine

•	 Simplicity over complexity
•	 Comprehensive documentation

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[260]

For more information on the project and to download a copy of its latest release
version, you should visit their site here:

http://codeigniter.com

Symfony
 Symfony is an open source project that saw its first release in

 2005 and it reached 1.0 release status in 2007. It is being developed
by Sensio Labs under an MIT license. According to the project itself, Symfony's
benefits include the following:

•	 Compatibility with many hosting environments due to few prerequisites
•	 Use of design patters; as well as clean and readable code
•	 Use of agile principles to develop:

	° KISS (Keep It Simple Stupid)
	° DRY (Do Not Repeat Yourself)
	° XP (Extreme Programming)

•	 Full control over configuration
•	 Incorporates many other open source projects:

	° PHP: Creole, Prado, Spyc, and Pake
	° JavaScript: Prototype, script.aculo.us, Dynarch.com, and

TinyMCE

For more information on the project and to download a copy of its latest release
version, you should visit their site here:

http://www.symfony-project.org/

Yii
 Yii is a PHP framework with a strong emphasis on performance and

 scalability. Yii was started and first released in 2008, which makes it the
 youngest of the frameworks listed here. It is open source software being
distributed under a new BSD license. According to the project's website, here is a
list of benefits and features this framework offers:

•	 Emphasis on speed and scalability through extensibility

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[261]

•	 Use of design patterns:
	° Model-View-Controller architecture
	° Data Access Objects (DAO)
	° Active Record

•	 JavaScript support via jQuery
•	 Internationalization and localization
•	 Support for caching, logging, error handling, theming, authentication,

authorization, form and input validation
•	 Console applications
•	 Web 2.0 widgets
•	 Web services

For more information on the project and to download a copy of its latest release
version, you should visit their site here:

http://www.yiiframework.com/

Zend Framework application
All that theory is great as a foundation from which to start exploring and
experimenting with the creation of actual framework-based applications. But what
really serves to illustrate the usefulness of a framework is to build a small application
that leverages a representative collection of the features provided by the framework.

We can't really do this for more than one framework for the simple reason that this
chapter would become too long. I would like to preemptively offer my apologies to
all proponents of other PHP frameworks. However, since ZF has certainly become
one of the most widely adopted frameworks, we will be using it for our project.

The point of this exercise is to give you a whirlwind tour of some of the more
commonly used components of ZF. We will see that we can achieve a lot of
functionality without having to write a whole lot of code. If at some point, it seems
like there is a lot of hand-waving going on, there are two reasons for that. First,
we are leveraging a framework that is performing a lot of chores for us behind the
scenes. We don't necessarily need or want to know all the details of what is going
on, but without that knowledge it may seem a bit like magic. The second reason is
that I am indeed skipping over many of the details of the various modules we will
be using. There is not enough room to do an exhaustive treatment of the modules.
Besides, that's not really the point of this chapter. However, for those who want to
learn more about any of the ZF modules we will be using, I have enclosed links to
the relevant sections in the excellent ZF Programmer's Reference Guide.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[262]

For a more complete treatment of how to develop applications using ZF, you might
also want to consult Keith Pope's Zend Framework 1.8 Web Application Development:

http://www.packtpub.com/zend-framework-1-8-web-application-
development/book

Feature list
We will create a simple website, complete with the following features:

•	 MVC architecture
•	 A templating engine
•	 Database persistence
•	 Logging
•	 Authentication
•	 A form
•	 Email notification

If it sounds like a tall order to tackle in one chapter, fear not because that is exactly
why we're using a framework to do all the heavy lifting. Specifically, the version of
ZF I am using to create the application in this chapter is "Zend Framework Version:
1.9.3PL1".

Application skeleton
ZF comes with a module called Zend_Application to help you generate an
application skeleton or augment existing applications with specific features. Since
we are starting with a clean project, we will be using the create project option.

Under the hood Zend_Application actually uses two other ZF modules to do the
work, namely Zend_Tool_Framework and Zend_Tool_Project. Zend_Application
is a command line executable that can be found in the bin directory of the top-most
directory of the ZF distribution. In other words, if you download and extract the
most recent Zend Framework, you will find the bin directory just inside the main
folder it created.

Take a look at the following transcript where Zend_Application creates an
application skeleton for us with just one command. In the bin directory of the ZF
distribution, you will find a couple of scripts that will handle the task of creating
a blank project. The Unix/Linux/MacOS version is called zf.sh; whereas, the
Windows equivalent is called zf.bat.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[263]

For lack of a better project name, I decided to use a sub-domain of my main domain
name and call it zf.waferthin.com.

This gives us a working skeleton of a website. There are only two things we want to
do before firing up the web server and testing it out.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[264]

First, we need to create a directory for log files. Later we will be adding a log file
where the application can log exceptions and such, but for now we only need the
logs directory for the Apache web server to store access and error logs. Storing the
web server's log files inside the application's directory structure is not a requirement,
but rather a preference of mine. If you prefer to have Apache write to log files
somewhere else on the filesystem, you can skip this next step.

Second, we need to create a symbolic link to the ZF inside the newly created site's
library folder. I prefer to store larger libraries that will not be checked into my
version control system outside of the main code base.

Now let's take a look at what the site looks like from a browser:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[265]

Important concepts
Before launching into an explanation of what all those directories and files that were
generated automatically for us are, I think it will be helpful to cover some recurring
concepts that help us tie things together.

Bootstrapping
Bootstrapping refers to the process of initializing the environment, components,
and objects of the application. Bootstrapping is typically one of the first things
to occur when a request is being processed. With our setup as generated by
Zend_Application previously, we will encounter a Bootstrap class that uses
a configuration file and helper classes to perform the bootstrapping.

MVC
MVC is the acronym for Model-View-Controller, a frequently used design pattern to
separate business logic, request handling and routing, and displaying of information
from each other. Discussing MVC in detail is beyond the scope of this chapter.
Besides, judging by the fact that you are reading this book, I will assume that you
have come across MVC in your career as a developer. Nevertheless, if you need
a quick refresher on MVC, you might want to read up on it at Wikipedia:

http://en.wikipedia.org/wiki/Model-view-controller

What is noteworthy at this point is that MVC is an integral part of the application
skeleton we generated above. You will see it reflected in the naming of the directories
and classes.

Application structure detail
Let's take a look at the directory structure and files that were created automatically.
If you look at the application directory, you will notice that aside from some additions,
the components of the MVC pattern correspond directly to the contained directories.
Here is a list of the directories, their purpose, and their default content.

Model: application/models/
This directory is meant to contain classes that encapsulate business logic and DB
mappings. By default, it is empty.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[266]

View: application/views/
This directory contains views, which are responsible for displaying output and web
pages to the user. Views are nothing more than HTML fragments interspersed by
PHP. The sub-directories of application/views/scripts/ are named after the
modules of the application. For instance, later in our application, we will create
a users module, accessible at zf.waferthin.com/users/, which will have a
corresponding users directory in the application/views/ directory.

Views produce HTML fragments that are assembled by a layout into a complete
HTML page (more about that later).

By default, the application/views/scripts/ directory contains views for the
errors and the index page.

Controller: application/controllers/
This directory contains controller classes that correspond to the modules of the
application. For example, the controller to handle requests from zf.waferthin.
com/users would be called UsersController.php. Controllers handle user requests
by instantiating models, asking them to perform certain actions, and displaying the
result using views.

By default, Zend_Application creates an error and an index controller.

Configuration: application/configs/
This directory is meant to hold configuration files. By default, it contains the
application.ini properties file with settings to initialize different environments:
production, staging, testing, and development. This file is used by the bootstrapping
process and classes. Based on the settings in this file the bootstrap process will set up
the environment and initialize various components and objects.

application/configs/application.ini

[production]
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0
includePaths.library = APPLICATION_PATH "/../library"
bootstrap.path = APPLICATION_PATH "/Bootstrap.php"
bootstrap.class = "Bootstrap"
resources.frontController.controllerDirectory = APPLICATION_PATH "/
controllers"

[staging : production]

[testing : production]

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[267]

phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

Library
The library directory starts out empty, but is meant to contain external dependencies.
You may be used to naming this directory includes, classes, or something similar.
In our simple example, the only library we really require is the Zend Framework itself.
We already took care of that dependency by creating a symbolic link to ZF in the
library directory.

Public
This is the only directory that should be directly accessible to the user's browser.
Files in the public directory are meant to be viewed. This is where you would put
all your static content, including but not limited to:

•	 Images
•	 CSS
•	 JavaScript
•	 Static HTML pages
•	 Media: audio clips, video clips, and so on

When configuring a web server such as Apache, the public directory is the equivalent
of your DOCUMENT_ROOT.

By default, Zend_Application creates two files in the public directory, .htaccess
and index.php. The .htaccess file does two things. First, it sets the default
environment. Second, it redirects all requests for files or directories that don't
actually exist in the public directory to the index.php file. To do this, .htaccess
requires the mod_rewrite Apache module to do some rules-based rewriting and
redirecting. Here is the content of the .htaccess file:

zf_waferthin.com/public/.htaccess

SetEnv APPLICATION_ENV development

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]
RewriteCond %{REQUEST_FILENAME} -d

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[268]

RewriteRule ^.*$ - [NC,L]
RewriteRule ^.*$ index.php [NC,L]

The index.php file is the application's entry point. Here is the corresponding listing:

zf_waferthin.com/public/index.php

<?php
// Define path to application directory
defined('APPLICATION_PATH')
 || define('APPLICATION_PATH', realpath(dirname(__FILE__) . '/../
application'));

// Define application environment
defined('APPLICATION_ENV')
 || define('APPLICATION_ENV', (getenv('APPLICATION_ENV') ?
getenv('APPLICATION_ENV') : 'production'));

// Ensure library/ is on include_path
set_include_path(implode(PATH_SEPARATOR, array(
 realpath(APPLICATION_PATH . '/../library'),
 get_include_path(),
)));

/** Zend_Application */
require_once 'Zend/Application.php';

// Create application, bootstrap, and run
$application = new Zend_Application(
 APPLICATION_ENV,
 APPLICATION_PATH . '/configs/application.ini'
);
$application->bootstrap()
 ->run();

The index.php file defines the APPLICATION_PATH and APPLICATION_ENV constants
that govern in which environment the application will run. It also sets the include
path and uses Zend_Application to initialize the bootstrap process.

Tests
The tests directory is intended to contain unit tests. To start you off on the right
foot, Zend_Application creates the sub-directories application and library, in
which you are expected to create unit tests for the corresponding top-level directories
of the application. By default, none of the unit tests are actually created.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[269]

Enhancements
Now that we have a basic feel for the structure of the application, let's continue by
adding some pages that showcase the functionality provided by Zend Framework.

Adding a layout
There are many interface elements that appear on the individual web pages that
repeat throughout the site. Examples of these recurring sections are headers, footers,
advertising sections, and so on. It doesn't make sense to repeat the code
to generate those sections on every page.

Earlier in this chapter, we encountered views that are responsible for formatting
the information for display to the user. Although you can have a view generate
a complete web page, it makes more sense to use views to generate the individual
components and then assemble those components selectively to create the final
web page. This is where Zend_Layout fits into the picture. A layout represents
a particular arrangement and combination of individual components (views).

Although you can create any number of different layouts for a given site, we will
concentrate on creating a single layout that will be used throughout the site. Our
layout will have a header, footer, navigation, and a main content area. Visually,
our layout breaks our pages into the following sections.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[270]

We start by creating a new directory for layout scripts, application/layouts/
scripts/. There, we then create our layout script. Here is the listing.

Application/layout/scripts/layout.pthml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/
xhtml1-transitional.dtd">
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="/style.css" />
 <?php echo $this->headTitle() ?>
 <?php echo $this->headScript() ?>
 <?php echo $this->headStyle() ?>
 </head>
 <body>
 <?php echo $this->render('header.phtml') ?>
 <?php echo $this->render('navigation.phtml') ?>

 <div id="maincontent">
 <?php echo $this->layout()->content ?>
 </div>

 <?php echo $this->render('footer.phtml') ?>
 </body>
</html>

The HTML in the above listing reflects the wireframe we diagrammed earlier. The
body of the page consists of the header at the top, a navigation column on the left,
the main content area to the right, and the footer at the bottom. You will also notice
that we are referencing a stylesheet in the head section of the document, which takes
care of some basic formatting, such as positioning the navigation and main content
areas next to each other.

Another important thing to notice is the file extension of .phtml used for the
previous listing, which is what Zend Framework's MVC implementation expects
when looking for view templates. The above layout references various views, such as
header.phtml, navigation.phtml, and footer.phtml. We will see where and how
to create those in the next section where we take a look at views.

In the above listing, you will notice that we are using more than one object and method
for populating the HTML template with content. Let's start with the render() method,
which is provided to us by Zend_View. This method takes a view template, renders it,
and returns the output, which makes it possible to nest views. In the above listing, we
are asking Zend_View to render the footer.phtml view and include its output.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[271]

Another way of populating a view is to use view helper objects. Specifically, we are
using some implementations of the Placeholder view helper. These objects are
dedicated to a particular part of the page, such as the title or inline scripts, and provide
convenience methods for aggregating content and outputting it. headTitle(),
headScript(), and headStyle() are the placeholders we're using in our view. Also,
note that layout() is another view helper and we are retrieving the main content to
populate the template using the content key.

For more detail about the Zend_View_Helper classes, consult
the following ZF manual page:
http://framework.zend.com/manual/en/zend.view.
helpers.html

With all the layout directories and files in place, the last thing we need to do is to tell
our MVC framework about the layout we created. Luckily, the bootstrap class that
was created by default already contains a helper that knows all about layouts. The
only thing we need to do is to add the following lines to our configuration file:

application/configs/application.ini

...
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"
resources.layout.layout = "layout"
...

For more detail about the Zend_Layout module, consult the following
ZF manual page:
http://framework.zend.com/manual/en/zend.layout.html

Adding views
One feature of our application will be the ability for users to sign up for an account
and use the same credentials to log in later. All that functionality will be grouped
under the users module, which will correspond to a URL path by the same name.
Specifically, we will add support for the following two URLs:

•	 zf.waferthin.com/users/signup: Users can create a new account
•	 zf.waferthin.com/users/login: Users can authenticate and log in to an

existing account

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[272]

To get the above two pages to appear, we need to create the corresponding views.
Remember that views constitute only part of the page. The layout we defined in the
previous section will provide the remaining HTML fragments to construct a complete
page. Views live in the application/views/scripts/<module/directory.

Here is the listing for the sign-up page:

application/views/scripts/users/signup.phtml

<?php
foreach ($this->message as $message) {
 echo "$message
\n";
}

?>
<form action="/users/signup" method="POST">
 Email: <input type="text" name="email" value="<?php echo $this-
>params[email]; ?>" size="20" maxlength="30" />

 Password: <input type="password" name="password" value="<?php echo
$this->params['password']; ?>" size="20" maxlength="30" />

 Password (again): <input type="password" name="password_again"
value="<?php echo $this->params['password_again']; ?>" size="20"
maxlength="30" />

 First Name: <input type="text" name="first_name" value="<?php echo
$this->params['first_name']; ?>" size="20" maxlength="30" />

 Last Name: <input type="text" name="last_name" value="<?php echo
$this->params['last_name']; ?>" size="20" maxlength="30" />

 <input type="submit" name="Submit" value="Submit" />
</form>

As you can see, signup.phtml is a simple sign-up form with text input fields for
e-mail, password, first name, and last name. At the beginning of the script is a
foreach loop that will allow us to output messages to the users. The values of the
input fields can have a default depending on the stage of the sign-up process. For
example, if the user incorrectly retyped his password, we would want to show him
the sign-up form again without him having to retype all entries.

We will see shortly how the default values and messages to the user become
available as variables in the view.

Now, here is the listing for the login page:

application/views/scripts/users/login.phtml

<?php
foreach ($this->message as $message) {
 echo "$message
\n";
}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[273]

?>
<form action="/users/login" method="POST">
 Login: <input type="text" name="email" value="<?php echo $this-
>params['email']; ?>" size="20" maxlength="30" />

 Password: <input type="password" name="password" value=""
size="20" maxlength="30" />

 <input type="submit" name="Submit" value="Submit" />
</form>

<p>If you don't have an account yet, you can <a href="/users/
signup">sign up here.</p>

With the above two .phtml scripts we created the "V" part of MVC. We now have a
way of displaying information. In the next section, we will work towards getting the
"M" portion working as well; we will be creating a model for the user account data.

Before we wrap up our brief look at views, we have to remember to create the
views referenced in the layout we created earlier. Since these views aren't really
associated with a particular module of the application, they will reside in the
application/views/scripts/ directory. Here are the corresponding listings:

application/views/scripts/header.phtml

<div id="header">
 <p>ZF Sample Site</p>

</div>

application/views/scripts/navigation.phtml

<div id="navigation">
 <p>Navigation</p>
 <p>home</p>
 <p>login</p>
 <p>signup</p>

</div>

application/views/scripts/footer.phtml

<div id="footer">
 <p>copyright 2009</p>
</div>

For more detail about the Zend_View module, consult
the following ZF manual page:
http://framework.zend.com/manual/en/zend.
view.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[274]

Adding logging
Whether for debugging during development or in production, being able to log
data and messages during the different stages of your application's execution can
be extremely valuable. For that reason, we want to create a logger-type object that is
accessible throughout the application's various components and lifecycle. Doing the
instantiation in the Bootstrap class comes to mind for the following reasons:

•	 Bootstrapping takes place early and thus our logger will be available almost
immediately.

•	 By creating and accessing our logger object through the bootstrap class, we
can make sure that it gets treated as a Singleton.

•	 Although not in the global namespace, it is possible to access the bootstrap
resources from just about anywhere in the application.

•	 The bootstrap process takes care of the overhead. All we have to worry about
is the code to actually create the logger and use it throughout our code.

Here is the complete listing of the Bootstrap class. The __iniAutoload() method was
generated automatically by Zend_Application. We only added the highlighted __
initLog() method.

application/Bootstrap.php

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 protected function _initAutoload()
 {
 $autoloader = new Zend_Application_Module_Autoloader(array(
 'namespace' => '',
 'basePath' => dirname(__FILE__),
));

 return $autoloader;
 }

 // bootstrap log resource

 protected function _initLog()

 {

 // construct path to log file; name includes environment

 $logFile = realpath(APPLICATION_PATH . '/../../logs/') .
 DIRECTORY_SEPARATOR . APPLICATION_ENV . '.log';

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[275]

 // create writer object needed by Zend_Log

 $writer = new Zend_Log_Writer_Stream($logFile);

 // instantiate Zend_Log and tell it to write to log file

 $log = new Zend_Log($writer);

 return $log;

 }

}

Any method in the bootstrap class name __init<Resource>() will be called
automatically during the bootstrap process. Any return value from such a
method will be stored in a registry. In our case, __initLog() will be called when
bootstrapping takes place at the beginning of the request lifecycle. The object of
type Zend_Log that the method returns will now be an available throughout the
remainder of the request lifecycle.

Without going into too much detail, the way that Zend_Log works is that it supports
any number of logging methods simultaneously, such as text files, databases, or
debuggers. Each type of logging method requires an object of type Zend_Log_Writer
to handle the actual logging. It is also possible to specify different priorities with
each logged message.

In our case, we create a simple text file in the zf_waferthin.com/logs/ directory
and we name it after the environment in which the application operates. So, if we
are running in the development environment, the APPLICATION_ENV would be set
to "development" and our log file will be called zf_waferthin/logs/development.
log. Once we have instantiated a Zend_Log_Writer, we can also instantiate the
Zend_log instance and tell it to use the text file writer.

We will encounter this again later, but here is a quick example of how to use the
bootstrap object available from within a controller object to obtain a reference to
the log object and write a message to the log file.

// get bootstrap object -> get log resource -> log message
$this->getInvokeArg('bootstrap')->getResource('log')->log('Logging
application startup.'));

For more detail about the Zend_Log module, consult the following
ZF manual page:
http://framework.zend.com/manual/en/zend.log.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[276]

Adding a database
After creating a view, we have a way for users to enter their information into a form.
However, we know that we will need to persist this account data in some kind of
long-term storage. Let's use a MySQL database to save the data and authenticate
against it later.

I started by creating a "db" directory under the root directory of the project. This
directory contains two additional directories, separating the schema from the
data. The "tables" directory contains a text file with SQL command to create a table
matching the name of the file. Analogously, the "data" directory contains files with
insert statements to populate individual tables within the database. Here too, files
are named after the table they populate.

Starting with a single table called "users," here is the resulting directory structure:

The structure for table users is defined in file db/tables/users.sql. Here is the
create table statement in that file:

--
-- Table structure for table `users`
--
DROP TABLE IF EXISTS `users`;
CREATE TABLE `users` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT 'Primary
key',
 `email` varchar(30) NOT NULL DEFAULT '' COMMENT 'Email address
for authentication & notification purposes',
 `password` varchar(50) NOT NULL DEFAULT '' COMMENT 'Password for
authentication purposes',
 `first_name` varchar(30) NOT NULL DEFAULT '' COMMENT 'User first
name',
 `last_name` varchar(30) NOT NULL DEFAULT '' COMMENT 'User last
name',
 `active` tinyint(4) unsigned NOT NULL DEFAULT '1' COMMENT
'Boolean active flag',

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[277]

 `deleted` tinyint(3) unsigned NOT NULL DEFAULT '0' COMMENT
'Boolean deleted flag (logical delete)',
 `created_date` datetime NOT NULL COMMENT 'Creation / sign up
date',
 `update_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
COMMENT 'Date and time on which the record was last updated',
 PRIMARY KEY (`id`),
 UNIQUE KEY `unique_login` (`login`)
) ENGINE=MyISAM AUTO_INCREMENT=2 DEFAULT CHARSET=latin1;

Without going into too much detail, we have an id column that we use as a primary
key. There are self-explanatory text fields for email, password (hashed), first_name,
and last_name. Furthermore, there are two Boolean flags used for logically deleting
users and activating/deactivating them. Next, there are date-time and timestamp
fields to capture the creation and modification date of the account, respectively. The
last thing worth noting is the unique index placed on the login field. After all, we don't
want to allow more than one user to have the same username.

You will have to create a database and run the above statement to create the users
table. Once we have a table we can populate it with some default test data. In our
case, the file db/data/users.sql has the following content to create a single test
account for myself:

--
-- Dumping data for table `users`
--
LOCK TABLES `users` WRITE;
INSERT INTO `users` VALUES (1, 'dirk@wafertin.com',
SHA1('mylilsecret'), 'Dirk', 'Merkel', 1, 0, NOW(), NOW());
UNLOCK TABLES;

The only thing noteworthy about the above insert statement is the fact that we
are not storing the password itself, but rather a cryptographic hash of it using the
SHA1() function.

That's it for creating the database and table itself. Now let's work on letting our
application know about it. Lucky for us, this is another chore the bootstrapping
sequence can handle for us. All we need to do is to put the corresponding
configuration settings into our main settings file and our base bootstrap class will
use a helper class responsible for initializing a database resource. Add the following
lines to your application.ini file, but substitute the credentials applicable to the
database you created:

application/configs/application.ini

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[278]

...
resources.db.adapter = "pdo_mysql"
resources.db.params.host = "localhost"
resources.db.params.username = "<db_user_name>"
resources.db.params.password = "<db_user_password>"
resources.db.params.dbname = "<db_name>"
resources.db.isDefaultTableAdapter = true

...

Our application now has a reference to a database connection stored in the bootstrap
class. We can use that connection directly, but as we will see in the next section, there
are other components of ZF that can use that connection as well.

For more detail about the Zend_Db module, consult the following
ZF manual page:
http://framework.zend.com/manual/en/zend.db.html

Adding a model
At this point, we have a database and a users table to store account information for
our users. We also have a connection to the database provided by our bootstrap
process. What we don't yet have is a class to actually create, retrieve, update, and
delete records from our users table.

In addition to providing basic CRUD (Create, Read, Update, and Delete)
functionality, such a class should also encapsulate our business logic. For example,
the class we are about to create will contain logic to determine whether logins and
password match the required format. In the context of MVC, such a class constitutes
the "M" letter of the acronym. In other words, we need to create a model to represent
users as an object in PHP.

Since we are dealing with user accounts, some of the actions our model will be
expected to perform have to do with account creation, checking of login credentials,
and validating input data.

Models live in the application/models/ directory. Here now is the listing for the
Model_Users class:

application/models/Model_Users.php

<?php
/**
 * Model_Users

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[279]

 *
 * CRUD functionality and business logic for
 * user accounts.
 *
 * @package zf_waferthin
 * @author Dirk Merkel
 **/
class Model_Users extends Zend_Db_Table_Abstract
{
 // DB table name
 protected $_name = 'users';

 // primary ID of table
 protected $_primary = 'id';

 // store feedback messages
 public $message = array();

 // constructor provided for completeness
 public function __construct()
 {
 parent::__construct();
 }

 /**
 * This is where all the validation happens.
 * This method is consulted before inserting
 * or adding entries or directory by the user.
 */
 public function validate(Array $data = array())
 {
 $this->message = array();

 // validate email
 if (!isset($data['email'])
 || empty($data['email'])
 || !preg_match('/^[a-zA-Z0-9_\.@]{6,}$/', $data['email']))
{

 $this->message[] = 'Email is required and must consist of
 at least 6 alphanumeric characters.';
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[280]

 // validate password format
 if (!isset($data['password'])
 || empty($data['password'])
 || !preg_match('/^[a-zA-Z0-9_]{6,}$/', $data['password']))
{

 $this->message[] = 'Password is required and must consist
 of at least 6 alphanumeric characters.';

 // validate password was retyped correctly
 } elseif ($data['password'] != $data['password_again']) {

 $this->message[] = 'You did not retype the password
 correctly.';
 }
 return !count($this->message);
 }

 // create a new user account
 public function insert(Array $data = array())
 {
 // call insert method provided by Zend_Db_Table_Abstract
 return parent::insert($data);
 }

 // validate credentials
 public function login($email, $password)
 {
 // minimal input validation
 if (empty($email) || empty($password)) {
 return false;
 }

 // get Zend_Db_Table_Select object for query
 $select = $this->select();

 // construct query
 $select->where('email = ?', $email)
 ->where('password = SHA1(?)', $password)
 ->where('active = ?', 1)
 ->where('deleted = ?', 0);

 // did we find a result
 $row = $this->fetchRow($select);

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[281]

 if (!empty($row)) {
 return $row;
 } else {
 return false;
 }
 }

}

By extending Zend_Db_Table_Abstract, our model class will be able to provide
basic CRUD functionality out-of-the-box. For example, the insert() method we
provide does nothing more than to call the parent class's method by the same
name. Of course, I didn't need to include this method here at all because inheritance
would have ensured that the parent method would be called automatically. I merely
included it to make it obvious what is going on. Really all we have to do is add our
business logic.

The protected properties $_name and $_id specify the name and primary key of
the database table we are encapsulating respectively. Any queries we directly or
indirectly generate in any of the methods will automatically include that information.

In terms of business logic, we add the three methods, namely validate(),
insert(), and login(). validate() performs some regular expression matching
on the e-mail address and password submitted by the user. This is just some basic
input validation that would have to be expanded if this code were to ever reach a
production system. Any error messages are stored in the $messages property where
the controller can retrieve it and display it to the users.

We already mentioned that insert() does nothing more than to let the parent class,
Zend_Db_Table_Abstract, do all the work necessary to insert a new row into the
users table and thus create a new user account.

Lastly, the login() method takes an e-mail and password pair and, after some very
simple input validation, queries the users table for such an account that is also active
and has not been deleted. If it is able to retrieve the record, it returns the calling code
in the controller, which can then presumably start a session for the user. If an active
account cannot be found, login() merely returns a Boolean false.

For more detail about using the Zend_Db_Table module to create
model, consult the following ZF manual page:
http://framework.zend.com/manual/en/zend.db.table.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[282]

Adding a controller
The controller's job is to orchestrate everything. It tells layouts and views to display
pages to the user. On the backend, it instantiates and operates on models that
represent the business objects of your application. In our case, we want to create a
controller that can handle user signups and logins.

In ZF's MVC implementation, controllers live in the application/controllers/
directory, which is where we are creating our UsersController.php. Take a look at
the following listing:

application/controllers/UsersController.php

<?php
// ZF MVC controller class for users module
class UsersController extends Zend_Controller_Action
{
 public $log = null;

 // controller initialization
 public function init()
 {
 // get local reference to logger object
 $this->log = $this->getInvokeArg('bootstrap')-
 >getResource('log');
 }

 // this method will be called is no action was
 // specified in the URL
 public function indexAction()
 {
 // forward to login
 $this->_redirect('/users/login');
 }

 public function signupAction()
 {
 // get request object
 $request = $this->getRequest();

 // handle new signups
 if ($request->isPost()) {

 // instantiate users model
 $users = new Model_Users();

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[283]

 // get submitted data
 $record = $request->getParams();

 // validate data before inserting
 if ($users->validate($record)) {

 // remove data we don't need
 unset($record['password_again'],
 $record['Submit'],
 $record['controller'],
 $record['action'],
 $record['module']);

 // create the new record
 try {
 $users->insert($record);

 // account created confirmation message
 $this->view->message = array('The account for ' .
 $record['email'] . ' has been created successfully.');

 // send confirmation email
 $this->sendConfirmationEmail($record['email'],
 $record['first_name'] . ' ' .
 $record['last_name'],
 'admin@zf.waferthin.com',
 'Admin',
 'Account Created',
 'confirm_email.phtml');

 // something went wrong
 } catch (Exception $e) {

 // log the problem ...
 $this->log->info('Unable to create new user
 account: ' . $record['email'] . "\nError message: " . $e-
 >getMessage());

 // .. and notify the user
 $this->view->message = array('An error
occurred. The account for ' . $record['email'] . ' could not be
 created.');
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[284]

 // validation failed
 } else {

 // assign parameters back to view
 $this->view->params = $record;

 // assign success / failure message to view
 $this->view->message = $users->message;
 }
 }
 }

 public function loginAction()
 {
 // get request object
 $request = $this->getRequest();

 // handle login request
 if ($request->isPost()) {

 // instantiate users model
 $users = new Model_Users();

 // validate credentials
 if ($user = $users->login($request->getParam('email'),
$request->getParam('password'))) {

 // log successful login ...
 $this->log->info('Login success: ' . $request-
 >getParam('email'));

 // show welcome message
 $this->view->message = array('Welcome back, ' .
 $user['first_name'] . ' ' . $user['last_name'] . '. You
 have successfully logged in.');

 // credentials not accepted
 } else {

 // log unsuccessful login attempt ...
 $this->log->info('Unsuccessful login attempt: ' .
 $request->getParam('email'));

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[285]

 // ... and display error message
 $this->view->message = array('Your email or
 password do not correspond to an active user account. Please
 try again or signup');

 // assign parameters back to view
 $this->view->params = $request->getParams();
 }
 }
 }

 // send email with body of message rendered with Zend_View
 protected function sendConfirmationEmail($recipientEmail,
 recipientName,
 $senderEmail,
 $senderName,
 $subject,
 $emailViewName)
 {
 // create a view
 $view = new Zend_View();

 // tell view where to look for templates
 $view->setScriptPath(APPLICATION_PATH .
 '/views/scripts/users/');

 // assign an array of key-value pairs to be rendered in view
 $info = array(
 'recipientName' => $recipientName,
 'recipientEmail' => $recipientEmail
);
 $view->assign($info);

 // render view
 $message = $view->render($emailViewName);

 // instantiate Zend_Mail obmect
 $mail = new Zend_Mail();

 // use fluid interface to send confirmation message
 $mail->setBodyText($message)
 ->setFrom($senderEmail, $senderName)

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[286]

 ->addTo($recipientEmail, $recipientName)
 ->setSubject($subject)
 ->send();

 // log email sent
 $this->log->info('Sent email template ' . $emailViewName . '
 to ' . $recipientEmail);
 }
}

In ZF's MVC implementation, controllers subclass Zend_Action_Controller. Before
any other methods get called, the init() method gets a reference to the log object we
created during the bootstrap process and makes it available as a local property.

Methods in the controller class are named after the action of the module they are
handling. In our case, that means that the URL /users/signup will be handled
by the signupAction() method of the UsersController class. Analogously, the
loginAction() handles requests for the /users/login path.

Our controller has two main action handler methods, signupAction() and
loginAction(). The signupAction() method starts by obtaining a reference
to the Request object. It then uses the Request object to determine whether the
request method is POST and to retrieve the posted variables. It then instantiates
a Model_Users object and uses it to validate the user-submitted values. If the
data passes validation, the controller uses the model to create a new user record.
The validation error message(s) or successful account creation message are then
displayed to the user.

The loginAction() method follows a similar logic with the main difference being
that it calls the model's login() method to verify the user's credentials.

In addition to <name>Action() methods that are automatically mapped to certain
URLs, you can add any kind of method to a controller. We have, for example, added
the sendConfirmationEmail() method. This is called from the signupAction()
method and is responsible for sending a confirmation e-mail to the e-mail address
of a successfully added new account. sendConfirmationEmail() is worth a second
look because it introduces a new ZF module, Zend_Mail, and illustrates further use
of the already familiar Zend_View module.

The sendConfirmationEmail() takes the parameters of recipient and sender e-mail
address and name; as well as the message's subject and name of the view to be used
for the body of the message. After instantiating a Zend_View object, we assign the
recipient's name and e-mail address to the view, and ask the object to render the
view whose name was passed in as a parameter. Zend_View is essentially taking
a template, processing it by making some substitutions, and returning the complete

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[287]

text. This text will be used when sending the e-mail later on in this method. Here is a
listing of the template, or view script in ZF MVC lingo being used:

application/views/users/confirm_email.phtml

Thank you for signing up with zf.waferthin.com, <?php echo $this-
 >params['first_name']; ?>!

The email address used for this account is <?php echo $this-
 >params['email']; ?>.

As you can see, the use of Zend_View in this case is more explicit as compared to
how it is used in the <name>Action() methods of the controller. There we never
actually have to call the render() method.

Now that we have the body of the message, we can use the Zend_Mail module to
send the e-mail. This example hardly illustrates the advantages Zend_Mail provides
over PHP's built-in mail() function, but it does the job of actually sending the
message just fine. Here are some of the advanced features provided by Zend_Mail:

•	 MIME-compliant
•	 Multipart messages
•	 Various transport methods
•	 Secure SMTP
•	 Retrieving messages via local store (mbox etc.), POP3, and SMTP
•	 Highly customizable and extensible

For more detail about the Zend_Mail module, consult the following
ZF manual page:
http://framework.zend.com/manual/en/zend.mail.html

Lastly, there is also the indexAction() method that does nothing more than redirect
the user's browser from one location to another. Specifically, it redirects requests for
URL /users/ to /users/login.

For more detail about the Zend_Controller module, consult
the following ZF manual page:
http://framework.zend.com/manual/en/zend.
controller.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Frameworks

[288]

Putting it all together
To summarize, we created a controller that uses a layout and various views to
display pages to the user. We created two views and two corresponding methods
in the controller class to handle the URLs /users/signup and /users/login.
Upon submitting either the signup or login form, the controller instantiates the
Model_Users class and uses it to validate the input and either create a new account
or validate against an existing one.

It's time to try out our application. Here is a screenshot of the signup page with the
information filled in.

And here is the resulting page after clicking the Submit button. I can also confirm
that I received the confirmation e-mail sent out after successfully creating an account.

Now let's take a look at the login page. After creating a new account, we can now use
the same e-mail and password to log in. Here is the result screen:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 6

[289]

As you can see, a user is now able to create an account and use the corresponding
credentials to log-in to our site. Granted, there isn't much functionality that would
entice a visitor to sign up, but with the help of our framework of choice, Zend
Framework, developing such a site can progress at a rapid pace.

Summary
Although there are many things to consider when picking a development
framework, you can't really go wrong with most of the established and actively
maintained ones. Frameworks like Cake, Symfony, and Zend Framework overlap
to a large degree in terms of the problems they solve. However, you can make your
life easier by doing your homework and selecting a framework that suits your
development philosophy and style. After reading this chapter, you should be able
to look at the offering of frameworks out there and ask the right questions to narrow
down the field.

Although I used Zend Framework as an example to show what a framework can
add to your development effort, I certainly urge you to consider other options.
I like that most of the ZF components are pretty loosely coupled. Although, the
Zend_Application module in conjunction with ZF's full MVC implementation
doesn't feel quite as loosely coupled as ZF used to. Either way, it is still possible
to add individual ZF modules to your existing applications in situations where
it doesn't make sense to convert the whole application just so it can run on ZF.

I'm hoping that you will invest the time to find the framework that suits you best.
Then learn how to get the most out of it. Finally, when you are starting to push
things to the limit, you should think about contributing to the project if possible
to make it a better tool for everybody.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing
The software we write is constantly being tested—at least we hope it is. That is
because every time someone uses a piece of code, a class, or a website you created,
he or she is implicitly testing it as well. We will take a look at the different types of
testing that are performed during a typical software development cycle.

One thing that types of testing have in common is that their goal is to ferret out
problems with the software. The earlier we are able to catch a bug, the cheaper it is
to fix it. If the developer can find, diagnose, and fix a bug during the development
stage, it will happen much faster than if it happens during user acceptance testing
when the client gets his hands on the final product. As we will see later in the
chapter, once unit tests have been set up, it is relatively cheap to run them; whereas,
it is fairly expensive if a problem gets uncovered during regression or integration
testing. One reason for that is because the former test is automated and the latter
one requires a professional tester to spend valuable time on testing activity.

This chapter is really about unit testing because it is closest to our activity, that
is, writing code. However, we also need to be keenly aware of the other testing
activities that are going on because they directly affect our end product.

Testing methods
The following sections briefly look at how to approach testing in general. The
basic question is whether it is best to focus on how the code is supposed to behave
or whether the tester should be aware of what the code is actually doing. That is
to say, should you test the code from the outside with the actual implementation
hidden or should you be aware of how the programmer implemented the required
functionality? As we will see, both approaches have their pros and cons and in the
end it is possible for you to choose your own combination, as the two sides are not
mutually exclusive.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[292]

It might not be obvious at first, but considering the general approach first will help
us in understanding how others might be testing our code. It also helps us when we
get into the heart of this chapter and start writing unit tests.

Black box
Black box testing treats the code that is being tested as a complete unknown. The
tester only needs to know how the code is supposed to behave, not how it achieves
that behavior. For example, sufficiently detailed functional specifications should be
enough for a tester to construct test cases and observe the behavior of the code.

On one hand, the advantage of black box testing is that the tester is not biased by any
knowledge of the implementation and the results can be considered somewhat more
impartial. On the other hand, it is not uncommon for a black box tester to construct
multiple test cases that essentially test the same piece of code, which results in a
duplication of effort and a waste of resources.

White box
Unlike the black box approach, white box testing requires access to the source,
understanding of the code, and the use of that knowledge to construct the test cases.
Moreover, it usually involves testing of parts of the code that is not usually accessible
from "outside the box." For example, a tester might write a test case for a protected
method in a class that is not really visible to the user of the system or any code
interfacing with the class being tested.

I prefer the term transparent box testing because it more accurately describes the fact
that the tester can see through the conceptual box that contains the code and can
understand the inner workings.

With an increased understanding of the code comes the ability to write better and
more targeted test cases. A downside to this approach is that it requires a tester with
significant development skills to properly understand the code. Another drawback
that is often overlooked is that fact that the tester runs the risk of making the same
assumptions as the developer. If any of those assumptions proves to be incorrect, it
could result in an untested scenario, or worse, an uncaught bug.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[293]

Gray box
As the name suggests, this approach is a combination of the black box and white box
approaches. A tester using this method would be knowledgeable about the inner
working of the application, just like in the white box method. However, similar to the
black box method, testing would be done completely from outside the application
without being able to manipulate the codes inner data structures.

Gray box testing is essentially a compromise between black box and white box
testing. I wouldn't go so far as to say that it combines the best of both worlds. If that
were the case, there would no longer be the need for either of the other methods.
Instead, gray box testing is a compromise that tries to reap the benefits of having
access to and understanding of the code while still being limited to interfacing with
the application from the point of view of a user.

This brings us to my last note on the subject, namely that the three approaches
described previously aren't at all as mutually exclusive as they may appear at first
glance. They all have their advantages. Assuming you have the resources available,
it often make sense to do both black box and white box testing at the same
time—they complement each other. Another option is to have a tester develop
black box test cases first and white box ones second. That way, his thinking won't
be tainted by knowledge of the code's inner workings until he starts working on
the back box test cases. Of course, this will really only work for a limited amount
of time. Once the tester is familiar with the code, he has essentially been tainted
and his ability to write black box tests will have been compromised. This approach
is of limited value to larger and agile projects where the base of test scripts continues
to grow throughout the project's lifetime.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[294]

Types of testing
There are many different types and methods for testing software. Following are
some brief definitions of the most common terminology you might find in developer
circles or enterprise settings.

You should keep in mind that different types of testing don't necessarily compete
with each other. They often simply address different aspects of the software and can
therefore complement each other.

Unit testing
As the name suggests, this type of testing occurs at the most granular level of
software development, typically right before and/or after coding time. It targets the
basic building blocks of software or units. In PHP, these building blocks are classes
and methods.

Usually, multiple test cases are written to test the functionality of a class or method.
Individual test cases are then grouped together into test suites. Writing a test case
commonly involves some form of coding—typically in the same programming
language in which the main application is being written anyway. Later in this chapter,
we will be testing PHP classes by constructing the Unit Test in PHPUnit, which
leverages all the syntax and idioms an experienced PHP developer already knows.

Since unit testing targets relatively small parts of a complete application, it is not
uncommon to have dozens or hundreds of tests, thus making manual execution of
these tests impractical. Instead, it is common to try and automate the execution of
these tests so the whole battery of tests can be executed quickly and often.

The attentive reader will have noticed that I mentioned that it is possible to create unit
tests before writing code. In essence, you use a unit test to describe exactly how a piece
of software should behave. Having created a test, you then proceed to implement the
code necessary to satisfy it. This approach is called test-driven development and is
often found as part of agile software development methodologies, such as Extreme
Programming (just one of many buzz words in this area).

To me, test-driven development always appears as kind of a backward black box
testing. You start by describing the behavior of the component with knowing the
implementation details because it doesn't exist yet. Then you go about turning your
black box into a white box by writing the code that your unit test requires to run
without reporting an error.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[295]

Unit testing is extremely useful and necessary for any but the smallest software
development projects. However, for all the benefits it provides, it also has some
drawbacks. For starters, it takes discipline to consistently write unit tests, no matter
whether it is before or after you write the code. However, once you are in the habit
of creating tests, you will quickly find that it actually enhances your productivity.
Also, you need to be aware of what unit testing is intended to do, namely it
aims to test implementation details in an automated fashion. Knowing that, it is
understandable that it misses the big picture. Even though individual methods or
classes pass their unit test with flying colors does not mean that application actually
does what it is supposed to. It only means that the methods and classes do what the
developer thought they were supposed to do. However, keep in mind that this is not
what unit testing is designed to do. There are other methods of testing software that
look at the whole application and derive their approach from the user's perspective.

Used in the right way while being aware of its strengths and weaknesses, unit testing
becomes an incredibly powerful tool to make us more productive as developers, and
our code more robust.

Integration testing
Unit testing is geared towards the building blocks of the application, whereas
integration testing aims to test how well those pieces fit together. Larger systems
are typically broken up into modules. Modules are often groupings of related
functionality in a system. For example, in a shopping cart application, you might
have catalog browsing, payment processing, and checkout modules. To speed up
development, each of these modules can be handled in parallel by a separate group
of developers. However, once all the modules have been completed, it is necessary
that they indeed work together as intended. There are several things that can be
done to make sure that this testing phase goes as smoothly as possible. For example,
clearly defined APIs that describe how the modules are supposed to communicate
with each other will be beneficial in reducing disconnects in the logic.

Another approach to this problem is continuous integration, which aims to put the
modules together as early as possible. When practicing continuous integration, an
automated process is responsible for checking out the latest changes to the project,
building it, staging it, running any automated tests, and making the results available to
all interested parties. This automatic process happens as frequently as possible— often
multiple times a day. Since continuous integration can be such a productivity booster
and nicely combines many of the topics we are covering in this book, I have devoted
the final chapter to this topic.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[296]

Regression testing
Unfortunately, it happens quite frequently that we as developers break a perfectly
good piece of software in the process of implementing a new feature or fixing a
bug. A previously working feature or function that gets broken this way is called a
software regression and it is the responsibility of regression testing to uncover these
regressions before they reach the user and make us look bad. After all, we have all
heard the complaint that "it used to work before you upgraded the system."

Most developers think of testing when they fix a bug or add a new feature. However,
testing is often being neglected when refactoring existing code. One's familiarity and
understanding of the existing code or functionality can often lead to a false sense of
security. It happens all too often that a developer changes a couple of lines around
to "streamline performance" or "make the code more elegant." Those are all desirable
and necessary actions, but you should not forego more rigorous testing merely
because your changes pass a quick test.

The typical approach to regression is the straight forward re-testing of existing
functionality with each change to the software. It is also common to re-verify
previously fixed bugs to make sure they have not resurfaced.

As systems mature the number of features and fixed bugs increases. As a corollary,
manual retesting of both each time some work is done on the code becomes
prohibitively expensive in terms of money and time. Consequently, automated
testing is often employed as part of regression testing. Each time a new feature
has been added or a bug has been fixed, a corresponding automated test should
be added to the test suite. That way, the test can easily be executed every time
something in the code changes—even if it is seemingly unrelated.

System testing
Having tested the individual pieces of the code during the unit testing phase; as well
as having tested how well those pieces come together during the integration testing
phase, it is finally time to test how the system performs as a whole. Since this phase
considers the final product that will be delivered to the customer, it is driven by the
functional specifications. In other words, does the system behave the way the customer
expects and how that expectation was captured in the functional specifications?

At this point of testing, focus is put on how the system behaves, not how it operates
behind the scenes.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[297]

User acceptance testing
Finally— the coding is done and the QA team is happy with the test results. It's time
to hand the product of your sweat and tears over to the client. Well, not so fast. There
is still one more type of testing that needs to be performed before we can call the
project a success. In particular, the client (or the client's subject matter expert) needs
to assure themselves that the delivered product does indeed meet the expectations
originally set in the functional spec created for this purpose. This kind of testing is
called user acceptance testing. It is usually a kind of black box testing performed by
the client with a test script that was developed based on the functional specifications.
Often normal users of the system are recruited to test the system before they actually
get to use it.

Although the client will always be expected to sign off on the final product,
the impact of user acceptance testing is being lessened with the advent of agile
development methodologies and continuous integration. The earlier and more
consistently we can get the client exposed to the product in the making, the fewer
nasty surprises we will encounter during the later stages of the project. Despite
having said that, this is not meant to be a chapter on development methodologies or
the software development lifecycle. At the same time, nobody can argue the fact that
testing is an integral part of both topics.

Following is a simple diagram that illustrates the testing types discussed previously
in a hierarchical manner in which they relate to each other.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[298]

Introducing PHPUnit
PHPUnit is a testing framework that aims to make it as easy as possible to create,
maintain, and execute individual, or more commonly, whole batteries of tests for
components of code.

Installing PHPUnit
Although you can download the source code for PHPUnit directly and install it that
way, we will follow the only officially supported method for installing PHPUnit,
which is via the pear installer utility. The developers of PHPUnit maintain their
own PEAR channel, which we will have to let PEAR know about before we can
install packages from it. To learn more about the PHP Extension and Application
Repository (PEAR) and the pear command-line utility used to manage channels
and application packages, you can visit their site at:

http://pear.php.net/

Following is a transcript of using the pear installer to discover the PHPUnit channel
and install the package.

Let's start by taking a look at what channels are currently available on my system.

Since pear.phpunit.de, the Pear channel for PHPUnit is not included in the list, let's
ask Pear to add it.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[299]

Now that PEAR knows where to find the PHPUnit ackage, let's go ahead and install it.

That's all there is to it. A quick directory listing of the bin directory in my PHP
installation directory reveals the phpunit command line utility.

If you ran into problems retracing the above steps, you might want to consult the
PEAR online manual. Assuming that everything went without a hitch and we now
have all PHPUnit tools installed, we need to start writing unit tests and test suites.

String search project
As we have done in prior chapters, we will work with a running example that will
be modified as we dive deeper into the features of PHPUnit. As this whole chapter
is about testing code, there really is no way around working with actual code.
Explaining how to test code in a vacuum without actually doing it is fairly useless
in my opinion.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[300]

I was thinking that it might be interesting to have a compact piece of code that
nevertheless hides some pitfalls because it is non-trivial to understand the intricacies
of what is actually going on. This description seems to fit algorithms in general.
Although it might be easy to understand a given algorithm conceptually, a lot more
attention to detail is required when actually implementing it.

Our sample project will involve string search algorithms. Specifically, the algorithm
we will be looking at is known as the Boyer–Moore–Horspool algorithm. Simply
put, we will be searching a string (also known as "the buffer") for one or more
occurrences of a smaller string (also known as "the substring"). Take, for example,
the last two stanzas of John Frederick Nims's "Love Poem:"

Forgetting your coffee spreading on our flannel,
Your lipstick grinning on our coat,
So gaily in love's unbreakable heaven
Our souls on glory of spilt bourbon float.

Be with me, darling, early and late. Smash glasses—
I will study wry music for your sake.
For should your hands drop white and empty
All the toys of the world would break.

If we take the above text to be our buffer, we might ask how many times the
substring "our" occurs within the buffer.

This particular algorithm is a standard in computer science and has been around for
a while. There are some slightly refined variations of the basic algorithm available,
but for the sake of simplicity we will be sticking to the version that only requires
a single lookup table. Don't worry—you'll better understand what I'm referring to
once we get into the guts of the code and the algorithm.

BMH algorithm basics
The human approach to this problem would be quite sequential. Most of us would
probably scan the text from beginning to end while looking for occurrences of "our"
or at least the letter "o." We can easily write some code that mimics the way we
would search for a string within a larger one. However, as it turns out, this would
be an inefficient way of doing it.

The BMH algorithm recognizes the fact that it is not necessary to look at each
character of the buffer. With the help of a pre-calculated lookup table, it is possible
to jump several characters and speed up the search process. For more details, you
might want to read the explanation of this algorithm on Wikipedia:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[301]

http://en.wikipedia.org/wiki/Boyer-Moore_algorithm

The Boyer-Moore-Horspool algorithm we will be using in our example is actually
a slightly simplified version of the full Boyer-Moore algorithm.

Implementing BMH
For the time being, let's ignore the fact that string search functionality has been
implemented in the core PHP functions much more efficiently than we can by
writing it in PHP. First we define an interface, let's call it StringSearchable,
which dictates how string search functionality is supposed to be implemented
in any class providing that functionality.

interfaces/StringSearchable.php

<?php
interface StringSearchable
{
 // define method signature with args like needle, haystack
 public function search($substring, $buffer);
}
?>

Next, we create class BoyerMooreStringSearch that implements the
StringSearchable interface in the form of the BMH algorithm described previously.

classes/BoyerMooreStringSearch.php

<?php
class Search_String_BoyerMoore implements StringSearchable
{
 // the substring for which to search
 public $substring = ‘null';

 // the buffer that will be searched for any occurrences of the
 substring
 public $buffer = ‘';

 // jump table derived from substring
 public $jumpTable = array();

 // array of results
 protected $results = array();

 public function __construct()
 {
 // intentionally left blank

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[302]

 }

 public function __destruct()
 {
 // intentionally left blank
 }

 // implement interface method
 // with args like needle, haystack
 public function search($substring, $buffer)
 {
 // reset results array
 $this->results = array();

 $this->substring = $substring;
 $this->buffer = $buffer;

 // get jump table
 $this->deriveJumpTable();

 $currentCharacter = strlen($this->substring) - 1;
 $substringLength = strlen($this->substring);
 $bufferLength = strlen($this->buffer);

 while ($currentCharacter < $bufferLength) {

 for ($i = $substringLength - 1; $i >= 0; $i--) {

 // character matches, continue ...
 if ($this->buffer{($currentCharacter - $substringLength + $i
 + 1)} == $this->substring{$i}) {

 // did all letters match?
 if ($i == 0) {
 $this->results[] = $currentCharacter -$substringLength;
 $currentCharacter +=$this->getJumpLength
 ($this-buffer{$currentCharacter});

 } else {
 continue;
 }

 // mismatch, jump ahead ...
 } else {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[303]

 $currentCharacter += $this->getJumpLength
 ($this->buffer{$currentCharacter});
 break;
 }
 }
 }

 // return true if any matches occurred, false otherwise
 return (sizeof($this->results) > 0);
 }

 // create lookup table that determines how far we can
 // jump ahead if a character doesn't match
 protected function deriveJumpTable()
 {
 $maxJump = strlen($this->substring);

 // loop over letters of
 for ($i = strlen($this->substring) - 2; $i >= 0; $i--) {
 if (!array_key_exists($this->substring{$i}, $this->jumpTable)) {
 $this->jumpTable[$this->substring{$i}] = $maxJump - $i - 1;
 }
 }
 }

 // return the jump table
 public function getJumpTable()
 {
 return $this->jumpTable;
 }

 // return the results array
 public function getResults()
 {
 return $this->results;
 }

 // how many matches did we find?
 public function getResultsCount()
 {
 return sizeof($this->results);
 }

 // use the jump table to determine how far

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[304]

 // to move ahead in the buffer
 public function getJumpLength($character)
 {
 if (array_key_exists($character, $this->jumpTable)) {
 return $this->jumpTable[$character];
 } else {
 return strlen($this->substring);
 }
 }
}
?>

The BoyerMooreStringSearch class starts out by setting a couple of instance variables
to hold the string to search ($buffer), the string to search for ($substring), the jump
table array that will allow us to traverse the target string faster ($jumpTable), and an
array to store found matches ($results). The constructor and destructor methods are
empty and only included for completeness. However, the search() method contains
most of the functionality and is the one that actually implements the algorithm, except
for calculating the jump table which is being handled by a separate method.

After assigning the buffer and substring to instance variables, the search() method
then asks method deriveJumpTable() to calculate the jump table array. It then
initializes some local variables ($bufferLength, $substringLength, and
$currentCharacter) that will be used to track our progress as we're traversing
the buffer while searching for the substring. As we search the buffer from beginning
to end, we use the jump table to determine by how many characters we should
jump ahead.

There are also several accessor methods that allow us to retrieve the jump table and
the results.

Unit testing BoyerMooreStringSearch
We could write a short script to exercise our new string searching class. However, we
want to be able to do more than simply convince ourselves that it works. Let's start
by outlining the whole unit testing procedure when using PHPUnit. With some basic
knowledge under our belt, we will then create the actual tests and flesh out some of
the details of all the available options and tools.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[305]

The test class
Classes and tests for those classes come in pairs. For a given class MyClass, you
should have a corresponding class MyClassTest that consists of a collection of tests
to be performed on MyClass. Whereas the original class has methods and properties
to perform its regular function, MyClassTest has methods that represent individual
tests. The test class typically extends PHPUnit_Framework_TestCase and each
method name in the test class ends with the string "Test." When invoked, PHPUnit
will instantiate MyClassTest and execute every test method in that class.

Assertions
Tests use assertions to perform the actual comparison or conditional that determines
whether a test succeeded. You can think of assertions as an abbreviated syntax for
if-then-else statements that integrate with the PHPUnit testing framework. I am
using version 3.3.17 of PHPUnit to write this chapter and there are a total of 59
different assertions available.

The last argument to an assertion call is always a message to be displayed in case the
assertion fails and PHPUnit needs to inform the user that the corresponding unit test
was unsuccessful.

Some examples of assertions are:

•	 assertArrayHasKey($key, array $array, $message = ‘'): Tests
whether key $key is defined in array $array and outputs message $message
if not. This test is equivalent to using the native PHP functions
array_key_exists($key, $array) or
 isset($array[$key]) || is_null($array[$key]).

•	 assertFileExists($filename, $message = ‘'): Tests whether a file
$filename exists and displays message $message if the file cannot be found.

•	 assertObjectHasAttribute($attributeName, $object,
$message = ‘'): Tests whether object $object has a property named
$attributeName and displays message $message if it doesn't.

As the sample selection above illustrates, there are assertions to handle all kinds of
tests, including comparisons (equal, less/greater than, is null, is true, and so on),
reflection of objects and classes (existence of properties, methods, and so on), and
XML (attributes and strings versus files).

For the complete list of assertions and their functionality, please consult the PHPUnit
manual that can be viewed or downloaded from the project's site. Here is the link to
a list of all assertions listed in the appendix of the documentation for version 3.3.

http://www.phpunit.de/manual/3.3/en/appendixes.assertions.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[306]

Organization
Although it is more of a convention than a requirement, you should structure your
unit tests so that they mirror the structure of your classes. If you are conscientious
about creating unit tests, there should be a one-to-one correspondence between your
classes and the respective unit tests. However, this is more of a guideline. Sometimes
a unit test is not required for a class. At other times, it makes sense to write more
than one unit test class for a given regular class. In the latter case, you should create
a directory named after the original class to contain the unit tests.

Here is an example of a slightly fictitious class hierarchy and the corresponding
test classes. I call it "slightly fictitious" because we will not actually be implementing
all of these test classes in this chapter—only some of them. Let's start by listing the
class hierarchy.

Following is the corresponding hierarchy of unit tests.

As you can see, the Search_Array_Quick class has a corresponding Search_Array_
QuickTest class. However, for the Search_String_BoyerMoore class, we have a
corresponding directory that contains more than one corresponding test class. In this
case, our two test classes are called Search_String_BoyerMoore_MultipleTest and
Search_String_BoyerMoore_ResultCountTest.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[307]

Thanks to the way the phpunit executable works, it is straightforward to execute
subsets of all the tests you have created. If you give the path to an individual test
class, only that class will be executed. The following command line call to phpunit,
for example, will only execute the tests in the MultipleTest class.

DirkMachine$ phpunit tests/Search/String/BoyerMoore/MultipleTest

In contrast, if you direct phpunit to a directory, it will traverse all sub-directories
and execute any test file it finds. Thus, the following command line results in all tests
in classes MultipleTest, ResultCountTest, and Sequential to be executed.

DirkMachine$ phpunit tests/Search/String

There are also two alternative ways of organizing and grouping tests. First you can
define groupings in an XML file that you then pass to the phpunit executable as an
option. Second, you can extend the PHPUnit_Framework_TestSuite class provided
by PHPUnit. You can add any group of individual tests to a test suite. This approach
has the additional advantage that PHPUnit_Framework_TestSuite provides
methods to allow sharing of fixtures across test classes (more about fixtures shortly).

For more details on how to use the XML or class-defined test suite, please consult the
excellent PHPUnit manual.

Our first unit test
Now that we know about the basic class structure of a unit test and how to use
assertions, let's put that knowledge to work and create our first basic unit test.

classes/BoyerMooreStringSearchTest.php

<?php
require_once 'PHPUnit/Framework.php';

require_once(‘../interfaces/StringSearchable.php');
require_once(‘../classes/BoyerMooreStringSearch.php');

// test class are named after the class they test
// and extend PHPUnit_Framework_TestCase
class BoyerMooreStringSearchTest extends PHPUnit_Framework_TestCase
{
 // methods are individual test and start with the string "test"
 public function testNumberOfMatches()
 {
 $poem = <<<POEM
Forgetting your coffee spreading on our flannel,
Your lipstick grinning on our coat,
So gaily in love's unbreakable heaven

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[308]

Our souls on glory of spilt bourbon float.

Be with me, darling, early and late. Smash glasses—
I will study wry music for your sake.
For should your hands drop white and empty
All the toys of the world would break.
POEM;

 // create an instance of the search class
 $bm = new BoyerMooreStringSearch();

 // execute the search using our algorithm
 $bm->search(‘our', $poem);

 // assert that the algorithm found the correct
 // number of substrings in the buffer
 $this->assertEquals(8, $bm->getResultsCount(),
 ‘The algorithm did find the correct number of matches.');
 }
}
?>

We start by requiring the definitions of the class and interface we will be testing,
StringSearchable and BoyerMooreStringSearch; as well as the PHPUnit class
we are extending, PHPUnit_Framework_TestCase. The unit test class we are
creating, BoyerMooreStringSearchTest, is named after the class that we are testing.
The only difference is that it has "Test" appended to the class name. Our test class
extends PHPUnit_Framework_TestCase because that is how we are leveraging all
the goodies of the PHPUnit framework.

The actual test is performed in method testNumberOfMatches(), which will be
invoked automatically when we ask PHPUnit to execute our test class. The only
requirement is that the method name starts with "test."

The test itself is pretty straightforward. We define a variable $poem which we
will be searching for the occurrence of a substring. We are using the assertion
assertEquals() to compare the number of matches reported by the class we
are testing to the number of matches we know to be correct, namely eight.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[309]

That's it! Now, let's run this test from the command line. Assuming that the phpunit
executable is in your path, you type the following command and observe the output.

PHPUnit starts out by identifying itself, its author, and the version that is running.
The single dot on the next line represents a successfully executed unit test. In
particular, the assert statement in our testNumberOfMatches() method turned out
to be true. If the assert had failed, the dot would have been replaced by a letter "F"
for failure. PHPUnit would also provide us with some details about which test failed
and display the corresponding error message.

Temporarily modifying our test to expect a different number of results, we can force
the unit test to fail. The corrsponding output is as follows:

Extended test class features
Having a test class with a single test is not quite in the spirit of unit testing. Our
goal is to create enough tests to cover most or all of the scenarios our code is likely
to encounter in production use. In this section, we will work towards that goal by
adding additional test methods and by using different sets of data for the tests we
have created.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[310]

Fixtures
One of the basic tenets of unit testing is that the environment should be exactly
the same each time the test is being performed. PHPUnit gives us a pair of special
methods that complement each other for exactly that purpose. The methods setUp()
and tearDown() are provided to us by the PHPUnit_Framework_TestCase class
we are extending and these methods are responsible for setting up the environment
before and after each test is performed.

The important thing to note is that setUp() is called before each test method to
give you a chance to reset the environment if necessary and desired. In that sense,
setUp() is different from a constructor method, which only gets called once during
the lifetime of an object. To illustrate this point, take a look at the following mock
unit test class.

SetUpTearDownTest.php

<?php
require_once ‘PHPUnit/Framework.php';

class SetUpTearDownTest extends PHPUnit_Framework_TestCase
{
 // illustrating call to setUp method
 protected function setUp()
 {
 echo "executing " . __FUNCTION__ . "\n";
 }

 // first generic test method
 public function test1()
 {
 echo "executing " . __FUNCTION__ . " \n";
 }

 // second generic test method
 public function test2()
 {
 echo "executing " . __FUNCTION__ . " \n";
 }

 // illustrating call to tearDown method
 protected function tearDown()
 {
 echo "executing " . __FUNCTION__ . " \n";
 }
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[311]

Executing the above code doesn't perform any unit tests, but it does show us exactly
the order of execution of the unit test methods and the methods that prepare and
clean up the environment, setup() and teardown(). Here is what we see when
executing our mock unit test class from the command line:

As you can conclude from the above output, setUp() gets called twice, once before
each unit test method (test1 and test2). Analogously, tearDown() also gets called
twice right after each of the unit test methods have completed.

Practical applications for these two methods are to set up the fixture of the unit
tests. In other words, you get a chance to reset the environment to exactly the state
required to run the tests. Only in a controlled environment is it possible to obtain
reliable results.

In reality, setUp() is used much more frequently than tearDown(). You will see this
as we add setUp() to our sample unit test class. We use setUp() to instantiate the
class we are testing before each test. However, due to automatic garbage collection
upon dereferencing objects, there is no corresponding action required of the
tearDown() method.

Although generally not advisable, it is possible to share fixtures across different
sub-classes of PHPUnit_Framework_TestCase. If you are looking to implement
these kinds of global fixtures, take a look at adding setUp() and tearDown() to the
PHPUnit_Framework_Testsuite instead of the PHPUnit_Framework_TestCase class
we have been working with up to this point.

Before we add fixtures to our project, let's look at another useful feature that we will
be implementing at the same time.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[312]

Annotations
In the context of coding, annotation are directives to the compiler, interpreter,
or any other kind of parser. However, annotations take the form of phpDocumentor
tags and are thus embedded in the comments of the source and don't really affect
the execution of the code. PHPUnit 3.3.x, which is what I used to write this chapter,
supports annotations for managing code coverage analysis
(@cover, @codeCoverageIgnoreStart, and @codeCoverageIgnoreEnd),
automated creation of assert-based tests (@assert), grouping of test classes
(@group), marking methods as tests (@test), and marking tests as part of
a scenario for behavior-driven development (@scenario).

In the following section, I would like to highlight the two annotations you are most
likely to use, namely data providers (@dataProvider) and exception testing
(@expectedException).

Data providers
Data providers are a shortcut for performing what is essentially the same test, but
with different test data. The idea is that the PHPUnit framework knows to execute
a given test method multiple times, each time passing it different parameters to be
used during the test.

To let PHPUnit know where to get the data, you have to add a special
phpDocumentor tag that identifies the name of a public method that returns either
an array or an object which implements the Iterator interface. Either way, PHPUnit
is then able to iterate over the array or object and call the corresponding test method
for each item returned.

This may sound complicated, but a quick example illustrates the concept
pretty convincingly:

tests/Search/String/BoyerMoore/MultipleTest.php

<?php
require_once ‘PHPUnit/Framework.php';

require_once(‘interfaces/StringSearchable.php');
require_once(‘classes/Search/String/BoyerMoore.php');

class MultipleTest extends PHPUnit_Framework_TestCase
{
 protected $bm;

 protected function setUp()

 {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[313]

 // create the new search class
 $this->bm = new BoyerMoore();
 }

 /**
 * @dataProvider provider
 */

 public function testNumberOfMatches($buffer, $substring, $matches)
 {
 // execute the search
 $this->bm->search($substring, $buffer);

 // assert that the algorithm found the correct
 // number of substrings in the buffer
 $this->assertEquals($matches, $this->bm->getResultsCount());
 }

 // This method provides data to be used when calling
 // method testNumberOfMatches()

 public function provider()
 {
 return array(
 array(‘abcdeabcdabcaba', ‘abc', 3),
 array(<<<POEM
Forgetting your coffee spreading on our flannel,
Your lipstick grinning on our coat,
So gaily in love's unbreakable heaven
Our souls on glory of spilt bourbon float.

Be with me, darling, early and late. Smash glasses—
I will study wry music for your sake.
For should your hands drop white and empty
All the toys of the world would break.
POEM
 , ‘our', 7)
);
 }
}
?>

Class MultipleTest performs essentially the same as did class ResultCountTest
we encountered earlier in this chapter. It uses our algorithm to locate all matches for
a given substring and compares the result to a value known to be correct. However,
we also see some of the new features we just learned about, being implemented in
this class.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[314]

First, rather than having to instantiate BoyerMooreStringSearch in the test class, we
let the setUp() method take care of that for us. This way, when we add additional
test methods to the class, we won't have to worry about having to obtain a reference
to the object we are testing.

Second, we created a provider() method that returns an array. Each array member
is in turn an array itself consisting of three values: the buffer, the substring, and
the number of occurrences of the substring within the buffer. The number of
items in the array corresponds to the number of arguments required by method
testNumberOfMatches($buffer, $substring, $matches). What this means
is that testNumberOfMatches() will get called twice, once with the string
"abcdeabcdabcaba" as the buffer and once with the excerpt from the poem with
which we have been working.

At this point, adding another buffer-substring-result count test has become trivial.
All we have to do is add another three-member array to the array in the provider()
method and PHPUnit will take care of the rest.

Following is the output from running this unit test class. As expected, we see two
dots representing two successfully executed tests (really the same test with two
different sets of data).

Exceptions
Testing exceptions can be kind of tricky. If you code some method call or data that
will cause the code being tested to throw an exception, you can then wrap that
code into a try-catch-statement and let the test case fail if it never reaches the catch
statement. However, PHPUnit offers a much more elegant, concise, and explicit way
of testing exceptions, the @expectedException annotation.

By preceding the test case with an @expectedException annotation, you can let
PHPUnit know that the test case should be considered a failure unless an exception is
being thrown. Since there is nothing like an example to clear up confusion, here we go.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[315]

Let's say we add the following code at the beginning of the BoyerMoore::search()
method to make sure the parameters we are getting are acceptable:

<?php
 // ... the rest of the class's code goes here ...

 // implement interface method
 // with args like needle, haystack
 public function search($substring, $buffer,
 $caseSensitive = self::CASE_SENSITIVE)
 {
 // validate input
 if (!is_string($substring) || strlen($substring) < 1) {
 throw new Exception("Substring to search for must be a string
 with one or more characters.");
 } elseif (!is_string($buffer) || strlen($buffer) < 1) {
 throw new Exception("Buffer through which to search must be a
 string with one or more characters.");
 } elseif (!is_bool($caseSensitive)) {
 throw new Exception("The third argument to function " .
 __FUNCTION__ . " must be a boolean.");
 }

 // ... the rest of the class's code goes here ...
?>

Following is the test class that allows us to test the various scenarios where
an exception might get thrown due to invalid parameters being passed to the
search function.

<?php
require_once ‘PHPUnit/Framework.php';

require_once(‘interfaces/StringSearchable.php');
require_once(‘classes/Search/String/BoyerMoore.php');

// test class are named after the class they test
// and extend PHPUnit_Framework_TestCase
class ExceptionsTest extends PHPUnit_Framework_TestCase
{
 protected $bm;

 protected function setUp()
 {
 // create the new search class

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[316]

 $this->bm = new BoyerMoore();
 }

 /**
 * Testing that an exception being thrown if the buffer,
 * substring, or 3rd argument don't pass validation.
 *
 * @dataProvider provider
 * @expectedException Exception
 */
 public function testExceptions($buffer, $substring,
$caseSensitive)
 {
 // execute the search using our algorithm
 $this->bm->search($substring, $buffer, $caseSensitive);
 }

 // This method provides data to be used when calling
 // method testNumberOfMatches()
 public function provider()
 {
 return array(
 array(‘', ‘find me', BoyerMoore::CASE_SENSITIVE),
// empty buffer
 array(null, ‘find me',
BoyerMoore::CASE_SENSITIVE), // null buffer
 array(array(), ‘find me',
BoyerMoore::CASE_SENSITIVE), // array buffer
 array(‘search me', ‘',
BoyerMoore::CASE_SENSITIVE), // empty substring
 array(‘search me', null,
BoyerMoore::CASE_SENSITIVE), // null substring
 array(‘search me', array(),
BoyerMoore::CASE_SENSITIVE), // array substring
 array(‘search me', ‘find me', ‘whatever'), //
wrong 3rd arg
);
 }
}
?>

Once again we are using a data provider to call the testExceptions() method
multiple times. Since testExceptions() accepts buffer, substring, and a Boolean
case-sensitive flag as arguments, we can test exceptions being thrown due to any
of the three arguments not passing validation.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[317]

Here is the output from running the new test:

As you can see from the dots, the test code expected and caught seven exceptions,
which means that all seven tests passed.

Automation: generating tests from classes
Among other useful features, PHPUnit's command-line client has one that stands out
as a big time saver in my opinion. Given a class, phpunit can use reflection on that
class and generate the skeleton of a corresponding test class. If you are thoroughly
committed to test-driven development, you might be shuddering in horror right
now. If you think about it, this is pretty much the opposite of what many modern
and agile methods preach these days. You are supposed to write your test cases first
and then code accordingly. However, that is not the reality we developers face most
days. There are many reasons why you might end up with complete code before
even a single test case has been written.

There is the situation where you inherit an existing project that does not come with
unit tests. Perhaps the developer was not nearly as enlightened as we are. Or, the
project simply predates the practice of creating unit tests. Whatever the case, you are
now asked to make significant changes to the project and you want to make sure that
your new contributions don't break existing functionality. You can start writing unit
tests from scratch or you can use phpunit to give you a hand.

Another possibility is that management has committed to a deliverable that puts you
in serious time constraint. Maybe you have been asked to prototype a solution over a
couple of days that simply does not allot the time to create proper unit tests as well.
We all know it happens, but we also know that we should really make an effort to
return to the project as soon as the workload lightens to create those missing unit
tests. The coding is the fun part, of course, which is why we want to make creating
unit tests at the tail end of the project as quick as possible. Again, PHPUnit comes to
our rescue.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[318]

Using the --skeleton-test command line option to phpunit, we can easily generate
a bare bones test class. Fleshing out an automatically generated test class is a significant
time saver compared to generating one from scratch.

Here is the command line output from generating a test class based on our
BoyerMoore class:

The test code that was generated by the above command is as follows:

<?php
require_once ‘PHPUnit/Framework.php';

require_once ‘BoyerMoore.php';

/**
 * Test class for BoyerMoore.
 * Generated by PHPUnit on 2009-09-01 at 12:45:03.
 */
class BoyerMooreTest extends PHPUnit_Framework_TestCase
{
 /**
 * @var BoyerMoore
 * @access protected
 */
 protected $object;

 /**
 * Sets up the fixture, for example, opens a network connection.
 * This method is called before a test is executed.
 *
 * @access protected
 */
 protected function setUp()
 {
 $this->object = new BoyerMoore;
 }

 /**

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[319]

 * Tears down the fixture, for example, closes a network
connection.
 * This method is called after a test is executed.
 *
 * @access protected
 */
 protected function tearDown() { }

 /**
 * @todo Implement test__destruct().
 */
 public function test__destruct()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }

 /**
 * @todo Implement testSearch().
 */
 public function testSearch()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }

 /**
 * @todo Implement testGetJumpTable().
 */
 public function testGetJumpTable()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }

 /**
 * @todo Implement testGetResults().
 */

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[320]

 public function testGetResults()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }

 /**
 * @todo Implement testGetResultsCount().
 */
 public function testGetResultsCount()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }

 /**
 * @todo Implement testGetJumpLength().
 */
 public function testGetJumpLength()
 {
 // Remove the following lines when you implement this test.
 $this->markTestIncomplete(
 ‘This test has not been implemented yet.'
);
 }
}
?>

As you can see, PHPUnit generated nicely formatted object-oriented PHP code that
contains placeholders for the body of the test methods. It even includes some helpful
phpDocumentor tags, such as @access, @var, and @todo.

Unimplemented and skipped tests
The test class skeleton generated by PHPUnit above illustrates how to mark a test
as being unimplemented. By calling markTestIncomplete([$message]), you can
let the PHPUnit framework know that the corresponding test should neither be
considered a success nor a failure—it simply hasn't been implemented yet.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[321]

Asking PHPUnit to run the test class above results in the folowing output:

As you can see, incomplete tests have been marked with a capital letter "I".

Similarly, you can use a call to markTestSkipped([$message]) to let PHPUnit
know that a given test should be considered skipped. In the output of phpunit,
skipped tests are indicated by a capital letter "S."

As a guideline, you should call markTestSkipped() if an otherwise complete
unit test is not being executed due to some condition. In other words, you
should have a conditional statement, such as an if-statement, wrapping calls to
markTestSkipped(). Otherwise, if the body of the test is empty or the test logic
has only been implemented partially, you should use markTestIncomplete().

Automation: generating classes from tests
Now that we know how to generate test case skeleton classes from code classes, let's
consider the opposite direction and use that as an entry point into a discussion of
test-driven development.

Using the --skeleton-class command line option, you can get PHPUnit to
generate a bare class file based on the test class you have written. PHPUnit parses
your test class and knows which class is being tested based on the name of the file.

The idea of writing the test before the code is not at all as crazy as it may seem. It is
actually the foundation of a methodology that has grown in popularity over the last
couple of years.

Test-driven development
Test-driven development is not completely new, but it has seen resurgence in conjunction
with agile and extreme programming methodology over the last couple of years. The
basic premise is simple: write the unit test(s) first and then write the code to satisfy
the test.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[322]

Proponents of this approach claim that it results in simpler and easier to maintain
code. Furthermore, it breaks the development process into relatively small and
manageable iterations. Here is a flowchart of what one such iteration might look like:

 The typical sequence of activities when using test-driven development is
the following:

1. Write a unit test.
2. Execute the test and make sure it fails (because the corresponding code has

not yet been written).
3. Write the code to satisfy the test.
4. Execute the test again to make sure the code passes. If not, return to step 3.
5. Refactor the code while continuing to run the unit test to make sure none of

the changes break the newly added functionality.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[323]

Enhancing our example with TDD
I hope that by now you have picked up on the fact that I don't believe in operating in a
vacuum of theory. Therefore, let's apply our newfound knowledge to our string search
class by giving it an option to make the search either case-sensitive or case-insensitive.
At the moment, the algorithm considers all characters to be different, which means it is
currently case-sensitive.

Here is the test method we would add to perform a case-insensitive search. For
brevity, I have omitted the rest of the test class that we have already seen.

<?php
 // … the rest of the test class goes here

 // testing case-insensitive search
 public function testCaseInsensitive()
 {
 // get data array from provider method
 $dataArr = $this->provider();

 // execute the search
 $this->bm->search(‘our', $dataArr[1][0],
 BoyerMoore::CASE_INSENSITIVE);

 // assert that the algorithm found the correct
 // number of substrings in the buffer
 $this->assertEquals(8, $this->bm->getResultsCount());
 }

 // … the rest of the test class goes here

?>

By calling the provider() method directly, we are able to retrieve a reference
to the poem excerpt we have been using in our tests thus far. In methods
testNumberOfMatches() we expected 7 occurrences of "our" because the search
was case-sensitive. For a case-insensitive search, however, we would expect eight
occurrences of "our" to be found because the buffer contains the word "Our" at the
beginning of a sentence and consequently the first letter has been capitalized.

Actually, if you look at how we are calling the search, you will notice that we
have added a third argument—a class constant to signify whether the search is to be
case-sensitive or not. Since the test will be prevented from even running as the result
of a parse error, let's add class constants CASE_SENSITIVE and CASE_INSENSITIVE to
the BoyerMoore class before asking phpunit to run the test class.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[324]

Executing the test class with the new test method meets our design goal: the
previous tests pass; whereas the newly added test method results in a failure.
Here is the output phpunit gives us:

We can now move on to the third step of our test-driven development iteration,
which is to write the code to satisfy the new test. We might modify the search()
method as follows. Again, for brevity I have omitted the rest of the class code listing
because it hasn't changed.

<?php
 // class constants
 const CASE_SENSITIVE = true;
 const CASE_INSENSITIVE = false;

 // the substring for which to search
 public $substring = ‘null';

 public $originalSubstring = ‘null';

 // the buffer to be searched for any occurrences of the substring
 public $buffer = ‘';

 public $originalBuffer = ‘';

 // … the rest of the test class goes here

 // implement interface method
 // with args like needle, haystack

 public function search($substring, $buffer, $caseSensitive =
self::CASE_SENSITIVE)

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[325]

 {
 // reset results array
 $this->results = array();

 $this->substring = $substring;
 $this->originalSubstring = $substring;

 $this->buffer = $buffer;
 $this->originalBuffer = $buffer;

 // change the working buffer & substring to lower case
 // if the search is to be case-insensitive
 if ($caseSensitive != self::CASE_SENSITIVE) {
 $this->substring = strtolower($this->substring);
 $this->buffer = strtolower($this->buffer);
 }

 // get jump table
 $this->deriveJumpTable();

 $currentCharacter = strlen($this->substring) - 1;
 $substringLength = strlen($this->substring);
 $bufferLength = strlen($this->buffer);

 while ($currentCharacter < $bufferLength) {

 for ($i = $substringLength - 1; $i >= 0; $i--) {

 // character matches, continue ...
 if ($this->buffer{($currentCharacter - $substringLength +
 $i + 1)} == $this->substring{$i}) {

 // did all letters match?
 if ($i == 0) {
 $this->results[] = $currentCharacter - $substringLength;
 $currentCharacter += $this->getJumpLength
 ($this->buffer{$currentCharacter});

 } else {
 continue;
 }

 // mismatch, jump ahead ...
 } else {

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[326]

 $currentCharacter += $this->getJumpLength
 ($this->buffer{$currentCharacter});
 break;
 }
 }
 }

 // return true if any matches occurred, false otherwise
 return (sizeof($this->results) > 0);
 }

 // … the rest of the test class goes here
?>

Additions to the code have been highlighted in the above listing. Our solution is to
simply keep unmodified copies of the buffer and substring ($bufferOriginal and
$substringOriginal) and convert our working buffer and substring to lower case
before performing the search.

Running the exact same unit test that failed before now displays the following
successful output.

In our example, we can skip the last step typical of test-driven development. Our test
and new feature are simple enough that not much refactoring is required to move
from merely satisfying the test to a state where you can proudly show it off to other
developers without being ridiculed.

Code coverage
If you happen to also have Xdebug installed, PHPUnit can easily be made to generate
code coverage data. Adding the option --coverage-html <output_dir> to the
command-line execution of phpunit will result in a coverage report being generated
in HTML. For example, I ran the following command line:

phpunit --coverage-html ./report tests/Search/String/BoyerMoore/

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 7

[327]

This executed all unit tests found in the BoyerMoore directory and generated the
HTML page as follows:

For the BoyerMoore class, we can get more detailed information from the report by
clicking on BoyerMoore.php.

There is even a listing of the source code with highlighting that shows which lines
have been tested and which have not. Here is an excerpt.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Testing

[328]

For obvious reasons, the higher the percentage of lines that have been tested, the
more confidence you can have in the quality of your code.

TestCase subclasses
PHPUnit provides several subclasses of PHPUnit_Framework_TestCase that provide
specialized functionality. Although we do not have time and space enough to cover
these in detail, I want you to be aware that these advanced features exist and know
that you can read up on them when the time comes when you need them in your
unit tests. Following is a list of PHPUnit_Framework_TestCase subclasses and
corresponding descriptions:

•	 PHPUnit_Extensions_PerformanceTestCase allows you to limit
the execution time of a process. This class is helpful if you are testing
performance and execution times.

•	 PHPUnit_Extensions_OutputTestCase lets you construct tests for the
output generated by the code being tested.

•	 PHPUnit_Extensions_Database_TestCase allows you to test database
connections and sets of data.

•	 PHPUnit_Extensions_SeleniumTestCase enables you to test your code
through the web interface it provides. This is done with the help of Selenium,
a popular web application testing system.

Summary
We started this chapter with an overview of different types of testing. Hopefully, this
background knowledge will help you to better relate to the various people that have
a stake in the software development process. Different motivations result in different
types of testing. A functional expert cares whether the system produces the correct
result, but may care little about the details of the implementation on a code level. It's
not his job.

Our job as developers, however, is closely tied to the lowest level of testing, namely
unit testing. With the help of the PHPUnit framework, we learned how to quickly
construct simple tests, organize them, and execute them. We even covered advanced
topics such as test-driven development and code coverage analysis.

Paired with a little discipline, PHPUnit is sure to make it easier to catch bugs
early in the development process when it is still comparatively cheap to fix them.
I challenge you to write the first line of code on your next project for a unit
test instead of regular code.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications
Once you have finished developing your applications and have gotten everybody
invested in the project to sign off, it is time to deploy. Actually, by then, you should
have already deployed the application many times and the whole process should be
more or less automated.

Most of the projects in which I have been involved lately have benefited from
frequently deploying the application to various environments, such as development,
test, and production. Automating this process allows you to quickly get new instances
of the application up and running.

Not only is this a good way of shaking out any potential problems with the eventual
production deployment, it is also a great step toward having new developers be
productive. If you have the deployment process optimized and well documented,
new members of the development team will not have to spend countless hours
setting up their development environment. Instead, they can follow some simple
steps to get the application working and ready for development.

Goals and requirements
Let's consider what our goals should be in deploying or upgrading an application.
Put another way, how do we measure success? One might be tempted to say that
how well the application performs is equivalent to how well the deployment went.
However, that would be misleading. At this stage, we don't concern ourselves
anymore with functional design, programming, or testing. We are operating on the
assumption that we have a fully functional application that needs to be deployed.
Whether it works as expected may or may not still be our problem, but it has nothing
to do with the deployment itself.

How then, you may ask, will we determine whether the deployment went well?
What shall we strive for in coming up with a deployment plan? As you may have
guessed, I have a couple of ideas on the topic.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[330]

First, a deployment should happen quickly. If you have been deploying applications
manually, you will be surprised as to how much of that activity can be automated
if only it is planned carefully. The first time you deploy an application, you can
typically take your time and make sure you get it right before notifying the client
or users of the availability of the application. Not surprisingly, a quick deployment
becomes significantly more important when upgrading an application that is actively
being used. In that situation, our goal should be to minimize or completely avoid any
interruption of service to the existing user base. That is when speed becomes a factor.

The second goal is for the deployment to be completely reversible. You might want
to start thinking of an application upgrade as atomic transaction that you may have
encountered when working with databases. If something goes wrong during the
deployment, you should be able to reverse all steps taken so far and restore the
application to the exact state it was in before the deployment started. As much sense
as that seems to make, sometimes it is easier said than done.

Take for example the case where you have to modify an existing database table.
You might have to run some queries to modify the table structure or manipulate
the data. If you mess up or some other unforeseen problem occurs, how do you
back out? Assuming you planned ahead, you can restore the database from a backup
you took before you started the upgrade. However, depending on the size of your
database, loading the definitions and data for all tables might take several minutes.
Alternatively, you can restore only the compromised table, but only if you have the
right tools to do that. If you have backed up your database to a single monolithic
dump file, it might not be that easy to extract a single table and restore it. Another
option yet is to run prepared queries to reverse the changes that led to the problem.
If that is your approach, you will want to prepare those queries ahead of time so you
don't have to come up with them in crisis mode when the pressure is on.

As you can see by the above example, there are often many approaches you can take
to make your deployment or upgrade reversible. Careful planning is required to be
able to do this for each of the steps involved.

To summarize, our requirements for a deployment or upgrade are:

1. Speed and automation to minimize user impact and eliminate human error
2. Complete reversibility of all actions

I'm repeating myself here because our subsequent discussion of deployment plans,
individual actions, and actual code we develop to make it happen, will be framed
against the backdrop of these requirements. They will be a yardstick in deciding
how successfully we have accomplished our goal.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[331]

Deploying your application
In the previous section, we've talked about being able to reverse individual steps
during a deployment, but which steps exactly are we talking about. Let's take a look
at some activities that are typical of deploying or upgrading an application. Later
in the chapter, we will work on actually implementing these tasks and automating
them as much as possible.

The following sequence diagram illustrates the steps of deploying an application or
website. Certainly, depending on your application, there are steps that you can add
or ignore, but these steps should present a good starting point for most deployments
and can be tweaked as necessary.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[332]

Before looking at each of these steps in detail, let's consider the big picture represented
by the previous diagram. We start by checking the whole project out of our version
control system. To accommodate the environment in which the application will be
deployed, some of the files, primarily configuration files, will have to be modified.
We then put up a message on our existing website that informs users of the ongoing
maintenance. After installing the files, making the corresponding changes to the
underlying database, and rotating the log files, we take down the under maintenance
message, restart the server, and once again open the site to our users. Lastly, we
inspect the site to verify that the application is functioning properly.

Checking out and uploading files
Assuming that your project resides in some kind of source code control system,
you will have to first pull it out to a version of the project that can be deployed to
a production server. If you are using Subversion to house your projects as discussed
in another chapter in this book, you need to perform an export of your project to get
a copy that is stripped of all the Subversion meta data typically hidden in invisible
files within each of the project's directories. Other version control systems may
use different terminology, but the idea remains the same. You need a copy
of your projects that is clean of any meta data or other files that are not meant
to be deployed.

In contrast, you might want the deployment process to be able to deploy source
code that is still connected to the repository. In Subversion terminology, you might
be checking the code out into a local or remote working copy. The benefits of that
approach are twofold. First, you can use the information in the repository to make
future upgrades easier. For example, you might be able to simply run a command
to update the checked out version to the most recent version of the code. Second,
if your deployment process supports repository checkouts, it can be used to quickly
set up development environments, thus getting new development team members
productive more quickly. Therefore, the process that we will be developing in
this chapter will allow you to perform either type of deployment, production
or development.

It is also more than likely that you will have to change one or several of the
configuration files with settings that reflect the production environment. For
example, you may need to set the home directory of your project, database
connection credentials, base URL, and so on.

You might want to take a look at the chapter on application frameworks because
the sample application we developed in that chapter was intentionally designed
to support multiple environments with the help of corresponding sections in the
configuration file. This was done in anticipation of having an automated deployment
process targeting different environments.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[333]

Once you have a deployable version of your project, you will need to transfer it
to the server. This is typically done using the FTP, SFTP, or SCP (SSH) protocols.
Hopefully, you will be using one of the secure options that don't expose credentials
in the clear.

If you are working the installation from the productions server, you might be able to
combine the two steps of exporting and uploading the project by leveraging the fact
that all modern version control systems support remote operations. Simply check out
your project from the repository directly to the target machine and you're done with
this step.

Displaying an under-maintenance message
Before actually pulling the figurative switch, you should notify your users that you
will be performing some work on the server. I usually redirect users temporarily to a
generic HTML page that informs them that the server is undergoing maintenance and
that they should retry their request in a couple of minutes.

If you plan and automate your upgrades well, the service interruption your users
experience should be minimal or non-existent. So what's the point of putting up a
maintenance page you may ask? Well, the maintenance page suddenly becomes
important if something should derail your carefully planned deployment. At that
point, you are probably scrambling to figure out what went wrong so you can fix
it. When this situation occurs, you will be thankful for not having to worry about
warning the users and can instead spend your time on the task that really requires
your attention, namely the troubleshooting.

Once the upgrade has been completed, the maintenance page needs to be taken
down. Again, this should be automated because it is a step you don't want to forget.

Upgrading and installing files
Once the files are on the server, you will need to make them available to your
users. Replacing the existing files with the new ones violates our requirement of
reversibility. You could rename them or move the folder with the old files and then
replace them with the new ones. However, there is an even quicker way of doing this.

On systems that support symbolic links (or aliases or shortcuts), it is good practice to
have a symlink that points to the directory containing the application files. When it
is time to upgrade, you merely have to point the symlink at a different directory and
the new files become visible instantly.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[334]

Upgrading database schema and data
Most applications these days rely on some kind of permanent database storage,
with MySQL being the frontrunner in that category, simply because of its popularity.
When you first deploy an application, you are usually also responsible for making
sure that the database gets created correctly and is accessible. In the case where
you are upgrading an existing installation, you will have to come up with a way of
modifying the schema and/or data. A typical way of doing that is to have a text file
to which developers add queries to make the database changes required by their
code. During deployment, a database administrator or developer is then responsible
for executing those queries during the upgrade window in which the rest of the
deployment tasks are taking place as well.

Although this approach might work well enough for upgrading or creating a database,
it does not satisfy our deployment requirements. It is not easily reversible—unless
you plan for it. Also, as you deploy subsequent releases, additional changes to the
database will be required and it will become increasingly difficult to roll it back to
a previous state.

One possible answer to these problems can be found in a tool that allows us to define,
manage, and execute incremental changes to the database. These incremental changes
are called migrations and the tool we will be using to manage our migrations is
called DbDeploy. Since each incremental upgrade to a database has a corresponding
incremental downgrade, it is possible to step through the changes to the database
in either direction at any time you wish. Moreover, changes can be applied in an
automated fashion, thus satisfying both our requirements of a successful deployment.

We will dive into the details of DbDeploy when we get to define actual DB migrations
later in this chapter.

Rotating log files and updating symbolic links
Depending on where and how your application saves log information, it may be
necessary or at least advisable to rotate the log files. For one, you need to make sure
that they are still writable by the server, which may not be the case if the log files
reside within your application's directory and you have pointed the production
symlink to another directory.

Miscellaneous other libraries or supporting applications might need to be copied
or symlinked to the newly deployed application. For example, I have a Web
interface for reading e-mail that is accessible from the document root directory
of my website. However, it is not part of the site's project in the Subversion
repository and this needs to be copied or symlinked whenever a new version
of the site is being deployed.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[335]

Verifying the deployed application
This last step may be obvious, but at the same time it is not one you want to overlook.
There should be checks that everything that was deployed is actually working as
expected. This is the one step where we have to allow for a slight deviation from our
requirements. Although we can and want to automate some checks, such as testing
HTTP response headers, some things just have to be checked manually. Sometimes
the easiest way of making sure that everything is working is to pull up the site in a
web browser or execute the application in whichever way it was meant to be accessed.
Often, any major problems can be spotted right away.

Automating deployment
Now that we are clear on what we are trying to achieve, let's start exploring the tools
we will be using to implement and automate our deployment plan. Although we will
enlist a handful of supporting utilities to get the job done, the tool we will be looking
towards to automate the whole process and perform most of the tasks is called Phing.

Phing
Phing is a project build system. The name is actually a recursive acronym and
stands for "PHing Is Not Gnu Make." Phing allows you to perform all kinds of
tasks associated with building software. It's especially great for automating tasks,
which is exactly what we have been discussing in the first part of this chapter.

Although Phing goes so far as to disavow any association with the utility make,
it is pretty safe to say that make is part of Phing's heritage. However, Phing has
been modeled much more closely after Ant, Java's predominant build tool, than
anything else.

Using Phing instead of Ant has the advantage that it supports various tasks specific
to PHP development. Also, Phing is written in PHP, which makes it easy for a PHP
developer to extend its functionality.

Phing is driven by targets that are defined in an XML file. Targets are essentially
actions that Phing can perform. The XML file that defines these targets and their
interdependence is usually called build.xml. Targets in turn are composed of one
or more tasks, but we will learn more about either a little later in this chapter.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[336]

From the command line it is then easy to ask Phing to execute any of the defined
targets and handle the dependencies automatically. Examples of user-defined targets
might include:

•	 create-skeleton: Create some directories needed by the site
•	 checkout-site: Perform a Subversion checkout
•	 update-db: Run some pre-defined queries to update the database structure

and/or data

These targets are actually some of the ones we will be creating and using on our test
project as follows.

Installing Phing
There are a couple of different ways of installing Phing. The easiest and least painful
one would be to do it via the Pear installer. We have encountered the Pear repository
and the accompanying command line tool numerous times throughout this book.
The reasons for that are simple—it works and it has found wide acceptance to the
effect that most of the third party tools I discuss can be downloaded and installed
that way.

Rather than just run Pear at this point, I want to point out what a perfect fit this
tool is for the current chapter. If you stop to think about it, by typing pear install
phing/phing, we're doing exactly what this whole chapter is about—we deploy
(install) an application, namely Phing. In other words, depending on your type
of application, distributing it via a Pear channel might be another approach to
deploying it.

For now, let's proceed with the practical aspects (because it just works!) and use
Pear to install Phing. The following is a transcript of me installing Phing from the
command line:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[337]

There are really only two commands here. First, pear channel-discover pear.phing.
info tells the pear installer that there is a Pear repository at pear.phing.info.
Second, pear install phing/phing tells the executable to install the package
called phing (second occurrence of "phing") from the channel called phing
(first occurrence of "phing").

Another option of getting Phing is to check it out of the project's CVS repository
directly. The advantage there is that you get the latest and greatest code base,
including unreleased enhancements and bugs. This is what you will have to do if
you plan on contributing to the project because it will allow you to commit your
changes back to the repository—assuming you have been given commit privileges.

Basic syntax and file structure
The build file contains XML that defines all the actions and targets available to
the user. By convention, this file is named build.xml. However, if you use the
-buildfile [builfile] command-line option, you can name it anything you
like. For our examples, we will stick with the default naming convention.

Let's take a look at the basic structure of a Phing build file. The following skeleton of
a Phing build file doesn't actually do anything. It is only meant to illustrate the basic
structure of those files. However, we will flesh out the various sections of the build
file as we make our way through this chapter towards the goal of a fully automated
deployment process.

<?xml version="1.0"?>

<project name="projectName" description="Optional description of the
build file." default="defaultTargetName">
 <property name="someGlobalProperty" value="value" override="true"
/>
 <type>
 <!-- global type definition -->
 </type>

 <target name="defaultTargetName" depends="supportingTarget"
description="Describe the default task here.">
 <property name="aLocalProperty" value="someValue"
override="true" />
 <!-- local type definition -->
 </type>

 <task>
 <!-- task definition -->
 </task>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[338]

 <!-- more tasks (optional) -->
 </target>

 <target name="supportingTarget" description="Describe the
supporting target here.">
 <task>
 <!-- task definition -->
 </task>
 <!-- more tasks (optional) -->
 </target>
</project>

As developers, we are all well versed in XML, which is why I think we can step
through this skeleton of a Phing build file rather quickly. Moreover, I think it
makes most sense to discuss the tag hierarchy from the inside out.

Tasks
At the heart of a build file are tasks. These are the tags that directly correspond to
actions. This is where work actually gets done. You can think of tags as the most
specific work unit. The Phing manual defines core tasks as those that are needed to
build projects. In contrast, optional tasks are ones that are not strictly required to
build projects. I find this distinction rather artificial, especially considering that PHP
is an interpreted language, which means that any build process doesn't even include
a compilation phase.

Examples of core tasks include the following:

•	 CopyTask: Copies individual or groups of files or directories from one
location in the filesystem to another, while optionally renaming them

•	 ForeachTask: Iterates over a list and allows you to wrap one or more tasks to
execute for each of the items in the list

•	 InputTask: Prompts the user for input that can be used in the execution of
subsequent tasks

Examples of optional tasks include the following:

•	 SvnExportTask: Exports a project from a subversion repository to a local
directory

•	 ZipTask / UnzipTask: This set of complementary tasks either creates a zip
archive from a group of files or extracts files from an existing archive

•	 PHPUnit2Task: Runs test cases or test suites using the PHPUnit2 unit
test framework

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[339]

Tasks are similar to functions in that they can take arguments. We will see some
examples of actual tasks as soon as we start putting together our own build script
to deploy an application.

Rather than trying to list all available tasks along with each of their options, I urge
you to consult the well-written online manual for the latest and greatest listing and
description of tasks:

http://phing.info/docs/guide/

Lastly, if the set of tasks available in Phing don't satisfy your requirements, you can
easily add your own. As an Open Source tool, Phing was intended to be extensible.
I would imagine that the fact that it was written in PHP makes it all the more easy
for readers of this book to be able to code their own tasks. It is actually surprisingly
easy to add your own task in the form of a single class that accepts the parameters
and performs the desired action.

Targets
Targets are logical groupings of tasks. Tasks are grouped together under a target
to achieve a common goal. For example, you might have a target called backup-db,
which has tasks that create a backup of the database, compress the resulting dump
file, and transfer it by FTP to a location where such backups are typically stored.

Tasks listed within the opening and closing target tags will be executed in the order
in which they appear. Targets have three attributes, namely "name", "description",
and "depends." The name attribute allows you to execute the corresponding target
from the phing command-line client. Here is an example of calling target
upgrade-db in the default build file build.xml:

$ phing upgrade-db

The target name is optional and if omitted the default target defined in the project
tag (discussed as follows) will be executed.

The "description" attribute of the target tag is simply a brief textual summary of what
the tasks do.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[340]

Finally, the "depends" attribute lets the author specify other targets that need to be
executed before the current target. Phing keeps track of which targets have been
called already and automatically calls the targets that still need to be performed
to meet the requirement. In our build.xml skeleton as seen previously, target
defaultTargetName depends on target supportingTarget. When you call
defaultTargetName, Phing would make sure to first execute supportingTarget.
Multiple target dependencies can be listed as long as they are separated by commas.
Just as with tasks, target dependencies will be executed in the order in which they
are listed.

Properties and property files
Properties are Phing's equivalent of variables. They can be defined in the global
namespace or in the local one for each of the targets. Global property definitions
must occur outside of any of the target tags; whereas, local property or type
definitions belong between an opening and closing target tag.

This is followed by some global definitions of properties and types. Properties are
essentially variables, most of which don't change throughout the execution of the
script. Other properties, however, will be created dynamically and used by the build
script to keep state within or between the execution of individual targets.

Properties are defined and used within the build.xml file with the following syntax:

<property name="svn.url" value=
"https://${svn.server}/home/svn/${svn.project}" override="true" />

In this example, we are defining a property called svn.url. The value assigned
to svn.url is a URL that is in turn composed of some strings and two previously
defined properties, svn.server and svn.project. As you can see, the syntax for
using the value assigned to a property is the dollar sign followed by the property
name inside of curly brackets: ${prop.name}.

It is possible and very convenient to keep properties in separate files that contain
nothing but name value pairs. These files follow the naming convention of ending
in .properties. Here is an example of a simple properties file:

Subversion
svn.server=waferthin.com
svn.proto=https://

... many other properties defined here ...

database connection settings & credentials
db.server=localhost

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[341]

db.user=root
db.password=psstdonttell
db.name=state_secrets

As you can see, the syntax is straightforward. Values are assigned to property names
with an equal sign and there is only one name-value pair to each line. Importing
such a properties file is supported by the file attribute of the property task like this:

<property file="propfile.properties"/>

That's all it takes to set all the properties listed in file propfile.properties in the
same namespace as the property task.

There are at least two advantages of using property files. First, it helps to keep the
build.xml more compact. XML tends to be a bit verbose anyway and keeping
most properties in a separate file makes it easier to read and understand the build
file. Second, property files add a level of abstraction in the same way that a central
configuration file or object might do for a PHP application. To deploy the application
to a different location, you edit the properties without having to touch the build.
xml file.

To further extend that idea and provide support for different environments. As we
will see in our example a little later, we can simply tell Phing to which environment
we want to deploy and the rest of the setup can be handled by including a properties
file to match the environment. It is not uncommon to have property files named
dev.properties, staging.properties, or production.properties to reflect the
environment for which they configure the build or deployment process.

Types
Types are capable of representing data elements that are more complex than
properties. For example, a type can be a reference to files in a given directory
whose name matches a supplied regular expression. Here is an example of the
fileset type that will contain a reference to all .property files in the project's
build directory, except for the one named deprecated.properties.

<fileset dir="${project.home}/build" >
 <include name="*.properties" />
 <exclude name="deprecated.properties" />
</fileset>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[342]

The built-in types in Phing include the following:

•	 FileList: An ordered list of files on the filesystem. Files are not required
to exist in the filesystem.

•	 FileSet: An unordered list of files that exist in the filesystem.
•	 Path / Classpath: Used to represent collections of directory paths.

For detailed descriptions of their functionality and attributes of these types, please
consult the Phing manual.

Filters
As the name suggests, filters allow you to filter and transform file content in some
way. As of this writing, there are 14 core filters included in Phing that let you take
such diverse actions as to:

•	 Expand properties within a file
•	 String line breaks, line comments, or PHP comments
•	 Remove/add lines from/to a file based on location within the file or content

of the line

Filters have to be wrapped inside an opening and closing filterchain tag. The
build file excerpt under the mappers sub-section also contains an example of a filter
in action. Later in the chapter, we will see another example of applying filters to
change the content of one or more files.

Mappers
Whereas filters operate on file content, mappers do the same for filenames. There are
currently five core mappers in Phing that allow us to operate on paths and filename
by doing one or all of the following:

•	 FlattenMapper: Remove directories from a path, leaving only the filenames
•	 GlobalMapper: Move files while renaming them
•	 IdentityMapper: Change nothing
•	 MergeMapper: Change multiple files to have the same name
•	 RegexpMapper: Change filename using regular expressions

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[343]

Here is an example of renaming template files to actual PHP files while using the
expandproperties filter and renaming the files using the GlobalMapper:

<copy todir="/includes">
 <filterchain>
 <expandproperties />
 </filterchain>
 <mapper type="glob" from="*.php.tpl" to="*.php"/>
 <fileset dir="templates">
 <include name="*.php.tpl" />
 </fileset>
</copy>

For complete listings of all filters and mappers; as well as detailed descriptions of
their use and attributes, I once again ask you to refer to the excellent online Phing
manual. For now, our time will be better spent working through some examples
and get a feel for actually doing some work with Phing.

The project tag
The outer most tag is the project tag, which supports attributes to define the project
name and description; as well as the name of the target that will be executed by
default. As we will see shortly, it is always possible to instruct Phing to execute a
specific target instead of the default one defined here. Also, Phing uses the project
name when providing feedback to the user.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[344]

Deploying a site
Now let's put all our newfound knowledge about tasks, targets, properties, types,
filters, mappers, and projects to good use by creating a build file that will seamlessly
deploy an upgrade to a website. We will also create some templates and data that will
allow us to upgrade and downgrade the database at will. Rather than to experiment
with someone else's site, I decided to automate the deployment of my own site,
waferthin.com. Here is the directory structure of the currently deployed site:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[345]

Separating external dependencies
It makes sense to separate external dependencies that don't reside in your version
control system with the rest of your project. Those are likely files and directories that
don't necessarily need to be updated each time you deploy. By separating out these
dependencies, you don't have to worry about accidentally overriding or breaking
them. In the case of my site, there are some directories and files that have simply been
copied into the site during the original manual install, such as Zend Library, Mantis
(an issue tracker), and RoundCube (a web-based e-mail reader). These will either have
to be moved from one release to the next or simply be replaced by a symbolic link. For
the same reason, the logs directory will have to be moved outside of the project itself.
Once our build script is finished and we have successfully deployed the site, we will
take a look to see how the structure has changed from what we started with.

Creating a build script
Let's start by creating a basic build script. Luckily, targets break the whole script into
manageable pieces. We will be creating one target at a time until we have all the pieces
of the puzzle in place and are ready to deploy the whole site with a single command.

Environment and properties
I typically work on a local copy of my projects, but end up deploying test and
production instances remotely. Perhaps your workflow isn't exactly the same as
mine, but chances are that you find yourself having to deploy the same application
to a variety of different servers or environments. It would be nice if our Phing script
could be flexible enough to accommodate these different requirements transparently
to the user. Since most, if not all, of the actions that need to be performed are
essentially the same, we write our script so that we can deploy to the different
environments by simply changing some properties, such as the domain name,
the path to the project on the server, database settings, and so on.

A common solution to this problem is to create property files that correspond to the
different environment that we wish to support. We can then create targets to load the
corresponding properties file, or prompt the user for which environment's properties
file he wants to use.

Here is the dev.properties file, which contains the settings for deploying
a development version of the site to my local machine:

deployment
site.fqdn=dev.waferthin.com
site.fqdn.secure=dev.secure.waferthin.com
site.home=/Users/dirk/Sites/${site.fqdn}
site.root=/Users/dirk/Sites/${site.fqdn}/${site.fqdn}

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[346]

Subversion
svn.bin=/usr/bin/svn
svn.fqdn=svn
svn.user=dirk
svn.repo=/svn/
svn.proto=https://
svn.project=waferthin.com/trunk
svn.password=mylilsecret

database connection settings & credentials
db.user=root
db.password=shdonttell
db.name=waferthin
db.fqdn=localhost
db.port=3306
db.bin=/usr/local/mysql/bin/mysql
db.backup.dir=${site.home}/backups

location of application log file
log=${site.home}/logs/waferthin.log

smarty template engine
smarty.templates_dir=${site.root}/smarty/templates
smarty.compile_dir=${site.root}/smarty/templates_c
smarty.configs_dir=${site.root}/smarty/configs
smarty.cache_dir=${site.root}/smarty/cache
smarty.plugins_dir=${site.root}/smarty/plugins
smarty.plugins2_dir=${site.root}/includes/libraries/Smarty/plugins
smarty.force_compile=true

extenal utilities
extern.apachectl=/usr/sbin/apachectl
extern.sudo=/usr/bin/sudo
extern.ln=/bin/ln
extern.mysqldump=/usr/local/mysql/bin/mysqldump

libraries
zend_dir=/usr/local/lib/php/Zend

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[347]

As you can see, there are six sections with the following logical breakdown:

1. Properties starting with site. deal with where on the server to deploy
the site.

2. Properties starting with svn. deal with how to access the Subversion
repository where the code resides.

3. Properties starting with db. deal with connection parameters and
authentication credentials for accessing the database.

4. Properties starting with smarty. deal with configuring the Smarty
template engine.

5. Properties starting with extern. deal with the location of external
executables on which the build script depends.

6. The log and zend_dir properties are used to satisfy additional external
dependencies by creating symbolic links (more about that later).

I also have corresponding files for the production environment called prod.
properties and for the test environment called test.properties. All three
files reside in the same directory as build.xml. Once support for properties files
and environments has been implemented, you can add as many deployment
environments as you wish by simply creating a corresponding properties file.

Now let's start by creating a build.xml file that does nothing more than initializing
the environment:

<?xml version="1.0"?>
<project name="waferthin.com" description="Targets for maintaining and
deploying the waferthin.com web site." default="deploy">

 <!-- initialize timestamp that will be used in naming of various
files & directories -->
 <tstamp/>

 <target name="deploy" depends="get-env" description="Deploy
the site to the web server and perform necessary build and upgrade
tasks.">
 </target>

 <target name="get-env" description="get the environment for an
action">
 <!-- has the environment been set already? -->
 <if>
 <not>
 <isset property="environment" />

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[348]

 </not>
 <then>
 <!-- prompt the user to select from a list of
supported environments -->
 <input propertyname="environment"
validargs="dev,test,prod" promptChar=":">Enter environment </input>
 </then>
 </if>

 <!-- make sure the properties file for the environment exists
-->
 <available file="${environment}.properties"
property="env_prop_exists" type="file" />
 <if>
 <equals arg1="${env_prop_exists}" arg2="true" />
 <then>
 <!-- parse the properties files -->
 <property file="${environment}.properties"/>
 </then>
 <else>
 <!-- die with an error message -->
 <fail message="No properties file for selected
environment exists (${environment}.properties)" />
 </else>
 </if>
 </target>

 <target name="deploy-dev" description="Deploy the site to the
development environment.">
 <property name="environment" value="dev" override="true" />
 <phingcall target="deploy" />
 </target>

 <target name="deploy-prod" description="Deploy the site to the
production environment.">
 <property name="environment" value="prod" override="true" />
 <phingcall target="deploy" />
 </target>

 <target name="deploy-test" description="Deploy the site to the
test environment.">
 <property name="environment" value="test" override="true" />
 <phingcall target="deploy" />
 </target>
</project>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[349]

The project tag contains a description of the targets in the build.xml file and
identifies the deploy target as the default. The only interesting thing about the
deploy target is the depends attribute, which in this case lets Phing know that the
get-env target must be executed first. Now let's examine the get-env target, which
is the only one doing any actual work so far.

Here is what happens if we run our initial build.xml from the command line:

Lastly, we also have three convenience targets, deploy-dev, deploy-test, and
deploy-prod. These targets set the environment property to dev and prod,
respectively, and then continue by calling the deploy target. This way, it is possible
to deploy to either the development or production environment without having
Phing prompt you to manually enter the name of the environment.

Directory skeleton
The way we are deploying our application assumes a certain directory structure. If
we are deploying for the first time, we will have to create the directories we will need
in subsequent steps. If we are upgrading, we will still want to create any directories
that are missing at that point.

Here is the target that will handle the creation of the directories for us:

<!-- create directories; no existing ones will be overridden -->
<target name="create-skeleton" description="Create the basic directory
structure for the site.">
 <mkdir dir="${site.home}" />
 <mkdir dir="${site.home}/build" />
 <mkdir dir="${site.home}/backups" />

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[350]

 <mkdir dir="${site.home}/logs" />
 <mkdir dir="${site.home}/tmp" />
</target>
...

The mkdir task creates the directory that is specified in the dir attribute.

Subversion export and checkout
Now it is time to get the code out of our version control system. Since we have
focused on Subversion for version control in a previous chapter of this book, we will
be relying on it here as well. However, if your project resides in CVS, Git, Perforce, or
any other such tool, the steps would be very similar. Although, as it happens, Phing
has some built-in optional task for interacting with Subversion; whereas, if you are
dealing with a slightly less common repository type, you might to create your own
Phing task or use the ExecTask, which lets you run other command-line executables.

Here is an excerpt from our build.xml that defines the svn-export target.

...
<target name="svn-export" description="Export the site's files from
subversion to the local target directory.">

 <!-- construct proper Subversion URL -->
 <property name="svn.url"
value="${svn.proto}${svn.fqdn}${svn.repo}${svn.project}"
override="true" />

 <!-- was the subversion password given in the properties file? -->
 <if>
 <not>
 <isset property="svn.password" />
 </not>
 <then>
 <!-- prompt the user for the subversion password -->
 <input propertyname="svn.password promptChar=":">Enter
 password for user ${svn.user} to get project ${svn.project} from
 Subversion repository ${svn.fqdn}${svn.repo}</input>
 </then>
 </if>

 <!-- checkout project for development -->
 <if>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[351]

 <equals arg1="${environment}" arg2="dev" />
 <then>
 <echo>Beginning svn checkout ...</echo>
 <svncheckout svnpath="${svn.bin}"
 repositoryurl="${svn.url}"
 todir="${site.root}.${DSTAMP}${TSTAMP}"
 username="${svn.user}"
 password="${svn.password}" />
 </then>
 <!-- export project for deployment -->
 <else>
 <echo>Beginning svn export ...</echo>
 <svnexport svnpath="${svn.bin}"
 repositoryurl="${svn.url}"
 todir="${site.root}.${DSTAMP}${TSTAMP}"
 username="${svn.user}"
 password="${svn.password}" />
 </else>
 </if>
</target>

We start by using the property task to construct the proper Subversion URL
pointing to our project and store it in the property svn.url.

Next, we check whether the svn.password property has been set. It is good security
practice not to hard-code passwords into property files, but it impedes automation.
This way supports both options. If the svn.password has not been given, Phing will
prompt the user to enter it using the inputTask tag.

If you don't want to be required to enter your SSH username and password all the
time, you have the option of installing your public SSH key on the server where the
Subversion repository resides and modifying the build.xml file to not prompt you
for credentials.

How we actually get the code out of the repository depends on what we are going to
be doing with it. We have an if-then-else conditional because the actions we want to
take are slightly different for a development environment as compared to the others.
On one hand, if we are working with a development environment, we perform
a Subversion checkout using the svnexport task that will allow us to commit
subsequent changes back to the repository. On the other hand, if we are deploying
that application, we want to use the svnexport task that excludes any Subversion
artifacts throughout the directory structure of the project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[352]

Building files from templates
Every site or application has some kind of configuration information and there are
various ways of storing that information and making it available to the application.
You will see authors using property files, XML files, and global PHP variables for
configuration. In my site, I happen to have a Config class defined in file Config.php
where the configuration settings are stored either as class constants or private static
properties. Normally, this means that one would have edited this file by hand to set
the correct values for the deployment environment. However, since we are looking
to automate all deployment steps, we need to come up with a different approach.

Our solution is to create a template for the Config.php file, which could then be
used to create a Config.php customized for the deployment environment. Here
are the first couple of lines of the Config.php template:

class Config
{
 // DB connection settings & credentials
 const DB_VENDOR = ‘mysql';
 const DB_HOSTNAME = ‘${db.fqdn}';
 const DB_PORT = ${db.port};
 const DB_USERNAME = ‘${db.user}';
 const DB_PASSWORD = ‘${db.password}';
 const DB_DATABASE_NAME = ‘${db.name}';

 // application log file location
 const LOG_FILE = ‘${log}';
 ...

Hopefully you have already recognized the placeholders for the values being assigned
to the class constants as nothing more than Phing properties. The following listing
then takes the Config.php template and replaces the placeholder properties with their
assigned values, which are coming straight from the corresponding properties file.

<target name="stamp-config" description="Populates the Config.php
class with config properties.">
 <copy todir="${site.root}.${DSTAMP}${TSTAMP}/includes/classes">
 <filterchain>
 <expandproperties />
 </filterchain>

 <fileset dir="${site.root}.${DSTAMP}${TSTAMP}/config/
templates">
 <include name="Config.php" />
 </fileset>
 </copy>
</target>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[353]

The copy task takes care of moving the Config.php template to the includes/
classes/ directory where the application expects it to be. However, there are a
couple of extra steps involved in this task that warrant a second look.

There are two sub-tags that are being used inside the copy task. First, the filterchain
task allows you to process the files that are being copied. In our case, we are using
the expandproperties task to replace all placeholders with properties. Second, the
fileset task allows us to construct a list of files by including or excluding individual
files based on various criteria, such as regular expressions that match the path or name
of the files. For our purposes, the list consists of only a single file, Config.php, which
we include by name.

Maintenance page
At this point, we have completed all preliminary steps for upgrading the site.
For the actions, we want to ensure that normal traffic to the site cannot interfere.
Simultaneously, it is now necessary to let the users know that the site will be
temporarily unavailable by redirecting all traffic to a maintenance page that informs
the user that the site is temporarily unavailable due to maintenance. I have such a
page called maintenance.html in the root of the publicly accessible directory, htdocs.

I use Apache as my web server, which supports per-directory configuration files,
typically called .htaccess files. For this to work, you have to make sure that
.htaccess files are enabled. The following code also requires the mod_rewrite
module to be enabled in Apache, which we use to change request URLs and redirect
the user's browser. Basically, we are creating a local Apache configuration file that
uses mod_rewrite to temporarily redirect all requests to the maintenance.html page.

<target name="disp-maint" description="Export the site's files from
subversion to the local target directory.">
 <!-- check whether there already is an .htaccess file -->
 <available file="${site.root}/htdocs/.htaccess"
property="htaccess_exists" type="file" />
 <if>
 <equals arg1="${htaccess_exists}" arg2="true" />
 <then>
 <!-- .htaccess file exists; move/rename it -->
 <move file="${site.root}/htdocs/.htaccess"
 tofile="${site.home}/htdocs/.htaccess.bck"
 overwrite="false" />
 </then>
 </if>
 <!-- new .htaccess file for maintenance screen -->
 <echo file="${site.root}/htdocs/.htaccess" append="false">

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[354]

Options +FollowSymlinks
RewriteEngine on
RewriteCond %{REQUEST_URI} !/maintenance.html$
RewriteCond %{REMOTE_HOST} !^127\.0\.0\.1
RewriteRule $ /maintenance.html [R=302,L]
 </echo>
</target>

Rather than just create the .htaccess file, however, the code first checks whether
such a file already exists. If so, it renames the existing file using the move task. Then
we use the echo task with the file attribute to write the necessary Apache configuration
directives to the newly created .htaccess file.

Database backup
As we have disabled regular traffic to the site, we can be assured that the underlying
database is not being accessed anymore. If the site you are deploying has any
automated jobs that access the database, you will most likely want to tweak the
previous target to temporarily disable those jobs as well.

It is now time to back up the database. Even though the tool we are using for
database migrations supports incremental upgrades and downgrades, it is common
practice to always create a complete backup of the database whenever anything
changes. Hopefully you have a routine that backs up the database along with the
rest of the site anyway.

The following listing takes care of the database backup:

<target name="backup-db" description="Backup the database before
upgrade.">
 <!-- was the database password given in the properties file? -->
 <if>
 <not>
 <isset property="db.password" />
 </not>
 <then>
 <!-- prompt the user for the database password -->
 <input propertyname="db.password" promptChar=":">Enter
 password for user ${db.user} for database ${db.name}</input>
 </then>
 </if>

 <!-- execute external command mysqldump to backup database -->
 <exec command="${extern.mysqldump} --quick --
 password=${db.password} --user=${db.user} ${db.name} >

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[355]

 ${db.name}.${DSTAMP}${TSTAMP}.sql"
 dir="${db.backup.dir}"
 escape="false" />

 <!-- compress the DB dump file -->
 <zip
destfile="${db.backup.dir}/${db.name}.${DSTAMP}${TSTAMP}.sql.zip">
 <fileset dir="${db.backup.dir}">
 <include name="${db.name}.${DSTAMP}${TSTAMP}.sql" />
 </fileset>
 </zip>
 <!-- delete the original DB dump file to save space -->
 <delete file="${db.backup.dir}/${db.name}.${DSTAMP}${TSTAMP}.sql"
/>
</target>

We start by checking whether the database password was provided in the properties
file. If not, we interactively prompt the user to enter it from the command line. This
logic should appear familiar to you because it is the same thing we did for getting
the Subversion password.

We then use the exec task to run an external command, namely the mysqldump
utility to export the schema and data to a text file. This text file is a complete
snapshot of the database and can be used to reset the database to exactly the state
it was in when the snapshot was created. Once again we are incorporating the
timestamp into the name of the file so we know exactly when it was created.

The command attribute of the exec task is the command line that will be executed
after changing the working directory to the path specified in the dir attribute. The
escape attribute is a Boolean that determines whether shell meta characters will be
escaped before executing the command. Please consult the manual for additional
attributes supported by the exec task.

Database dump files are just text files and as such ideal targets for saving disk space
by compressing their content. Luckily, Phing provides a task for compressing files
using the zip algorithm. Similar to the copy task we saw earlier, the zip task contains
a fileset tag to specify which files are to be included in the archive. In our case, we
are compressing a single file.

Lastly, after the database dump file has been compressed, we can delete the original
(uncompressed) file using the delete task. Although the delete task supports
several other attributes, the only one we are using here is the file attribute to
indicate the file that is to be the target of the deletion.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[356]

One last note regarding database backups is that the directory we use to store the
backups is one of those which we created in the create-skeleton target earlier.

Database migrations
After backing up the database, we can apply any changes to the schema and/or
data. For such purposes, Phing provides the very handy dbdeploy task. The way
dbdeploy works is that you create an individual file for any change to the database.
In that file, you put the SQL needed to upgrade the database; as well as the SQL
needed to downgrade the database again. The two sets of SQL are separated by this
character sequence: -- //@UNDO.

The name of the file should be descriptive of what it does. It also must start with
an integer that indicates the order in which the individual migration files are to be
processed. The lower numbered ones are executed before the higher ones.

To keep track of which migrations have been applied, dbdeploy requires its
own tracking:

CREATE TABLE `changelog` (
 `change_number` bigint(20) NOT NULL,
 `delta_set` varchar(10) NOT NULL,
 `start_dt` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 `complete_dt` timestamp NULL DEFAULT NULL,
 `applied_by` varchar(100) NOT NULL,
 `description` varchar(500) NOT NULL,
 PRIMARY KEY (`change_number`,`delta_set`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

For example, to create a table called users, I created the following file:

db/deltas/1-create-users.sql

CREATE TABLE `users` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `login` varchar(50) NOT NULL,
 `password` varchar(100) NOT NULL,
 `email` varchar(100) DEFAULT ‘',
 `active` tinyint(1) NOT NULL DEFAULT ‘1',
 `date_modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP,
 `date_added` timestamp NOT NULL DEFAULT ‘0000-00-00 00:00:00',
 PRIMARY KEY (`id`),
 UNIQUE KEY `unique_login` (`login`)
) ENGINE=MyISAM AUTO_INCREMENT=4 DEFAULT CHARSET=latin1;

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[357]

-- //@UNDO

DROP TABLE IF EXISTS `users`;

The CREATE TABLE statement is the upgrade path and the DROP TABLE is the
opposite action and thus provides us with the downgrade path.

The dbdeploy task doesn't actually execute the SQL. It only creates it. That is why
an exec task is required to execute the generated upgrade SQL via the MySQL
command line client. Here is the target to upgrade the database:

<target name="deploy-db" description="Runs the SQL migrations to
update the DB schema and data.">
 <!-- load the dbdeploy task -->
 <taskdef name="dbdeploy"
classname="phing.tasks.ext.dbdeploy.DbDeployTask"/>

 <!-- generate SQL to upgrade the DB to the most recent migration
-->
 <dbdeploy url="mysql:host=${db.fqdn};dbname=${db.name}"
 userid="${db.user}"
 password="${db.password}"
 dir="${site.root}.${DSTAMP}${TSTAMP}/db/deltas"
 outputfile="${site.home}/build/db-upgrade-
 ${DSTAMP}${TSTAMP}.sql"
 undooutputfile="${site.home}/build/db-downgrade-
 ${DSTAMP}${TSTAMP}.sql" />

 <!-- execute SQL using mysql command line client -->
 <exec
 command="${extern.mysql} -h${db.fqdn} -u${db.user} -
 p${db.password} ${db.name} < ${site.home}/build/db-upgrade-
 ${DSTAMP}${TSTAMP}.sql"
 dir="${site.home}/build"
 checkreturn="true" />
</target>
...

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[358]

Going live
We are almost there. We have checked out and modified the site, backed up and
upgraded the database. All that is left is to make the actual switch from the previous
version of the site to the one we just created. That is the job of the publish-site
target in the following listing:

<target name="publish-site" description="Activates new version of site
and restarts Apache for all changes to take effect.">
 <!-- symlink in external library dependencies -->
 <exec command="${extern.ln} -s ${zend_dir}"
 dir="${site.root}.${DSTAMP}${TSTAMP}/includes/libraries"
 escape="false
 <!-- delete symlink to currently active copy of the site -->
 <delete file="${site.root}" />
 <!-- symlink to newest version of site -->
 <exec command="${extern.ln} -s ${site.fqdn}.${DSTAMP}${TSTAMP}
 ${site.fqdn}"
 dir="${site.home}"
 escape="false" />
 <!-- restart the Apache web server gracefully for all changes to
 take effect: we are live now!!! -->
 <exec command="${extern.sudo} ${extern.apachectl} graceful"
 escape="false" />
</target>

First, using the exec task again, we create a symbolic link to a copy of Zend
Framework that is required for this site to function. Second, using the delete task,
we remove the symbolic link that points to the previous version of the site. Third,
again using the exec task, we create a new symbolic link to the version of the site
we just checked out of Subversion and prepared for deployment.

As a final step, we tell the Apache web server to reload its configuration to make sure
that all changes will take effect right away. Since Apache doesn't run under my login,
I need to use the sudo command, which will prompt me for the root / administrator
password to perform this action.

Putting it all together
Now that we have constructed all the individual targets, we assemble all to create
the final build.xml file. For the complete listing, please refer to the build.xml file
in the code bundle for this chapter.

When I run this file for the development environment from the command line, I get
the following output, which I broke up into two separate screenshots to accommodate
the length of the listing.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[359]

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[360]

Not bad. Within slightly more than nine seconds, I was able to check out a project
from Subversion, create some files from templates, put up a maintenance page,
back up and upgrade the database, create various symbolic links and directories,
and finally restart the web server. And that includes me having to type the
administrator's password to be allowed to restart the server.

Now let's take look at the site's changed directory structure. If you flip back a couple
of pages, you can compare it to what it looked like before we restructured it to make
upgrades easier.

As a testament to the ease with which we can now deploy the site, I included in
the listing the database upgrade/downgrade scripts (db-upgrade.xxxx.sql and
db-upgrade.xxxx.sql); as well as, the top-level directories of the previously
deployed applications that are now backed up (dev.waferthin.com.xxxx).
Unfortunately, this means that the listing is so long that I had to split it into
two separate screenshots.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 8

[361]

The directory at the top of our hierarchy, dev.waferthin.com, now holds the
following subdirectories:

•	 backups: contains pre-upgrade database backups
•	 build: contains incremental database upgrade and downgrade SQL scripts
•	 dev.waferthin.com.YYYYMMDDHHMM: site source code with date stamp
•	 dev.waferthin.com: symbolic link pointing to the current release
•	 logs: logs files
•	 tmp: temp directory for file manipulations

Deploying the application to a test or production web server is equally simple.
As long as you have Phing installed, all you have to do is copy the build.xml
and environment properties files to the destination machine and run the
corresponding target.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Deploying Applications

[362]

Backing out
After the new site is live, we need to inspect it to make sure everything is running
as intended. What if there are problems? If the issue isn't something we can fix
immediately, the plan is to back out of the upgrade and revert to the previous
version. With the way our site is structured, this is merely a matter of changing the
symbolic link to point to the old version of the application and to restart the web
server. Optionally, depending on what upgrades were applied, you might also want
to run the script to downgrade the database. That's it. Within a few seconds you can
switch between two or more different versions of the site.

Summary
I hope that in reading this chapter you have gained a new perspective on how to
deploy an application. Although deployment is often the last step in the development
process, you need to start planning for it right from the start. Organizing your site's
files in such a way that it lends itself to an automated deployment process is half
the battle.

We started out by discussing application deployment and trying to come up with
some guidelines for measuring success. The process we developed managed to fulfill
both goals we had set ourselves. It is completely automated so as to minimize human
errors and the time during which users of the application are negatively affected.

Along the way of automating the deployment process, we learned about Phing and
how it can be used to automate all kinds of tasks. Although we used it to deploy a
site, Phing can really do a whole lot more. You can create targets to perform all kinds
of maintenance on your code or site. For example, you have Phing synchronize files
and directories or generate phpDocumentor documentation. There is no end to how
much you can do with it.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design
with UML

UML is one of those buzz words that has been in the software development industry
for several years. The hoopla surrounding the UML has died down over the years,
but it would be a mistake to assume the same is true for its usefulness. Although
you are somewhat more likely to encounter the UML in development environments
that experience longer software development life cycles, there is no reason that PHP
developers shouldn't benefit from it as well. Granted that as a web-centric scripting
language, much in PHP's eco-system is geared towards getting the job done. As
a matter-of-fact, I think that's how PHP got started—as a tool to get the job done.
However, my goal is that after reading this chapter you will come to realize that if
you pick the most appropriate parts of the UML and take the time to master them,
they will be a great addition to your tool chest. In particular, you will be able to plan
your own development efforts better; as well as be able to share vital information
with other developers and architects easily and in a visual manner.

My goal in this chapter will be to define the UML, give an overview of the technology,
and take a survey of the available tools. Rather than to take a purist's approach, we
will try to approach UML so that we, as PHP developers can get the most out of it.
We will then take a closer look at class diagrams, sequence diagrams, and use cases.
To bridge theory and practice, we will work through an example to illustrate the use
of these diagrams.

As of this writing, the official UML standard is at version 2.2 and
work continues toward 2.3. Also, there is no indication that this will
be the last revision as this general-purpose, software-modeling tool
continues to evolve.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[364]

Meta-model versus notation versus our
approach
When talking about the UML, it is important to distinguish between the meta-model
and the notation. The meta-model consists of definitions and descriptions of the
various components and their possible relationships. For example, the meta-model
describes exactly what is meant by an "association." As PHP developers who are
well versed in object-oriented technology, we know intuitively what we mean when
we talk about an association between two classes. However, since the UML is a
general-purpose modeling language, the specifications have to contain a definition
for "associations" that applies to all areas where the UML can be used. Moreover,
the definition has to be rigorous enough for the whole interdependent system to
make sense. In other words, it needs to be rigorous in a mathematically logical sense.

Although the UML would not be possible without the meta-model, it is the notation
in which we as practitioners are really interested. The UML notation is made up of
the signs and symbols used to represent elements in a UML diagram. It is what most
people think of when they hear talk of the UML. For us programmers, the notation
is the practical side of the UML that allows us to visualize abstract relationships
between objects on a high level.

To put it another way, the meta-model is the general and theoretic component that
allows one to extend the UML and apply it to different areas. For a PHP developer
trying to make practical use of the UML, it is much more important and useful to
understand the notation.

For the rest of this chapter, we will cover as much of the meta-model as is necessary
to have usable definitions of the object-oriented technology as it applies to PHP.
For instance, we will briefly cover the definition of an "association" as it applies to
PHP, but then we will spend more time learning how to use the UML notation to
represent an association. Our ultimate goal is to be able to construct UML diagrams
(notation) that help us better understand the complex relationships and behavior of
the objects and other concepts in our code. Naturally it is important that how we use
the notation conforms to the meta-model for it to be usable and consistent, but we
will not spend much time on general theory and instead focus our attention on the
practical side of the UML.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[365]

As long as we are talking about practical notions, we might as well consider to what
degree it makes sense to limit ourselves to the graphical elements that are meant for
a particular diagram type. In my opinion, one should take a pragmatic approach. In
other words, use whatever works. Most developers and architects are not formally
trained in the UML and whatever working knowledge they have was accumulated
while working on projects. Of course, that is perfectly fine. Theory should be used
as a tool when it suits the purpose, but it should not be limiting users in terms
of how they can express themselves. So, if a particular design process calls for
elements from a sequence diagram, an object diagram, and a use case diagram, so
be it. The goal should be to get the message across, not to make the designers of the
UML happy by limiting oneself to the elements that were intended for a particular
diagram type.

The notation for each diagram type described in the UML specifications should
serve as a common foundation for all users. However, everybody should feel free
to borrow additional elements from other diagram types if it serves the end of
communicating an idea or concept more clearly. Consequently, that is the approach
we will be taking throughout the rest of this chapter. Actually, you may not be
aware of it, but we have been doing that already. For example, if you look at the
chapter on source code and version control, you will see that the Basic Version
Control Workflow diagram was inspired by a UML activity diagram. However,
it also deviates significantly from what the UML standard defines as an activity
diagram by incorporating elements of flow charts and entity relationship diagrams.
Note that this is not a problem, but rather one of the benefits of the UML. Depending
on the relationships, processes, or activities you are trying to describe, it is perfectly
acceptable to mix different types of diagrams.

Levels of detail and purpose
How much detail you put into a UML diagram is typically directly proportional
to the amount of time it takes to author the diagram. Sometimes it makes sense
to spend more time on it, at other times it doesn't. The level of effort you put into
it should be determined by the purpose of the diagram. On the lower end of the
effort scale is the situation where you are sketching a process or relationship of
your software to quickly communicate functionality or design details to other
members of your team. This might happen during design meetings with one team
member sketching something out on a white board or a piece of paper for others
to see.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[366]

A technical lead or architect might spend a little more time refining a diagram and give
it to a coder to implement the design. In such a case, it makes sense to spend a bit more
time considering some of the details of the diagram. Whatever the diagram conveys
to the coders doesn't need to be etched in stone, but the more consistent it is, the more
sense it will make to the developer. Also, it will result in fewer follow-up discussions
with the architect. This type of use of UML diagrams is called a blueprint.

Lastly at the high end of the effort scale, UML can be used to write software directly.
Obviously, standards have to be observed much more rigorously and the amount of
time spent on working through various scenarios and testing the program, rival that
of writing software in any other programming language.

o
L

w

Sketch Blueprint Program
h

i
g

H
UML Level of Effort

For our purposes, we can safely ignore the high end of the effort scale. We will be
using PHP to write our code. Just because you can use UML to write functional code
doesn't mean that it is the best tool for the job. However, using UML to sketch out
behavior, capability, and elements of the software we are designing makes a lot of
sense. With a little more effort we can easily turn our sketches into blueprints that
we can hand over to another developer to have him or her turn out some PHP that
conforms to the design we had in mind.

Round-trip and one-way tools
At a basic level, you can use pen and paper to sketch out your UML diagrams.
However, there is a good selection of software-based tools that will let you take things
a step further by turning the diagram into basic code or vice versa. For example, a class
diagram (which we will cover in detail later) describes the structure of various classes
and their relationships. A properly constructed class diagram can be used to generate
the classes represented by the diagram. Since the UML is a programming language
agnostic tool, it is up to the UML authoring tool you are using whether a converter
for your language of choice exists. If you look at UML diagramming tools, you will
find that nearly all of them support Java. Your selection narrows if you are looking
for a tool that is capable of generating PHP 5+ compliant PHP code. However, such
tools are definitely available and we will be working with one later on in the chapter.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[367]

If supported by the tool, it is also possible to reverse the process and generate UML
diagrams from existing source code. In the case of PHP, this process typically involves
reflection and programmatic parsing of class and phpDoc tags. Assuming that you
have a tool that can automate this process, you will end up with a UML diagram that
allows you to easily see high-level information about the classes and how they relate
to each other. This can come in extremely handy if you are new to a complex project or
application and are trying to understand the existing functionality. It also helps you to
bring new development team members up to speed.

One-way UML to Code

Round - trip
UML <-> Code

UML Code

One - way Code to UML

UML authoring tools that only generate code from diagrams are called one-way
tools. Similarly, tools that only generate UML diagrams from existing code are also
called one-way tools. In contrast, tools that work in both directions are often referred
to as round-trip tools.

At this point, you don't need to be worried that your job of writing code will be
outsourced to a UML authoring tool. The code that gets generated by these UML
tools is not nearly as complete or detailed as anything a developer can write. Code
generated from class diagrams, for example, merely reflects that basic properties
and method names specified in the diagram. It will take an experienced developer
to add all the business logic that really turns lines of code into an application that
people can use.

Basic types of UML diagrams
There are 14 basic types of UML diagrams defined by UML 2.2, the current standard
as of this writing. These 14 diagrams are divided into two groups of seven each,
namely structure diagrams and behavior diagrams.

Structure diagrams are static in nature and describe the major components of the
system and their relationships. In contrast, behavior diagrams are dynamic and
depict how components interact with each over time.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[368]

The following diagram shows the hierarchy of the UML diagrams followed by a brief
description of each diagram type.

Diagram

Structure

Diagram

Class

Diagram

Object

Diagram

Package

Diagram

Profile

Diagram

Composite

Structure

Diagram

Deployment

Diagram

Behavior

Diagram

State

Machine

Diagram

Use Case

Diagram

Activity

Diagram

Communication

Diagram

Interaction

Overview

Diagram

Sequence

Diagram
Timing

Diagram

Component

Diagram

Interaction

Diagram

In the previous diagram, the diagram types that we will be examining in more detail
in the rest of this chapter have a lighter background than the rest. Here is a brief
description of all diagram types included in version 2.2 of the UML.

Structure diagrams:

•	 Class diagrams deal with classes, interfaces, and their properties and
methods. They depict how the different classes and interfaces relate to each
other, in a hierarchical fashion.

•	 Component diagrams show the main components that comprise a system
and their interdependencies.

•	 Composite structure diagrams depict the inner state of components or
classes and their interaction during execution of the system.

•	 Deployment diagrams are used to show the hardware on which the system
is being deployed, the software executing on each piece of hardware, and the
connectivity between them.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[369]

•	 Object diagrams show the state of object instances at a particular point in
time during the execution.

•	 Package diagrams show logical groupings (packages) of software components
and how they relate to each other.

•	 Profile diagrams show stereotypes, which are used to extend UML and
their relationships.

Behavior diagrams:

•	 State machine diagrams are used to model the behavior limited to a finite set
of states.

•	 Use case diagrams are used to describe the desired behavior of a system and
how various participants interact with it.

•	 Activity diagrams are used to illustrate the control and flow of information
through the system.

•	 Communication diagrams show the interaction of system components
in terms of the messages they exchange and the sequence in which they
exchange them.

•	 Interaction overview diagrams express control flow as a collection of
interconnected nodes, where each node represents an interaction diagram.

•	 Sequence diagrams show how processes or components interact with each
other by focusing on the sequences of actions and messages between them.

•	 Timing diagrams depict the interaction of components with a focus on
timing of the individual interactions.

It is pretty hard to understand the true nature of each of the diagrams listed above
without looking at an example. Although we cannot afford (and don't need to) look
at all of them, we will examine three types of diagrams in enough detail so you can
start using them in your work.

Diagrams
In the following section, we will look at three of the most common and useful
diagrams for PHP development: class diagrams, sequence diagrams, and use
cases. For each of these, we will learn about the individual components and
we will illustrate their use in a running example.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[370]

Class diagrams
By far, the most common UML diagram type you are likely to encounter is the class
diagram. It is also the one that I use most often. It allows you to describe classes and
objects in your projects. For example, a class diagram might show you the properties
and methods for a given class, including visibility, default values, and additional
details. Furthermore, class diagrams can specify the relationship between the various
classes. For example, it might indicate a parent-child relationship between two
classes and/or an interface (inheritance). Or, it might indicate how some objects
are used as attributes of other classes (composition).

Elements of a class
A class in a UML diagram is divided into three sections: the class name, properties,
and methods. From top to bottom, the first section contains the name of the class. The
second one lists the properties. And, the third section lists the methods of the class.

Properties (Attributes)
In general, properties take the following format. Note that the UML refers to these
as "attributes," but since we have been using the term "property" in our context of
object-oriented PHP, we will stick with that terminology.

visibility name: type multiplicity = default {property-string}

•	 visibility can be one of public, protected, or private.
•	 name is the name you give the variable.
•	 type is the data type of the variable.

Note: Since PHP is not a strongly typed language, this keyword is not
binding. However, it is of value to the programmer to know how to treat
the variable.

•	 multiplicity indicates how many elements are expected to constitute
the property. Multiplicity can be a single number or a range. For example,
String [3] denotes an array of 3 strings, int [0..5] indicates an array
of 0 to 5 integers, and bool [*] would be an array of Booleans that can be
any size.

•	 default is the default value that will be assigned to the property. It should
match the type indicated earlier in the property notation.

•	 property-string can be used to indicate additional language or
implementation dependent attributes or notes to the developer, such
as "read-only." In reality, I rarely see the property string used.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[371]

The name is the only part of the property that is not optional. Here is an example of
the UML notation for a typical property found in a class:

public countArr: int[*] = null

In this example, the visibility is public, the name is countArr, the type is int, the
multiplicity is an array of any size, and the default value is null. In other words,
countArr is an array of integers that is allowed to grow to any size and will initially
be set to null. Note that this example has no property-string.

Methods (Operations)
Here are the general elements that constitute a method. In general UML, these are
considered "operations", but since we are focusing on object-oriented PHP, we will
call them what they really are to us, namely methods.

visibility name (paramter-list) : return-type {property-string}

•	 visibility can be one of public, protected, or private.
•	 name is the name you give the method.
•	 parameter-list enumerates the arguments the method accepts, both

required and optional. Arguments are specified in a format similar to
properties but shorter: name type = default value.

•	 return-type is the data type of the variable being returned by the method.
Note: Since PHP is not a strongly typed language, this keyword is not
binding. However, it is of value to the programmer to know how to treat
the variable.

•	 property-string can be used to indicate additional language or
implementation dependent attributes or notes to the developer, such
as "read-only". In reality, I rarely see the property string used.

Once again, here is a quick example of what a method definition might look like in
UML notation.

private getCounterByIndex(index int): int

Here we are describing a method with visibility private, name getCounterByIndex,
and return type int. In addition, the method takes one parameter named index,
which is also of type int. That is to say, the private method getCounterByIndex
takes an integer as parameter and returns an integer.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[372]

Static methods and properties
Methods and properties that are static are indicated in UML diagrams by underlining
the name of the respective property or method. As an example, the only instance of the
object in the implementation of a singleton design pattern in PHP might be stored in a
property described like the UML:

private instance: DbConnection[1] = null

A class diagram example
Let's start our example with a single class to see how properties and methods are
specified before expanding our scope by adding additional classes and relationships.
Our particular example will be a class that is capable of probing a remote machine's
port. If the port is active, the class can be used to look up the service that is most
commonly associated with the port. In other words, given a host name or IP address
and port, our class will attempt a connection. For example, given port domain name
"google.com" and port number "80", we would expect the class to open a connection
to the Google search engine and tell us that HTTP services are active on port 80.

Here is what a class diagram for such a class might look like:

ProbeService

+port: int[1] = 80

+host: string[1] = ‘google.com’

+serviceName array [*]

#maxProbes: int [1] = null

#probeCount: array()

+_construct(maxProbes: int = 3)

+probe(host: string, port: int): string

#resolveHost(): String

#tcpConnection(): bool

The previous diagram is a representation of a single PHP class called ProbeService.
As you will recall from our above discussion, the other two sections are dedicated
to the properties and methods of the class. This diagram also uses some notation
that we haven't discussed before, namely single characters to abbreviate notation
for visibility.+ indicates public, # protected, and - private (not shown above)
visibility. This particular class has five properties:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[373]

•	 port is a single integer with default 80 and public visibility. It holds the port
number that will be probed at the remote system.

•	 host is a single string with default 'google.com' and public visibility. It holds
the host name or IP address of the remote system to be probed.

•	 serviceName is an associative array with public visibility. It represents
a mapping of port numbers to common service names.

•	 maxProbes is a single integer with default null and protected visibility.
It represents the maximum number of times any given host may be probed
so as to avoid overloading the server and possibly incurring the wrath of the
system administrator.

•	 probeCount is an array with protected visibility. It will be used to keep track
of how many times a particular host or IP address has been probed.

In addition, our class also has the following methods:

•	 construct() is the public constructor for ProbeService, which takes the
maximum number of probe attempts as an optional parameter.

•	 probe() is a public method that takes the host name (a string) and port
number (an integer) as parameters and returns a string. This method is the
one that will be called as an entry point for actually probing a remote system.

•	 resolveHost() is a protected method that requires no parameters and
returns a string. Its function is to do a lookup on domain names and return
an IP address.

•	 tcpConnection() is a protected method that undertakes the actual connection
attempt and returns Boolean to indicate success or failure. It will use the host
name and port number passed to the probe() method.

Like most concepts, discussing UML on a purely theoretical level will only lead
to misunderstandings. Besides, I would like to keep this discussion as practical
as possible. Consequently, here is an actual implementation of the above class:

/ProbeService.php
<?php
class ProbeService
{
 // port to probe
 public $port = 80;

 // host to probe
 public $host = 'google.com';

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[374]

 // map of port numbers to common service names
 public $serviceName = array(23 => 'telnet',
 25 => 'smtp',
 80 => 'http',
 110 => 'pop3',
 443 => 'https'
);

 // maximum number of probes allowed per host per port
 protected $maxProbes = null;

 // multi-dimensional array storing the number
 // of probes per host per port
 protected $probeCount = array();

 // constructor initializes maxProbes to 3
 public function __construct($maxProbes = 3)
 {
 $this->maxProbes = $maxProbes;
 }

 // probe host and port
 public function probe($host, $port)
 {
 // save port and host for other methods to access
 $this->host = $host;
 $this->port = $port;

 try {

 // get a list of IP addresses associated with the host
 $ipAddresses = $this->resolveHost();

 // iterate over all found IP addresses
 foreach ($ipAddresses as $ip) {

 // check max probing limit
 if ($this->probeCount[$this->host]
 [$this->port] < $this->maxProbes) {

 // increment the number of times this host & port were
 probed
 $this->increasePortCount();

 // got a responsive port
 if ($this->tcpConnection()) {

 echo "$this->host is responding on port $this->port.";

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[375]

 // try to look up the service name base on the port
 number
 if (array_key_exists($this->port, $this->serviceName)) {
 echo " This port is typically associated with the
 {$this->serviceName[$this->port]} service.\n";
 } else {
 echo " Unfortunately, we don't have a name for the
 service responding on that port.\n";
 }
 break;

 // unable to establish a connection
 } else {
 echo "The host $this->host is not responding on port
 $this->port.\n";
 }

 // throw max number of probes exceeded exception
 } else {
 throw new Exception("Maximum probe limit of
 $this->maxProbes exceeded for host $this->host on port
 $this->port.");
 }
 }

 // catch exceptions and notify user
 } catch (Exception $e) {
 exit("Unable to probe $this->host:$this->port:
 {$e->getMessage()}");
 }
 }

 // lookup IP addresses corresponding to a given host name
 protected function resolveHost()
 {
 if ($ipAddresses = gethostbynamel($this->host)) {
 return $ipAddresses;
 } else {
 throw new Exception('Unable to resolve host ' .
 $this->host . '. Check network connection and validity of
 host name.');
 }
 }

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[376]

 // method to keep track of connections by host & port
 protected function increasePortCount()
 {
 // check whether an entry already exists
 if (array_key_exists($this->host, $this->probeCount)
 && array_key_exists($this->port,
 $this->probeCount[$this->host])) {

 $this->probeCount[$this->host][$this->port]++;

 // create new entry
 } else {
 $this->probeCount[$this->host][$this->port] = 1;
 }
 }

 // attempt to open socket connection
 protected function tcpConnection()
 {
 // try to open a socket
 $socket = fsockopen($this->host, $this->port, $errorNumber,
 $errorString, 30);

 // unable to open socket
 if (!$socket) {
 return FALSE;

 // success!
 } else {

 // gracefully close the connection & return true
 fclose($socket);

 return TRUE;
 }
 }
}
?>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[377]

Here is a quick example of how to use this class. We instantiate it and probe Yahoo!
on port 80.

<?php
require_once('ProbeService.php');

$probe = new ProbeService(3);
$probe->probe('yahoo.com', 80);
?>

The previous code snippet yields the following output:

Encouraged by our ability to discern a service running on a remote machine,
let's expand our project a little bit and build a network scanner that is able to
do the following:

•	 Scan a range of ports for a given host
•	 Determine which ports respond and which services are likely to correspond

to those ports
•	 Collect service-specific information for each port-service combination

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[378]

After adding a couple of classes, our UML might look like this now:

ServiceRunner

+startPort:int[1] = null

+endPort:int[1] = null

#connections:connection[*] =

array

+_construct(host:string=

‘localhost’, StartPort: int = 0, endPort

int = 65535)

+run(): boolean
#resolveHost(): string

+output(): string

Connection

+port: int [1] = 80

+ip: string [1] = ‘127.0.0.1’

-socket: socket [0..1] = null

-socketOpen: bool[1] = FALSE

+_construct(host: string, port: int)

+connect(): boolean

+isSocketOpen(): bool

+close(): boolean
+getSocket(): Socket

<<Interrogator>>

+probe(host: string, port: int): string

+maxProbesExceeded(): bool

Probe

{abstract}

#maxProbes: int [1] = null

#probeCount: int = 0

+_construct(maxProbes:int = 3)

+probe(host: string, port: int): string

#increaseProbeCount(): void

+maxProbesReached(): bool

ProbeService

+serviceName array [*]

+_construct(maxProbes:int = 3)

+probe(host: string, port: int): string

1

0.65535

0.65535

1

1

With the basic knowledge of how to represent an individual class in a UML diagram,
our expanded diagram is starting to look a bit more interesting and complex. We
have some additional types of classes (abstract and interface) and we are introducing
the concept of relationships, such as compositions, implementation, inheritance, and
dependence. Let's look at each of these concepts in combination with how we have
applied them in our diagram.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[379]

For starters, we have refactored the ProbeService class. Since our network scanner
might be implementing all kinds of different probing and scanning classes, we defined
an Interrogator interface, which guarantees that any implementing class will
provide a probe method that accepts a host name and port as arguments. Moreover,
it will also require a method to be implemented to verify that the maximum number
of probes has not been exceeded. We want to be nice netizens and not step on any
system administrator's toes. This method is called maxProbesExceeded().

In a UML diagram, you denote an interface by surrounding the name of the
interface with "<<" and ">>" as we have done with the Interrogator interface.
Not surprisingly, the section for properties is missing from Interrogator because
interfaces cannot have properties.

In our sample project, abstract class Probe implements the Interrogator interface.
Probe implements the probe() method required by the Interrogator interface.
However, it also adds properties $maxProbes and $probeCount and some constructor
logic to initialize the properties. The idea is to provide the basics of tracking the probe
count and compare it to a maximum value that is set at object instantiation.

Abstract classes are marked as such by italicizing the class name. Since it is often
hard to discern whether a word is in italics, it is also allowed to put the keyword
{abstract} below the class, which is what we have done in our diagram of the
Probe class.

Further down the inheritance hierarchy, we get to our old friend the ProbeService
class. Having moved some functionality to the abstract parent class, it is now
somewhat lighter. Furthermore, socket connection handling has been moved to
a new class, Connection. The relationship between the two classes is such that
ProbeService is composed of a Connection object (among others). In a UML
diagram, this kind of relationship is indicated by a line ending in a filled diamond
touching the class that represents the whole part of the relationship.

Connection will be used to hold the host name and port information for individual
connections. It also has methods for opening, closing, returning, and getting status
on socket connections.

The class that ties everything together is Service Runner. The idea is that the user
provides ServiceRunner with a host name and target port range. ServiceRunner
then creates ProbeService objects to probe each remote port sequentially. Active
ports, that is remote ports that have been identified to have a service running, will
have their corresponding Connection object collected in the $connections array.

The relationship just described is that ServiceRunner aggregates Connection objects.
This type of relationship is indicated in a UML diagram with a line that ends in an
unfilled diamond.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[380]

Relationships
Let me start by saying that 'relationships' is not the proper UML terminology.
However, I like to use it as an umbrella term to collect ways in which parts of
a class diagram can interact with each other. Terms that I decided belong into this
category include association, aggregation, generalization (inheritance), dependency,
and composition.

All of these relationships manifest themselves in a class diagram in the form of
a line connecting one or more components, such as classes or interfaces. Symbols
at the endpoint of the line indicate with which kind of relationship we are dealing.
Multiplicity notations can accompany any of the lines.

I want to briefly cover these concepts with an eye on how they relate to PHP.

Association
The loosest kind of relationship is an association, which is indicated by a single solid
line connecting two classes. If you add an arrow to one of the endpoints of the line,
it indicates that the end with the arrowhead represents the part and the other end
the whole of the relationship. It is also possible to name associations.

WholeClass

AssocName

PartClass

1 1,,*

In our sample application, the ServiceRunner and ProbeService classes are
connected by association. ServiceRunner iterates over a range of port numbers and
instantiates a ProbeService object for each of them.

Aggregation
Aggregation is somewhat stronger than an association and generally indicates a
"has a" relationship. Aggregation is indicated in a UML diagram by adding an
unfilled diamond to the end of the connecting line that belongs to the whole part
of the relationship.

WholeClass

AggregName

PartClass

1 1,,*
+partlist: array()

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[381]

In our example, a ServiceRunner object has an array that may or may not contain
any number of Connection objects. Thus the two classes are related by aggregation
and the unfilled diamond is touching the ServiceRunner class.

Composition
Composition is the strongest of these relationships. In composition, the lifecycle
of the part is typically determined by the lifecycle of the whole of the relationship.
Composition is indicated with the connecting line terminating in a filled diamond
shape touching the whole of the relationship.

WholeClass

CompName

PartClass

0,,1 1

+part: PartClass

In the case of our network scanner project, each ProbService object has a
Connection object. In other words, the two classes are connected by composition.
In the corresponding UML diagram above, the line connecting the two classes has
a filled diamond at the end touching the ProbeService class.

For the most part, the difference between the relationships described above is one
of degree. All of them indicate some kind of dependency on another component.
Consequently, it isn't always a clear-cut decision as to whether a relationship should
be characterized as an association, an aggregation, or a composition.

Dependency
Actually, dependency is another relationship you can indicate in a UML diagram.
It is somewhat less specific than the above relationships, which typically imply
dependency. If you want to signify that one class depends on another, you draw
a dotted line from one class to the one on which it depends. An open arrowhead
should point to the one on which another depends.

Another way to think about dependency is that it indicates coupling. The more
dependency arrows your diagram has, the more tightly coupled the components are.

DependClass SomeClass

“Use”

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[382]

Generalization
There is one other kind of relationship I want to cover, namely that of generalization.
In the context of object-oriented PHP, generalization takes the form of inheritance
and the implementation of interfaces.

Inheritance takes the form of a line going from the child class to the parent class with
an unfilled arrowhead pointing at the parent.

ParentClass

ChildClass

In our running example, the ProbeService extends the abstract Probe class.
Consequently, the arrow points from the child class to the parent class with
the unfilled arrowhead touching the Probe class.

Interfaces
In our example, we have already seen an interface. In particular, the Probe class
implements the Interrogator interface. However, there are other ways of indicating
how individual classes provide (implement) or require certain interface. The notation
that is used to denote that a class provides an interface is a little stub sticking out of the
class. It is a line with an unfilled circle. For obvious reasons, it is often called a lollipop.

The complement to a class providing (implementing) an interface is one that requires
an interface. The graphical notation for such a class is the same as for an implementing
class, but with half of the circle missing.

Following is a simplified UML diagram with a matching pair of classes. One
implements the interface that the other requires.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[383]

ReqIntClass ProvIntClass

IntName

Example refactored
After covering some more theoretical ground and constructing a UML diagram for
the much-improved version of our network scanner, I was able to rewrite the code
for our project. For complete listings, please look at the following files in the source
code package accompanying this chapter:

•	 ServiceRunner.php

•	 interfaces/Interrogator.php

•	 classes/Probe.php

•	 classes/ProbeService.php

•	 classes/Connection.php

Code generators
I chose to write the above code from scratch. However, as mentioned in the
introduction to this chapter, there are tools that will take class diagrams and generate
classes that contain all the components and relationships depicted in the diagram.
You will still have to add business logic to really make the classes functional, but
these tools can save you a lot of time—if you are creating UML diagrams anyway.

The quality of the code varies from one UML authoring tool to another. While working
on this chapter, I created some class diagrams in ArgoUML, one of the oldest and
best-known UML diagramming tools. I was pleasantly surprised that the PHP code
it output was fully PHP5 object-oriented and quite usable. You can learn more about
ArgoUML and download this open source tool at:

http://argouml.tigris.org/

For this chapter, however, I chose a tool that was better at handling graphics. It had
plenty of stencils that made it easy to draw a good-looking diagram. Unfortunately,
my layout software had no code generating features at all.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[384]

Sequence diagrams
Whereas class diagrams describe how various components of a system relate to each
other on a design or architectural level, sequence diagrams show the interaction
of these components as the code is being executed. As execution flows from one
component to another, methods get called, properties get set, and objects get created,
modified, and destroyed. You can find all these actions on a properly constructed
sequence diagram.

Scope
As every developer knows, there is a lot of handing off control from one component
class to another going on during the typical invocation of a PHP script. You attempt to
capture all that interaction in a single sequence diagram, it would probably be useless
because it will end up nearly as complex as the code itself. Instead, the challenge
consists of isolating the parts of the system that would actually benefit from a sequence
diagram. You might want to focus on the most commonly requested code, based on
your analysis and expectation. Alternatively, you might zero in on the most complex
piece of code. Often, seeing a diagram of a complex interaction can really enhance
one's understanding of the concept. Yet another possibility is to do a sequence diagram
of the application as a whole. Although you would be foregoing much of the detail, it
would allow you to quickly communicate the overall functionality of the application.

A sequence diagram of the network scanner
Rather than starting by diving into a bunch theory, let's take a look at a sequence
diagram of our running example, the network scanner. Although sequence diagrams
can be quite complex in themselves, there are relatively few elements that are used
to construct them. Lucky for us, this means that it is pretty easy to understand a
sequence diagram, even if you have not been formally trained in that area.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[385]

command line

:ServiceRunner

getIpAddress

loop (foreach port)

new

Ps:ProbeSevice

maxProbes Reched

increaseProbeCount

conn:Connection

probe

processConnections

Connection

connect

boolean

X

Not yet

implemented

The above diagram merely reflects the flow of execution of the most recent
implementation of our network scanner project. Let's step through the diagram while
learning about the elements at your disposal when constructing a sequence diagram.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[386]

Objects and lifelines
Each vertical column belongs to the lifeline of a different object. In additional to an
object, you think of these as roles or participants. The rectangle at the top contains the
role and type (class) of the object. Lifelines, and thus time, runs from top to bottom.
A serrated line means that the object exists, but that it is not currently active. Times of
activity are indicated by unfilled rectangles overlaying the lifelines. An "X" at the end
of the lifeline means that the object is being destroyed, which can happen when some
process calls the object's destructor. More often than not however, destruction happens
simply because the last existing reference to the object has been dereference and
garbage collection destroys the object during its regular housekeeping activity.

role:Class

Object

Inactivity

Activity

Our sample project has three objects: ServiceRunner, ProbeService, and
Connection. Since ServiceRunner is the object that drives the whole application,
it has the longest lifeline and area of activity. The Connection class, in contrast,
has a short lifeline because it gets created later.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[387]

Methods
Indicating a method call in a sequence diagram is done simply by drawing an arrow
from the calling object to the object that contains the method being called. The method
name should be added as a label to the arrow. If an object is calling one of its own
methods, the arrow simply loops back to the object from which it originated.

$this->methodCall()

$other->methodCall()

Object calling

own method

returnResult

Object Calling

other object’s

method

Returning

result of

method call

In the UML diagram of our example application, ProbeService is calling its own
method increaseProbeCount(). An example of an object calling a method belonging
to a different object is when ProbeService calls Connection's connect() method.

Creating and destroying object
Creating a new object uses the same type of arrow as a regular function call; however,
there are two differences. First, the arrow points to the rectangle containing the object
role and name instead of the activity rectangle. Second, instead of a method name, the
label accompanying the arrow reads "new."

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[388]

An "X" at the end of the lifeline indicates destruction of an object.

NewObject
new

Creating a

new object

Destroying

an existing

object

X
In the UML diagram of our sample application, you can see the new-arrow when
ServiceRunner instantiates ProbeService. Further down the diagram, at the end
of ProbeService's lifeline, you see the "X" indicating the ProbeService has been
dereferenced and is being destroyed.

Loops and conditionals
I often think of time flowing from top to bottom in a sequence diagram. However,
the analogy breaks down when you introduce looping to the diagram. It is therefore
better to think of the flow of execution instead of time as you interpret the diagram
from top to bottom. Even then, loops and conditional aren't a natural fit for sequence
diagrams, but sometimes they are necessary to fully reflect what the functioning
code is supposed to be doing.

Nevertheless, to indicate a looping construct (foreach, for, while, and so on)
or a conditional (if-then-else, switch, and so on), you use interaction frames.
The frame encloses the section of the diagram affected by the conditional or looping.
The label located at the top of the interaction frame contains a keyword indicating
the nature of the frame and often some pseudo code to indicate the execute condition
(for conditions) or the exit condition (for looping constructs).

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[389]

The following diagram is a sequence diagram that shows how to recursively
calculate the factorial of an integer (for example, "4 factorial" = 4! = 4 x 3 x 2 x 1 = 24).

Factorial

factorialResult

$factorail->calcFactorial(n)

loop (while n > 0)

$this->calcFactorial(n-1)

The interaction frame describes a while loop that will execute as long as the
argument n is greater than zero.

There are several keywords you can use to describe the nature of an interaction
frame, but the most frequently used ones and the ones relevant to PHP are:

•	 alt (alternatives): Multiple conditionals, such as if-then-else statement
•	 opt (optional): Single conditional, such as an if-statement
•	 loop: Looping construct, such as foreach or while statements

The sample network scanner project UML diagram uses an interaction frame to
illustrate how the code loops over every port number between the start and end
port numbers.

Synchronous versus asynchronous calls
Although PHP alone doesn't provide a multi-threaded environment for your scripts,
your whole application may very well be considered multi-threaded if you have an
HTML UI that issues asynchronous AJAX calls to your PHP backend. That is why I
want to briefly talk about the last element of sequence diagrams we will be covering.
The difference between a synchronous and an asynchronous call is indicated by the
tip of the method call arrow. On one hand, if the tip is filled out, it is a synchronous
call. On the other hand, if the tip consists of only two lines, we are dealing with an
asynchronous call.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[390]

The following diagram illustrates both types of calls. A JavaScript script might
issue an asynchronous call from a web page. Within PHP however, the objects
communicate using synchronous calls.

HTML/AJAX PhpResponder

getJscn

result

Synchronous

Call

getDataStruct

DbDataGetter

result

Asynchronous

Call

The UML diagram for our sample application contains only synchronous calls.

Use cases
Class diagrams gave us an insight into the hierarchy and organization of the project's
classes in terms of inheritance and dependence on each other. In contrast, sequence
diagrams showed us the actual activity between instantiated objects, not just classes.
The third member of the UML family I want to look at is used to describe how
the application behaves (or should, anyway) from the outside. Use Cases detail
interactions with the application from a user's perspective.

Use cases—diagrams optional
Although part of the UML, use cases aren't typically that beneficial in diagram
form. Instead, use cases are often formulated as a sequence of steps. We are
essentially talking about a list of short sentences that describe actions by the user
and the application's resulting behavior. Language is actually more appropriate to
communicate this information than images. However, that is not to say there are
no diagrams involved in use cases at all—there are. Use case diagrams are good at
showing the participants (or "actors" in the UML parlance), the activities in which
they engage, and their relationships. Nevertheless, you will have to read (or write
if you are authoring a use case) the text of the use case to really appreciate the details
of the interactions being described.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[391]

When to create use cases
It makes sense to create a use case when you are collecting the functional requirements
for an application. Since you are essentially describing the users' actions, it makes sense
to create the diagram and textual description as you are discussing the application
with them.

Later in the development process, use diagrams can be referred to by developers that
are working on particular parts of the code that touch upon the scenarios described
in the use case. They are also very useful for testing. Use cases can be used as the
basis for putting together functional and regression test scripts, as well as to develop
unit tests.

It is often advisable to review and update the use cases before and during
development and testing. A lot of requirements can change between the initial
functional requirements gathering and when the application gets to the coding
and testing stages.

Example use case
True to our approach to the other two types of UML diagrams, we will create a use
case for our sample project. By now, you should have a pretty good idea of what this
tool is designed to do. However, the code we have written so far doesn't really make
for a very complex interaction with the user. Clearly, the above code was meant
merely as a starting point for a network scanner type application. Consequently,
we will describe some more advanced features that are not present in the above
code, but that can easily be added by expanding on the existing code base.

Background
The user's employer is about to deploy two newly installed servers. Working
together, they will be used to deploy the company's flagship website. One machine
will host the PHP code and all static files, such as images, CSS, and so on. The other
machine will be a dedicated database server. Both servers have two IP addresses,
one public facing IP and another connected to a network that handles order
processing and fulfillment.

Before publicly launching the site, management has decided to authorize a security
audit of the servers to make sure that customer information and the machines on
the order processing and fulfillment network cannot be compromised. As part of
this audit, our user has been asked to figure out which ports are exposed on these
two new servers and what services are running on them.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[392]

Typical scenario
•	 User launches network scanner application, giving it 4 IP addresses and a

maximum port range from 0 to 65535.
•	 Application scans IP addresses and ports and generates a list of open ports.
•	 Inspecting the list of ports, the user asks the application for typical services

deployed on the respective ports. For example, asking for a description of
port 123, the application responds with a description of NTP, the Network
Time Protocol.

•	 User compares the port and service list generated by the application to a
known list of ports required by the website to handle its tasks.

•	 Ports and services not on the preapproved list will be added to a potential
exception list.

•	 For each of the IP address and port numbers on the exception list, the user
asks the application to verify that the expected service is actually running on
that port.

•	 The application generates a list of IP addresses and port numbers,
highlighting ports that have non-standard or unidentifiable services running.

•	 Using the exception report generated by the application, the user asks the
website servers' system administrator to look if any unexplained services
are being exposed.

Example use case diagram
The following is a use case diagram that provides a visual interpretation of the actors
and activities involved in the process described previously.

Scan Ports

Network Engineer

System Administrator

Identify

Services

Generate

Exception

Investigate

Discrepancies

“includes”

Service

Lookup

“includes”

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 9

[393]

There are really only a couple of elements used to construct a use case diagram. Let's
look at them in the context of our example.

Actors
Participants, or "actors" as they are called in the UML, are represented as little stick
figures. These are the users of the system that interact with it in various ways as they
go about their business.

In our case, the network engineer asked to scan the two servers and the system
administrator with which he consults are the actors in this use case.

System boundary
The optional system boundary is simply a box around the elements of the system to
separate it visually from the actors.

In our diagram, I have chosen to put a boundary box around the activities conducted
by the network scanning application.

Use cases
It shouldn't really come as a surprise that a use case could contain one or more use
cases. By going down the hierarchy, you are simply breaking the activities into more
detail. Use cases or activities are depicted by ovals that contain the name of the use
case/activity. A simple line is used to connect actors with activities/use cases.

In our example, we have an activity named "Scan Ports". In the textual description
of our use case, this was one of the activities. However, scanning a port can be a
use case in itself if you break it into its components, such as collecting information,
opening a socket, waiting for a response, and so on.

Relationships
Similar to components of a class diagram, use cases can have relationships with
each other. The UML specifications describe relationships between use cases, such as
generalization, association, extension, and inclusion. In reality, these can add a lot of
unnecessary complexity to an otherwise simple diagram. Consequently, the only use
case relationship I have ever used is "includes." Relationships are identified by
a serrated arrow with two short lines for the head. The arrow head should touch
the use case that is being included.

Our sample project's use case diagram shows that the Identify Services and Generate
Exceptions activities/use cases include the Service Lookup activity/use case.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Application Design with UML

[394]

Summary
In this chapter, you have seen some of the most commonly used types of UML
diagrams, namely class diagrams, sequence diagrams, and use case diagrams. If
you hadn't been exposed to the UML before, I hope that you have come to realize
the value this tool adds in terms of easily communicating functionality, design,
and behavior.

Also, we have barely touched the surface of the UML. There are plenty of other UML
diagram types to explore, some more useful to a PHP developer, others less so. Like
most topics in this book, our look at UML was not meant to be exhaustive, but rather
driven by pragmatism. With what you have learned in this chapter, you should be
able start using the UML in your every day development activities. At the same time,
you have a solid foundation for learning more details if you want or need to. Good
starting points for learning more about the UML in general are the web pages of the
OMG, which oversees the advancement of the UML:

http://www.omg.org

The UML's home page is another online resource you will most likely want to consult:

http://www.uml.org

My advice at the end of this chapter echoes what I had said in the beginning. Start
using the UML where it seems to make sense. Don't be bogged down by details of the
specifications and adopt it to show your work as a PHP developer. However, it makes
sense to spend a little time to master the common vocabulary and diagram elements
so you don't run into misunderstanding when working with other developers.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration
For any large scale development project, making the pieces fit together is a challenge.
If you are the only developer working on a project, you don't have to worry about
your changes creating a conflict with those of other developers (you can think of
it the other way around if you prefer). However, when there are several or even
dozens of developers modifying the same code base, you are likely to run into all
kinds of problems. A maxim that we have seen in Unit Testing, and that applies here
just as well, is that the longer you wait to address the problem, the harder and more
expensive it becomes.

Developers and software architects started thinking about how to integrate the
changes from different sources early, quickly, and on an ongoing basis. The practice
of 'Continuous Integration' is one that was developed in an attempt to address the
above problem. In a nutshell, you set up a process to automate the build process
and provide feedback on the results. There are various ways of notifying interested
parties, some of them include online reports, e-mails, and RSS feeds. The idea is
that if anything goes wrong, whoever is responsible or affected by the problem gets
notified right away. For example, in the case of a piece of code failing a unit test,
the developer who last modified the corresponding source code would be notified
to take a look at his output and fix the problem before it affects other developers
working on related tasks.

This process often runs on its own server, but it doesn't have to. There is no reason
smaller development teams can't get away with combining a CI server with a staging
or testing server. You can even run the CI instance on a developer's machine as long
as you take care not to cross-pollute the two environments.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[396]

Another way to think of CI is that it is the calculus of software integration and
testing. The more frequently the automated process runs, the less likely it is that
any bugs or incompatibilities can take hold in the system and sneak their way into
a release. Just like Calculus looks at increasingly smaller incremental changes to get
a result that is increasingly more accurate, CI also tries to shrink the time between
successive builds. The earlier a problem is caught and brought to attention, the easier
and more likely it is to fix it.

Another benefit of continuous integration is that it significantly reduces the need
for dedicated integration testing. Since this kind of testing will happen continuously
during the development process, it is very unlikely that actual integration testing
will uncover any major problems later on.

Here is a diagram that attempts to illustrate some of the perceived benefits of
implementing continuous integration compared to an approach that separates
development from integration and testing:

B
u
g
s

Time

R
e
le

a
s
e

Outstanding

Bugs

Development

Integration followed by debigging

Development with continuous integration and debugging

Let's first look at the more traditional approach. During periods of development
(medium grey), the number of bugs increases. Then, after integrating the parts that
make up the application, a debugging phase (dark grey) brings down the overall
number of bugs again. This cycle repeats until the product is released with some
of the defects having gone unnoticed.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[397]

In contrast, a software development cycle that includes continuous integration
exhibits a curve that is much smoother (light grey). There is no clear separation
between coding, integrating, and fixing bugs. As bugs are detected and fixed
earlier, the overall number of them is never allowed to grow as big as with the
other approach. In the above diagram, we are also left with fewer bugs once the
application is released. That is the promise of continuous integration, but whether
this will indeed be the case will depend on how effectively we implement it.

In essence, the goal is to produce fewer bugs and more stable code by integrating
changes early and fixing problems as soon as they arise. This process becomes
continuous by automating the process of building, testing, and providing feedback.

In this chapter, we will set up a continuous integration server and configure
it to automatically build a project and report on the results.

The satellite systems
In one way or another, continuous integration touches upon all the other topics
we covered in this book. You will see and use all the tools that we learned about
and you will be able to put them to good use. Let's briefly review the tools
themselves and take a look at how we will use them for CI.

Version control: Subversion
I'm hoping that the chapter on source code and version control already showed you
the benefits of using such systems. In connection with CI, a source code repository
becomes important because it contains a central and authoritative copy of the source
code that we will need to actually build the project. This task would be impossible to
automate if all the changes to the project were to reside on the machines of different
developers or if they were not centrally accessible.

Our choice of a source and version control system has been Subversion. Any tools
with comparable features (CVS, Perforce, and so on) will work as well, however,
if you are planning on using a CI server as we will do in this chapter, you might
want to check the server's documentation to see which source control systems are
supported natively. Subversion is a natural choice because I don't know of a CI
server that does not support it. Of course, I say that being fully aware that I have
only worked with a couple of CI server out of a couple dozen that are listed on the
Wikipedia page on continuous integration.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[398]

As we are implementing a sample automated CI process in this chapter, we will
first use Subversion to check whether there have been any changes to the source
code since the last time the process executed. You can use that information to decide
whether to execute the process anyway. After all, it is possible that external factors
have changed and that would affect the success of another build. For example, data
in an external database or web service might have changed that might affect the
outcome of certain unit tests. Of course, having external dependencies of this
nature should be avoided in unit tests, but sometimes you can't get around it.

Commit frequency
One of the questions that I encounter a lot in connection with version control
systems is: "How often should I commit?" As usual, the answer to that question
starts with "it depends." There are different schools of thought, but my answer
is usually the following:

•	 Commit at least once a day
•	 Commit at the end of a task, such as a new feature implementation or bug fix
•	 If you know your commit will break the build, you should hold off

on committing

Once we introduce continuous integration into our development process, I would
add the following guidelines:

•	 Time your commits to see whether it breaks the automated build (in case
you need to fix it)

•	 Increase your commit frequency as much as possible to take CI to its
natural conclusion

These guidelines are motivated by one of the guiding principles of open source
software, which is to release early and often. You can think of a continuous integration
environment as a micro open source project. The earlier other developers and users
get their hands on your code, the sooner you can get productive feedback and make
necessary changes early and easily.

Testing: PHPUnit
"Building" a project is a big part of the CI process. For languages like Java or C++,
building implies compiling the source code to an executable state. Although the fact
that a project compiles doesn't mean it is working as intended (or working at all!), it
is nevertheless an important stepping-stone towards success. After all, if it doesn't
compile we know for certain that it will not run.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[399]

Since PHP is an interpreted rather than a compiled language, we don't have the luxury
of looking towards compilation to judge whether a project "built" successfully. That is
why unit tests become so much more important during continuous integration. After
all, checking a project out of Subversion into a local directory on the CI server tells us
nothing about whether the application is actually working or not. Executing a suite
of unit tests; however, will tell us a whole lot about how successfully the application
is behaving.

If you were slacking off on writing unit tests either before or after working on
changes to your source code, you now have an added incentive. Not only is it
good practice to write unit tests for the sake of your code, it is absolutely essential
for setting up a CI environment.

Think about it this way—if you are looking to benefit from a CI process, chances
are that there is more than one cook in the kitchen. In other words, the team working
on your application probably consists of at least several developers, analysts, testers,
and so on. Even if your code in itself is flawless, think about all those times when
others manage to break your code. No matter how loosely coupled your code is,
there are dependencies that can cause your unit tests to fail even if another developer
is making changes to his code. Having unit tests in place and executing them
automatically during the periodic CI process will let all interested parties know
if a test fails—especially the owner of the unit test and the developer whose code
broke the test.

So, if you are cherry picking chapters in this book and you haven't taken in the
chapter on unit testing or don't know about it already, I urge you to do so now.
Of course, if you are primarily interested in setting up a continuous integration
process, while other team members have to worry about coding and writing unit
tests, feel free to continue reading.

Automation: Phing
Integration has always been a necessary part of software development and testing.
You can and often have to do this manually. But to effectively make the process
continuous, we will look towards automation. It only makes sense to remove
manual tasks as much as possible if our goal is to execute the integration process
as frequently as possible.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[400]

You can think of the other tools mentioned previously, such as version control,
unit testing, code coverage, as the building blocks of CI. Automation then provides
the plumbing to make sure everything fits together and the information flows
from one component to the next. I think this point is well illustrated in the
following flow diagram:

Star CI Cycle

Discard previous

build

Checkout project

Checkout

Successful?

Build project

Build

Successful?

Execute Unit

Tests

Unit Tests

Passed?

Run Code

Coverage

Analysis

Notify Observes

Source

Code

Repository

Generate Project

Documentation

Generate CI

Reports

Predefined

Timeout

YesNo

Yes

No

No

No

Yes

Yes

Automation

Continuous Integration Flow

Observers

Validate Coding

Style

Style

Accepted?

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[401]

You can pretty much use any automation tool you want. But, you should first make
sure that it is a good fit with the rest of your suite of CI tools. You can even put
together some PHP command line script to control this process, but there are other
tools that we have encountered before that are a bit more suitable for the task at hand.

If this were a book about Java, we would probably be working with Ant, but since
we call ourselves PHP developers, we will be doing this with Phing. Besides, you
have already mastered automating release and build related tasks in Phing after
reading the chapter on deploying applications (haven't you?). So, it's time to put
your new Phing scripting skills to use.

Coding style: PHP_CodeSniffer
Although the primary goal of the CI process is to make sure that the code base
builds, executes, and passes the automated tests, it is also a great place to run
project-wide tasks that also aim to improve the quality of the code and make it
more maintainable in the long run. Validating the coding style you have defined
for your project is one of those tasks.

As we have seen in the corresponding chapter on coding style, PHP_CodeSniffer
can be made to check all source files against a pre-defined coding standard. Any
discrepancies will be reported and the developer who owns the file(s) or the one
who last worked on it can be made responsible to bring the code into compliance
as a matter of policy.

The CI environment for our sample project will provide a PHP_CodeSniffer
Report in the web-based UI; as well as, a graph to illustrate coding style violations
versus compliance.

Documentation: PhpDocumentor
Generating and staging the project's code-level documentation is another
non-essential task for a successful build. However, if developers are expected
to create inline documentation, we should be consistent enough to generate
and stage the documentation. Besides, this way the CI server becomes the
perfect central place for locating the most up-to-date documentation.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[402]

Code coverage: Xdebug
Even though we have devoted a whole chapter to debugging and the use of Xdebug,
we didn't really touch upon the functionality Xdebug provides in terms of code
coverage analysis. In relation to automated software testing, code coverage provides
one or more metrics to measure how much of the code was actually exercised when
running the test suite.

You can state code coverage by focusing on different parts of software, including but
not limited to the following:

•	 Statement coverage measures how many executable lines (that is,
excluding whitespace or comment lines) were executed: "6,936 of 11,291
lines were executed."

•	 Function coverage measures how many of your source code's functions were
executed: "398 of 465 functions were called."

•	 Decision coverage measures how many conditionals (if-then-else statements,
switch statements, and so on.) have been evaluated to all possibilities: ."243 of
312 if statements have been evaluated to both TRUE and FALSE."

•	 Path coverage measures how many of the possible paths of execution of the
software actually occurred: " 4,939 of a possible 18,837 paths were executed."

You get the idea. We basically want to know how much of the code in the project is
actually being tested by our test cases.

Complete code coverage (that is, 100%) is quite hard to achieve and requires extensive
time spent on writing unit tests and verifying coverage. As a rule of thumb, code
coverage of 80% to 90% is quite respectable.

In our sample project, we will report code coverage by having a CI tool that is able to
interpret the data output by Xdebug during unit test suite execution and generate the
corresponding reports.

Environment setup considerations
In all chapters thus far, we have focused on a single tool to get the job done. Although
I tried to select the most established and mature PHP-centric tools, at times it simply
came down to preference or perspective. The case in this chapter is even more
complicated than that.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[403]

Do I need a dedicated CI server?
Continuous integration can be done on any machine, including a developer's
workstation. If you can spare the resources in terms of memory, disk space, and
CPU cycles, you can make the CI process the responsibility of an existing machine,
perhaps a file server or even your version control system. Another factor in making
this decision is the size of the team. If you are the primary observer of the CI output,
it might be convenient to have the automated builds performed on your machine.
However, if your team size were slightly larger, it would be important to have the
CI server centrally accessible. Carrying it around on your laptop might benefit
yourself, but wouldonly serve to frustrate the rest of your team as they are trying
to check the latest build output or consult the generated documentation.

Do I need a CI tool?
Continuous Integration is primarily a process and you don't necessarily need
an application to follow it. For example, if your existing project has sufficient
automation in the shape of Phing build scripts, you might be able to expand
on the existing functionality and create a CI process without much fuss. After
all, the tasks that need to be performed during the CI process are all ones that
developers perform manually at one stage of the development process or another.

In contrast, there are several reasons for adding yet another tool to the mix. A tool
that provides the framework for automating CI builds. As you are deciding whether
to add such a tool, you might want to consult the following list of questions:

•	 Do I have multiple projects that need to be built and reported on?
•	 Do I need textual and graphical reports on the CI process?
•	 Do I already have a process that generates documentation from inline

comments and makes it available to developers?

If you decide that a specialized continuous integration tool is called for, you will
learn how to install, configure, and run just such a tool later on in this chapter.

CI tools
Continuous Integration is still a fairly new phenomenon in PHP. Nevertheless,
as PHP continues to make inroads into the development departments of large
corporations worldwide and larger PHP teams are being assembled, I'm sure that
CI will play an increasingly bigger role. Correspondingly, I expect more CI tools
supporting or written in PHP to crop up. Simultaneously, the current offerings
will most likely continue to mature.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[404]

CI tools typically provide us with a framework for implementing the whole
process. These tools provide a unified interface to the variety of lower level tools
that are operating behind the scenes. In addition, they typically provide additional
functionality in the area of accumulating metrics, reporting, and notification.

When the time came to decide which tool to use for setting up a CI environment
and sample project, I had to choose between two serious contenders.

XINC (Xinc Is Not CruiseControl)
Yet another entry in the list of recursive acronyms used in software development,
Xinc is a continuous integration server written in PHP 5 for PHP. As such, the focus
has been on supporting PHP-centric tools, such as Phing. Xinc has built-in support
for Subversion and PHPUnit.

phpUnderControl
The good news about phpUnderControl is that it was built on top of an established
and proven CI platform. The bad news is that we will have to stray from our favorite
programming language and use a Java tool instead. I am of course talking about
Cruise Control, which is the tool underlying phpUnderControl.

Continuous integration with
phpUnderControl
To properly illustrate continuous integration, we really need a project that meets
the following requirements:

•	 Unit tests have been created for all or most of the project
•	 The source code resides in version control repository
•	 Inline documentation has been written to conform to phpDocumentor syntax
•	 There exists a well-defined coding style that can be validated using

PHP_CodeSniffer

Creating such a project from scratch is completely out of scope for this chapter,
however, there are plenty of open source projects available that will serve perfectly
as guinea pigs for our purposes. Since it has repeatedly come up in our discussion
of coding style and frameworks, we are going to implement a continuous integration
process for the Zend Framework because it satisfies all our requirements above.
Besides, it will be nice to get some hard numbers on code coverage and unit test
for a development framework that is aiming at wide adoption.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[405]

Installation
phpUnderControl is built to modify an existing installation of CruiseControl and
getting it installed is a three-step process. In particular, we have to:

1. Install CruiseControl.

2. Install phpUnderControl and its supporting files.

3. Run the command that tells phpUnderControl to modify the CruiseControl
installation to allow us to properly display output for PHP-based projects.

Installing CruiseControl
CruiseControl is a continuous integration server written in Java. Since it was one
of the earliest CI tools, it has reached a certain level of maturity. It is also being
used by a lot of development teams, which is why it is a valuable tool with which
to be familiar—even if you are not working in PHP or Java.

Being a Java based application, you will have to have a working Java Runtime
Environment (JRE) installed on the machine on which you are configuring the
CI environment. Detailed instructions on how to install Java are beyond the
scope of this chapter, but a good starting point will be Sun's Java download page:

http://www.java.com/en/download/manual.jsp

Assuming that Java has been installed, we can proceed by downloading a binary
distribution of CruiseControl. If you are feeling adventurous, have experience
with CruiseControl already, or know your way around Java source code, you can
download one of their source code distributions or go directly to their Subversion
repository. However, the binary distribution represents a quick and painless way of
getting CruiseControl up and running. Here is the download page for CruiseControl.
At the time of this writing, the most recent version is 2.8.2, but I urge you to download
the most recent version:

http://cruisecontrol.sourceforge.net/download.html

Once the download finishes, simply extract the archive. Depending on your
platform, simply execute the cruisecontrol.bat or cruisecontrol.sh script file
in the application's home directory and barring any complications, CruiseControl
should be up and running. Actually, hold that thought—before we are ready to start
the server, we need to overlay CruiseControl with phpUnderControl and configure
it to build our project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[406]

Installing phpUnderControl
The easiest way to install phpUnderControl is via the PEAR installer.
phpUnderControl is being hosted at the PHPUnit repository. So, don't let the
occurrence of PHPUnit in the following transcript confuse you—we are still
only installing phpUnderControl.

The important lines are highlighted in the above terminal session transcript. Basically,
we have to do the following:

•	 Let PEAR know that we are looking for beta packages, rather than the default
stable ones: pear config-set preferred_state beta. We have to do this
because we are installing version 0.4.7 of phpUnderControl, the latest as of
this writing, which is nevertheless considered a beta release.

•	 Inform PEAR of the existence of the components.ez.no and pear.phpunit.
de channels:

	° pear channel-discover components.ez.no

	° pear channel-discover pear.phpunit.de

•	 Tell the pear command line utility to install phpUnderControl from
the PHPUnit repository along with all its dependencies: pear install
--alldeps phpunit/phpUnderControl. phpUnderControl relies
extensively on the following tools, which will be installed with the
--alldeps switch if they are not present already. You should recognize
these because I have devoted a chapter in this book to each of them:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[407]

	° phpDocumentor
	° PHPUnit
	° PHP_CodeSniffer

If everything goes ok, you should see output similar to the above and
phpUnderControl will be installed.

Although we installed phpUnderControl using PEAR, you should visit the project's
home page because it contains a lot of useful detail, only some of which we will be
able to cover in this chapter. If the configuration of the project you are trying to build
doesn't exactly match the one we are working through in this chapter, you should
certainly start by looking at the documentation page:

http://phpundercontrol.org

Overlaying CruiseControl with phpUnderControl
At this point, we have installed CruiseControl and phpUnderControl, but so far
there is no connection between the two. We need to let phpUnderControl register
itself with CruiseControl and allow it to make some modifications, such as changing
some of the output template and style sheet; as well as adding some images.

The phpuc command line executable for phpUnderControl supports these commands:

•	 install: Installs or upgrades CruiseControl with phpUnderControl
•	 clean: Removes old builds and artifacts
•	 example: Installs a small sample PHP project in CruiseControl
•	 delete: Deletes a project and related files from CruiseControl
•	 graph: Generates the metric graphs
•	 merge-phpunit: Merges multiple PHPUnit output files into a single one
•	 project: Creates a new PHP project within CruiseControl

Unfortunately, not all these commands have been documented in the online manual.
Fortunately, the phpuc command line utility includes help information for each of
the commands. Simply type the following at the command line to get a description
of the command and a listing of all the options. You will have to replace <command>
with the actual name of the command for which you are trying to get help.

DirkMacBook$ phpuc <command> --help

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[408]

The most important command of those seven is easily the install command, which
we will be using to register phpUnderControl with CruiseControl. Please take a look
at the following listing:

We start out by making sure that the phpuc command line utility is indeed available
and our shell confirms that it is located inside my machine's PHP bin directory at
/usr/local/apache2/php/bin/phpuc.

The install command requires only one argument, namely the path to the
CruiseControl installation on which to operate. It then performs a series of file
manipulations, some of which I replaced with "…" to keep the above listing short.

That's it for the installation. If we wanted, we could start up CruiseControl, but
there wouldn't be anything to report yet. We still need to go through the configuration
to get it to build our project and display the metrics it collects during that process.

Also, from this point on, I will be using CruiseControl and phpUnderControl
interchangeably because the two have become fused. Although the underlying
platform is still CruiseControl, the user interface identifies itself as phpUnderControl.
In a sense, both are working together to provide us with a rich continuous integration
environment tailored for PHP.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[409]

CruiseControl configuration
In this section, we will focus on getting both our project(s) and CruiseControl
configured to do their work automatically. Before we dive into the guts of the
corresponding configuration files, let's start by considering the high-level picture.

Overview of the CI process and components
To understand how CruiseControl works, you need to understand three components:
the project build file, the CruiseControl configuration files, and the log directory.

First, the project build file is an Ant file that defines the project-specific tasks that need
to be performed each time the project is being build in the CI environment. This XML
file is responsible for initiating such tasks as retrieving the code from your version
control system, running the test suite, and compiling the API level documentation.

Second, the CruiseControl configuration file is another XML file that dictates how
and when the build process is executed for each project. Once the project build is
complete, the output will be processed, digested, formatted, and reported on. There
are also various channels through which the analysis results will be made available,
such as e-mail, online reports, and RSS feeds. The details of which are all configured
in CruiseControl's config.xml file.

Third, although it is only one of the many directories involved in the whole CI
process, the logs directory deserves special mention because it is through it that
CruiseControl and the project communicate with each other. During the build
process, output is generated in a format that CruiseControl understands and
written to the logs directory. CruiseControl patiently waits for the build process
to complete, after which it processes the output in the logs directory.

To understand how things work, we will be looking at the overall project
layout so we know where to find components that are part of CruiseControl
and phpUnderControl; as well as, output that is generated by the build process.
Then we construct the project specific build file. Finally, we configure Cruise
Control to execute the process and keep an eye on things.

CruiseControl and project layout
Before we start automating the build process and defining the project within
CruiseControl, I want to spend a little time getting a sense of the filesystem layout
of CruiseCrontrol and the projects themselves. This will help in understanding how
to set up additional projects; as well as the flow of data between the project's build
process and phpUnderControl's reporting facilities.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[410]

Here is a hierarchical listing of the CruiseControl folder. Files and sub-folders not
relevant to our discussion have been removed:

The first thing to notice is that CruiseControl comes with its own distribution of Ant,
which is located in the apache-ant-1.7.0 directory. Ant is the default Java-based
build tool used by CruiseControl. Ant is a good tool for the job, but it's certainly
not the only one. Luckily, due to CruiseControl's modular nature it is pretty easy
to install and take advantage of additional build tools. In our case, we will create a
build script, using Ant and then port it to the more PHP-centric replacement Phing.
This may seem like a roundabout way of doing things, but there are several reasons.
First, the phpUnderControl documentation uses build script examples written for
Ant and not Phing. Second, CruiseControl itself uses Ant scripts to automate the
process and it is necessary to be familiar with its syntax. Lastly, there is a feature
relating to running unit tests that was not working properly in Phing, but we will
look at a workaround for that later.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[411]

At this point, you may wonder why we would want to bother with Phing at all. The
answer is simply that Phing has much better and intuitive support for PHP centric
tasks than Ant does. Phing was built with PHP5 for PHP5 and you will see how that
pays off when we convert the build script from Ant to Phing.

Next, the artifacts directory contains data and reports generated by the build process.
The data is organized in sub-folders named after the project and build date. In the
example listing above, we can find build data for the zend_framework project for a
build that took place on 11/07/2009 at 5:18:20 a.m. The data itself is broken into three
categories. The api folder contains the documentation generated by phpDocumentor,
the coverage directory contains code coverage reports generated by PHPUnit during
the execution of the unit test suite. Finally, the graph directory contains various images
of graphs generated by phpUnderControl summarizing results from the unit tests,
build attempts, and coding standard validations.

The logs directory contains plain text and XML log files on the status of each of
the projects.

As you might have guessed, each of the projects configured in phpUnderControl are
stored in the projects directory. The complete code that gets checked out from your
source code control system gets stored in the source directory. In contrast, the build
directory contains files that get generated during the build process. Here we see that
same three sub-directories as under the artifacts directory. After a build finishes,
CruiseControl moves the contents of the build directory to the corresponding
sub-directory of the artifacts directory.

In addition to the directories we have mentioned so far, I included the two most
important files in the above hierarchical representation of the CruiseControl directory.
First, the build file for each project is located in the project's top-level directory. In our
case, this means that the build.xml file is in the projects/zend_framework directory.
Second, the main CruiseControl file, config.xml, is located in the topmost directory.

The directory structure and the location of the project directory itself are completely
configurable CruiseControl's config.xml configuration file. For example, you might
choose to locate the project directory outside of the CruiseControl directory to make
upgrades easier.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[412]

Getting the project source
As you saw from the directory structure discussed in the previous section, we need
to create a few directories to set up our project.

Starting from the projects directory, let's create a folder to store all files related
to a continuous integration build of Zend Framework. We will then checkout the
ZF source code from the project's Subversion repository and put it into the "source"
subfolder. All output generated by the build process will go into the build directory.
Here is a short transcript of me creating those directories and performing
a Subversion checkout of ZF:

I omitted several thousand lines that were scrolling down my screen while Subversion
was performing the checkout and informing me about each individual file it was
downloading. Depending on your connection speed, it might take several minutes
for svn to checkout the trunk of ZF into the projects/zend_framework/source
folder. Luckily with the way we will be setting up the build process, this is a one-time
process. From here on, we will simply update this local working copy of ZF before
continuing with the rest of the build process.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[413]

Configuring the project: build.xml
Each project has one build file. Ant, the Java-based automation tool used by
CruiseControl, uses this file to perform the build process. You can learn more about
Ant in general by visiting the project's website. Especially useful will be the manual
pages, as well as the alphabetical listing and description of core and optional tasks:

http://ant.apache.org/

We will put our build.xml file in the project's directory:

projects/zend_framework/build.xml

A build file typically defines multiple targets. In our case, we will be defining
targets to handle and Subversion update of the project, generating phpDocumentor
documentation, validating our coding standard using PHP_CodeSniffer, and
executing the unit test suite using PHPUnit.

Here is the listing of the first target named svn-update:

cruisecontrol/projects/zend_framework/build.xml
...
<!-- update the local working copy of the project -->
<target name="svn-update">
 <exec executable="svn" dir="${basedir}/source">
 <arg line="up"/>
 </exec>
</target>
...

We are executing the Subversion command line client, svn, by telling it to update
the local working copy of the project located in ${basedir}/source. Of course, this
target only succeeds because we checked the project out of Subversion manually in
the previous step.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[414]

As you are tinkering with your build.xml file, you can easily test individual targets
by executing ant and specifying the target name on the command line. For example,
here is a console transcript of me testing the svn-update target:

This next listing is for target php-documentor:

cruisecontrol/projects/zend_framework/build.xml

...
<!-- have phpDocumentor generate API documentation -->
<target name="php-documentor">
 <exec executable="phpdoc">
 <arg line="-ct
 -ue
 -t ${basedir}/build/api
 -tb /Users/dirk/Sites/phpdoc/phpUnderControl/data/phpdoc
 -o HTML:Phpuc:phpuc
 -d ${basedir}/source/library/Zend"/>
 </exec>
</target>
...

Here we are executing the phpdoc command line utility to parse the source files
in source/library/Zend and put the generated documentation into directory
projects/zend_framework/build/api. We also tell it to use phpDocumentor
output templates provided by phpUnderControl because they better match the
CruiseCrontrol design. Those templates were put in /Users/dirk/Sites/phpdoc/
phpUnderControl/data/phpdoc by the phpUnderControl installation process. The
-o switch is also required for phpDocumentor to use the custom output templates.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[415]

Next, we define the target for PHP_CodeSniffer to validate the source code against
the Zend coding standard.

cruisecontrol/projects/zend_framework/build.xml

...
<!-- validate against Zend coding style using PHP_CodeSniffer -->
<target name="php-codesniffer">
 <exec executable="phpcs" dir="${basedir}/source/library"
 output="${basedir}/build/logs/checkstyle.xml">
 <arg line="--report=checkstyle
 --standard=Zend Zend"/>
 </exec>
</target>
...

This target executes the phpcs command line utility to process all files found in
the Zend directory, which can be found in the source/library/ directory. The
source files that are found will be evaluated against the Zend coding standard.
Results are saved to the build/logs/checkstyle.xml file in the checkstyle
format, which is the format phpUnderControl requires to generate reports on
coding standard validations.

Now for our last target, here is the listing for running the unit tests:

cruisecontrol/projects/zend_framework/build.xml

...
<!-- run unit test suite using PHPUnit -->
<target name="phpunit">
 <exec executable="phpunit" dir="${basedir}/source"
 failonerror="on">
 <arg line="--log-xml ${basedir}/build/logs/phpunit.xml
 --log-pmd ${basedir}/build/logs/phpunit.pmd.xml
 --log-metrics ${basedir}/build/logs/phpunit.metrics.xml
 --coverage-xml ${basedir}/build/logs/phpunit.coverage.xml
 --coverage-html ${basedir}/build/coverage
 phpucAllTests tests/Zend/AllTests.php"/>
 </exec>
</target>
...

In this target, we are executing the phpunit command line utility on the project's
source directory. The various arguments generate corresponding reports on code
coverage, metrics, and unit test results in XML format that will be converted to a
web-based report by phpUnderControl.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[416]

In testing this phpunit target individually from the command line, I discovered that
PHPUnit is somewhat memory intensive. I had to increase the memory_limit config
setting in my php.ini file to 2GB for PHPUnit to be able to finish all the tests and
write the output to file! In my tests, whenever the process of executing the unit tests
ran out of memory, it would appear to finish the tests, but no output was generated.
This memory requirement is extremely steep. At the same time, most projects don't
have thousands of unit tests the way Zend Framework does.

Finally, here is the complete listing of the build file for our Zend Framework project:

cruisecontrol/projects/zend_framework/build.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="zend_framework" default="build" basedir=".">

 <!-- main build target that executes a sub-targets -->
 <target name="build" depends=
 "svn-update,php-documentor,php-codesniffer,phpunit"/>
 <!-- update the local working copy of the project -->
 <target name="svn-update">
 <exec executable="svn" dir="${basedir}/source">
 <arg line="up"/>
 </exec>
 </target>

 <!-- have phpDocumentor generate API documentation -->
 <target name="php-documentor">
 <exec executable="phpdoc">
 <arg line="-ct
 -ue
 -t ${basedir}/build/api
 -tb /Users/dirk/Sites/phpdoc/phpUnderControl/data/phpdoc
 -o HTML:Phpuc:phpuc
 -d ${basedir}/source/library/Zend"/>
 </exec>
 </target>

 <!-- validate against Zend coding style using PHP_CodeSniffer -->
 <target name="php-codesniffer">
 <exec executable="phpcs" dir="${basedir}/source/library"
output="${basedir}/build/logs/checkstyle.xml">
 <arg line="--report=checkstyle

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[417]

 --standard=Zend Zend"/>
 </exec>
 </target>

 <!-- run unit test suite using PHPUnit -->
 <target name="phpunit">
 <exec executable="phpunit" dir="${basedir}/source"
 failonerror="on">
 <arg line="--log-xml ${basedir}/build/logs/phpunit.xml
 --log-pmd ${basedir}/build/logs/phpunit.pmd.xml
 --log-metrics ${basedir}/build/logs/phpunit.metrics.xml
 --coverage-xml ${basedir}/build/logs/phpunit.coverage.xml
 --coverage-html ${basedir}/build/coverage
 phpucAllTests tests/Zend/AllTest.php"/>
 </exec>
 </target>
</project>

In addition to the targets already discussed previously, you can see default build
target, which simply serves to combine the other targets. That means that we only
have to call the default target to have all the other tasks executed in sequence.

All targets are wrapped into a project tag, which also has attributes to define the
name of the project (zend_framework), the default target to execute (build), and the
base directory that is used to specify other paths throughout the various targets (".").

Configuring CruiseControl
Now that we have the build file for our project just so that does everything we expect
during a continuous integration build, we still need to let CruiseControl know about
our project. Specifically, we need to configure CC so it knows about the various
directories and files of our project, when to run the continuous integration build,
and who to notify of the results and how.

Following is the complete XML-based CruiseControl configuration file. The
cruisecontrol tag brackets all further configuration directives. Similarly, the
project tag does the same for all configuration directives for an individual project.
Our configuration contains only a single project, but it could contain any number
of projects—all of them framed by a starting and ending project tag:

cruisecontrol/config.xml

<cruisecontrol>
 <!-- start of Zend Framework project -->
 <project name="zend_framework" buildafterfailed="false">

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[418]

 <!-- check for svn changes, but wait 3 min. until last
 commit before starting the build -->
 <modificationset quietperiod="180">
 <svn localWorkingCopy="projects/${project.name}/source/"/>
 </modificationset>

 <!-- execute an Ant script to build; check every hour for
 changes builds only happen if changes occurred -->
 <schedule interval="3600">
 <ant anthome="apache-ant-1.7.0"
 buildfile="projects/${project.name}/build.xml"/>
 </schedule>

 <!-- write status data to text file -->
 <listeners>
 <currentbuildstatuslistener
 file="logs/${project.name}/status.txt"/>
 </listeners>

 <!-- merge status data from build log -->
 <log dir="logs/${project.name}">
 <merge dir="projects/${project.name}/build/logs/"/>
 </log>

 <!-- preserve data published / generated during build -->
 <publishers>
 <artifactspublisher dir="projects/${project.name}/build/api"
 dest="artifacts/${project.name}" subdirectory="api"/>
 <artifactspublisher
 dir="projects/${project.name}/build/coverage"
 dest="artifacts/${project.name}" subdirectory="coverage"/>
 <execute command="phpuc graph logs/${project.name}
 artifacts/${project.name}"/>
 </publishers>
 </project>
</cruisecontrol>

The project tag itself contains attributes for the name of the project (zend_framework)
and whether to continue trying to build after a failed build (yes).

The modificationset tag lets us define the kind of circumstances that would trigger
a new build. In our case, since the Zend Framework source code is being maintained
in Subversion, we use the svn tag to trigger a new build three minutes after the latest
new commit. This way, we give the committer some time to finish committing all
his files and hopefully we don't start a build mid-commit. The localWorkingCopy
attribute obviously tells CruiseControl where the local version of the source is located.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[419]

You get to tell CruiseControl how to build the project using the schedule tag. In
our case, we are telling CC to execute the build.xml file, which is an Ant build file.
The installation of Ant to use is located in apache-ant-1.7.0. Lastly, the interval
attribute will cause the system to check whether a new build is required. Remember
that we are using the svn modificationset. In other words, CruiseControl checks
hourly whether changes have been submitted to the Subversion repository, in which
case it initiates a new build sequence.

The listeners get notified of build events and are typically designed to handle
a particular one. Our currentbuildstatuslistener simply writes some status
data about the current build to a text file in the logs directory.

The log tag tells CruiseControl where the main log file for the project is located.
The nested merge tag tells CC that the log file generated by each build should be
merged into the main log file upon completion.

After a build completes, the tasks listed within the publisher task will be run.
They are typically used to propagate the results to someone or somewhere.
All we are doing is copying some information generated during the build to a
directory where it is accessible to CruiseControl's reporting function. The two
artifactspublisher tasks we see copy the API-level documentation generated
by phpDocumentor and the code coverage reports generated by PHPUnit to the
corresponding sub-directories of the cruisecontrol/artifacts/<project_name>
directory. You should recognize these directories from our discussion in the section
entitled "CruiseControl and Project Layout." Finally, the exec task calls phpuc, the
phpUnderControl command line client to generate metric graphs that we will see
shortly as part of the online reports.

I am using version 2.8.2 of CruiseControl to write this chapter and this particular
version supports 25 different publishers. Obviously, we are using only the bare
minimum in our publishers tag. Other publishers allow you to transfer build results
or send notifications via e-mail, HTTP, FTP, instant messenger, and various others.

The CruiseControl configuration file supports dozens of different tags and even
more attributes. All these options provide a lot more flexibility and power than
we are taking advantage of here in our basic config.xml file. For a complete
listing and description of all the options, you should consult the online reference
for the config.xml on the CruiseCrontrol project's website:

http://cruisecontrol.sourceforge.net/main/configxml.html

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[420]

Advanced options
I want to briefly highlight some of the more useful of the many CruiseControl
configuration options. Even though we will not be adding them to our simple
config.xml file, it will be valuable to know about thse because you are likely to
require one or multiple ones when the time comes to configure your own project.

Bootstrappers
Bootstrappers execute before the build. execboostrapper is one of the 20+
bootstrappers supported by CruiseControl, which means that you can do just
about anything you want. However one of my favorite boostrappers is the
svnbootstrapper (there are equivalent ones for other version control systems),
because it lets you retrieve resource from Subversion before the build. The
more common use for svnbootstrapper is to retrieve the build.xml file from
Subversion. That way, you can keep all of your project's files in one location.

Unfortunately, this task is useless in our sample setup because I don't have commit
privileges for the Zend Framework, which means that I cannot commit my build.
xml to the ZF repository.

Publishers
CruiseControl supports a plethora of publishers. You can push out your CI
build results via RSS, FTP uploads, or HTTP pages. In addition to getting the
phpUnderControl reports built, the publisher I use the most is the email one.
It lets you send an e-mail with a link to the build results. Hopefully, this way
the recipients of the e-mail will check the build results occasionally.

Running CruiseControl
With the configuration files for our project and CruiseControl in place, it is finally
time to fire up CruiseControl and let it start the continuous integration process by
building the project for the first time. The CruiseControl root directory contains
platform-specific scripts that will launch the server, after which you will be able to
connect to it with your browser. If your CC environment is on a Windows machine,
you want to execute the cruisecontrol.bat batch file. Analogously, if your
environment is on any flavor of Unix, Linux, or OS X, you will want to give the
cruisecontrol.sh shell script a try.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[421]

Unless you started the server in the background, you will see all kinds of status
information output to the terminal. This output is handy in case you have to
troubleshoot any part of the CI process. Give the server a couple of seconds to
launch and then point your browser to the following URL:

http://localhost:8080/cruisecontrol/

CruiseControl uses port 8080 by default. If that port conflicts with another service
you have running on your machine, you can supply the following optional command
line switch to change it:

cruisecontrol.<sh|bat> -webport [new web port]

When you first bring up CruiseControl in your browser, you will notice how the
interface has been customized by phpUnderControl. The default page contains a listing
of all projects being managed by CruiseControl and their current build status. In the
screenshot above, you can see two projects listed: connectfour and zend_framework.
The former is a sample project that comes with CruiseControl and the latter is of course
our own project. We can see that the last build, number 6, took place on 3:28 pm and
the CC is waiting until 6:30 am until potentially starting another build. Clicking on the
round green checkmark icon will start a new build right away. Clicking on the name
will display more detailed reports about the project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[422]

The overview page
This page provides a summary of all activity for a given project. Let's take a look at
the overview page for the zend_framework project and how it summarizes some of
the more detailed reports:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[423]

At the top, you can see data about the last build: when it started, how long it took,
and so on. Below that we see an error message that alerts us to a problem Subversion
encountered during the build process. Then there are three sections listing unit test
results, coding standard violations identified by PHP_CodeSniffer, and changes
to the source code that have been made since the previous build.

The tests page
Clicking on the Tests tab brings up a page listing the results of the unit tests.
The following screenshot shows the unit tests for the zend_framework project
that CruiseControl ran automatically as part of its build process:

Unlucky for us, Zend Framework seems to be doing a good job because there is not a
single failed unit test in the previous screenshot. There were actually a lot more unit
tests, but I edited them out of the previous image for brevity's sake.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[424]

Metrics
The Metrics tab reveals a set of beautiful looking graphs that chart the results
of the various build tasks over time:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[425]

We can see how code coverage, unit test pass / fail ratio, build success versus
failure, test to code ratio, number of coding standard violations, and test execution
time change with each additional build.

Coverage
The Coverage page displays statistics on what kind of code coverage was achieved
by the unit test suite:

As you can see, the numbers for Zend Framework are very respectable. You can tell
that writing unit tests is an integral part of the development process for this project.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[426]

Documentation
The Documentation tab leads to the API-level documentation generated by
phpDocumentor. The theme installed by phpUnderControl matches the rest
of the site quite nicely. This is the same documentation that phpDocumentor
would have generated if you had run it from the command line:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[427]

CodeSniffer
The CodeSniffer page lists all violations of the Zend coding standard
PHP_CodeSniffer could find. Again, I truncated this page to save space.
There are quite a few listings, but note that most of them are warnings
and significantly fewer of them are actual errors:

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[428]

PHPUnit PMD
The PHPUnit PMD tab shows the result of the heuristic tests and rules that were
applied to determine the complexity and quality of the code:

Replacing Ant with Phing
Did you notice how all targets in the Ant build.xml file we constructed contained
tasks of type exec? That is because most of the targets are pretty PHP-centric. Ant
is a general build tool, but its roots lie in Java development, which explains why it
knows nothing about PHPUnit, PHP_CodeSniffer, and phpDocumentor. Although
Subversion is used in many projects, including Java, support for it in Ant can often
only be achieved by adding an optional extension.

What is a PHP developer to do? Well, we already saw in a previous chapter that
Phing is an Ant replacement that supports all the goodness a PHP developer's
heart could desire (at least as far as the project build process goes). Therefore,
in this section, I would like to outline the steps necessary to replace Ant with
Phing as a build tool for CruiseControl/phpUnderControl.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[429]

Unfortunately, the news isn't all good. On one hand, due to its extensible nature,
CruiseControl can support Phing as a build tool. On the other hand, Phing doesn't
support all the tasks and options required to work with phpUnderControl.

If you recall, the way we told CruiseControl to use Ant as a build tool was
with the ant tag inside the schedule tag in the config.xml file. CruiseCrontrol's
configuration parameters provide for a corresponding tag for Phing support.
Following is a partial listing of CC's config.xml where the ant tag has been
replaced with a phing tag:

cruisecontrol/config.xml

...
<schedule interval="300">
<phing phingscript="/usr/local/apache2/php/bin/phing"
 phingworkingdir="projects/${project.name}"
 buildfile="projects/${project.name}/build-phing.xml"
 uselogger="true"
 usedebug="false"/>
</schedule>
...

For a complete listing of the attributes supported by the phing tag, you can consult
CruiseControl's exhaustive list of config.xml parameters that is part of the project's
documentation pages.

That's all it takes to execute a Phing file to handle the build process, however, we
still need to port our current Ant file build file to Phing.

We have four critical tasks that need to be executed during the build process:
svn-update, php-documentor, php-codesniffer, and phpunit. And if you
have been using Phing ever since you read the chapter about it in this book,
you will remember that each of these targets has a corresponding task in Phing.
In theory, we should be able to replace each of the ant targets with single Phing
tasks. That does indeed work well using the svnupdate task to handle updating
the local working copy from the Subversion repository, as well as, generating
API-level documentation using the phpdoc task. Here is the listing with the
corresponding Phing targets:

cruisecontrol/projects/zend_framework/build-phing.xml

...
<!-- update the local working copy of the pr<target name="svn-update">
 <svnupdate
 svnpath="/usr/local/bin/svn"
 nocache="true"
 todir="${basedir}/source"/>
</target>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Continuous Integration

[430]

<!-- have phpDocumentor generate API documentation -->
<target name="php-documentor">
 <phpdoc title="API Documentation"
 destdir="${basedir}/build/api"
 sourcecode="no"
 customtags="true"
 undocumentedelements="true"
 templatebase="/Users/dirk/Sites/phpdoc/phpUnderControl/data/
phpdoc"
 output="HTML:Phpuc:phpuc">
 <fileset dir="${basedir}/source/library/Zend/">
 <include name="*" />
 </fileset>
 <projdocfileset dir=".">
 <include name="README" />
 <include name="INSTALL" />
 <include name="CHANGELOG" />
 </projdocfileset>
 </phpdoc>
</target>
...

The challenge I faced in creating the Phing build file was with the other two targets:
php-codesniffer and phpunit.

The php codesniffer task does everything we need it to—except that it does not
support the --reportfile attribute, which is needed for us to save the output to
exactly the file that phpUnderControl expects. It looks like this oversight has been
corrected in some beta versions, but a peek at the source of the version that I was
using to write this chapter revealed that it had not yet been included in the release.
Fortunately, while we are waiting for support of the --reportfile attribute to make
it into the release of Phing, there is a workaround. We can simply do the same thing
we did in the Ant file, which is to use the exec task to call phpcs, the phpDocumentor
command line client. Here is a listing of the Phing version of that target:

cruisecontrol/projects/zend_framework/build-phing.xml

...
<!-- validate against the Zend coding style using PHP_CodeSniffer -->
<target name="php-codesniffer">
 <exec dir="${basedir}/source/library"
 command="/usr/local/apache2/php/bin/phpcs
 --report-file=${basedir}/build/logs/checkstyle.xml
 --report=checkstyle
 --standard=Zend Zend"/>
</target>
...

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[431]

My problems with Phing's phpunit task were similar to the issue I encountered
with the phpcodesniffer task. With the attributes support by the phpunit task,
I was not able to get PHPUnit to generate all the metrics and coverage reports in
the format required by phpUnderControl. Until the phpunit Phing task receives
some additional functionality, we will have to resort to the same workaround as
for the phpcodesniffer task, which is to use the exec task instead to call the
phpunit command line client directly. Here is a listing of the corresponding
target in Phing vernacular:

cruisecontrol/projects/zend_framework/build-phing.xml

...
<!-- run unit test suite using PHPUnit -->
<target name="phpunit">
 <exec dir="${basedir}/source" checkreturn="on"
 command="/usr/local/bin/phpunit
 --log-xml ${basedir}/build/logs/phpunit.xml
 --log-pmd ${basedir}/build/logs/phpunit.pmd.xml
 --log-metrics ${basedir}/build/logs/phpunit.metrics.xml
 --coverage-xml ${basedir}/build/logs/phpunit.coverage.xml
 --coverage-html ${basedir}/build/coverage
 phpucAllTests tests/Zend/Acl/AclTest.php"/>
</target>
...

Finally, here is the complete Phing build file, complete with headers, project tags,
and default target:

cruisecontrol/projects/zend_framework/build-phing.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="zend_framework" description="Continuous Integration
build script for Zend Framework" default="build">

 <property name="basedir" value="." override="true"/>

 <!-- main build target that executes a sub-targets -->
 <target name="build" depends="svn-update,php-documentor,php-
 codesniffer,phpunit"/>

 <!-- update the local working copy of the project -->
 <target name="svn-update">
 <svnupdate
 svnpath="/usr/local/bin/svn"
 nocache="true"
 todir="${basedir}/source"/>
 </target>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

 <!-- have phpDocumentor generate API documentation -->
 <target name="php-documentor">
 <phpdoc title="API Documentation"
 destdir="${basedir}/build/api"
 sourcecode="no"
 customtags="true"
 undocumentedelements="true"
 templatebase="/Users/dirk/Sites/phpdoc/phpUnderControl/data/
phpdoc"
 output="HTML:Phpuc:phpuc">
 <fileset dir="${basedir}/source/library/Zend/">
 <include name="*" />
 </fileset>
 <projdocfileset dir=".">
 <include name="README" />
 <include name="INSTALL" />
 <include name="CHANGELOG" />
 </projdocfileset>
 </phpdoc>
 </target>

 <!-- validate Zend coding style using PHP_CodeSniffer -->
 <target name="php-codesniffer">
 <exec dir="${basedir}/source/library"
 command="/usr/local/apache2/php/bin/phpcs
 --report-file=${basedir}/build/logs/checkstyle.xml
 --report=checkstyle
 --standard=Zend Zend"/>
 </target>

 <!-- run unit test suite using PHPUnit -->
 <target name="phpunit">
 <exec dir="${basedir}/source" checkreturn="on"
 command="/usr/local/bin/phpunit
 --log-xml ${basedir}/build/logs/phpunit.xml
 --log-pmd ${basedir}/build/logs/phpunit.pmd.xml
 --log-metrics ${basedir}/build/logs/phpunit.metrics.xml
 --coverage-xml ${basedir}/build/logs/phpunit.coverage.xml
 --coverage-html ${basedir}/build/coverage
 phpucAllTests tests/Zend/AllTests.php"/>
 </target>
</project>

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Chapter 10

[433]

With the above two workarounds in place, the combination of CruiseControl
overlaid with phpUnderControl, and using Phing as a build tool works just fine.
I switched my builds from Ant to Phing after a couple of days and none of the
report or graphs showed any sign of interruption.

Also, as Continuous Integration becomes common practice in enterprise PHP
development and these tools mature a bit more, I am confident that these slight
incompatibilities will be worked out.

Summary
Continuous Integration is simply a combination of tasks that you are likely to
perform anyway during the development and release of a project. The difference,
however, is that with continuous integration, you do it earlier and more frequently.
Decreasing the time between automated builds allows you to view the development
of the project over time rather than to look at a single snapshot of the code. It allows
you to keep a finger on the pulse of your project and catch any problems early on.

We learned about some of the advantages of adding CI to your development process.
First, configuring the CI process once will bring benefits throughout the project's
lifetime. Second, CI encourages and practically requires best practices, such as unit
testing, inline documentation, and coding standards.

We also learned about CruiseControl and phpUnderControl—two tools that when
combined extend a mature CI server to support PHP and its cast of supporting
players: phpDocumentor, PHPUnit, Phing, and PHP_CodeSniffer.

While we were able to put together a PHP-centric CI system, we also noticed that this
kind of tool is still maturing in the PHP world. This was the only chapter in this book
where we had to resort to a tool that was developed in a programming language
other than PHP. I am referring to CruiseControl, of course, which was developed
in Java. However, over time, I hope that one of the crop of PHP-based continuous
integration servers will challenge CruiseControl for the title. The Xinc project is
leading the way, but it seems that it will take a bit more time and effort for it to
reach a level of maturity and flexibility to rival that of CruiseControl.

Now that you have been given a tour of the benefits of continuous integration and
have been shown how to set it up, I hope that you will take the time to explore this
valuable tool some more and give it a chance to become part of your day-to-day
development process.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Index
Symbols
$activeSettings property 207
$addedDebug property 226
$allowed associative array 164
$bufferLength 304
$currentCharacter 304
$defaultSettings property 207
$environment variable 206
$messages property 281
$optionValues associative array 165
$outputFormat property 230
$sourceCodeSpan static properties 224
$substringLength 304
@access, standard tags 71
@author, standard tags 72
__call() magic method 53, 67
@category, standard tags 72
__CLASS__, magic constants 213, 214
@codeCoverageIgnoreEnd 312
@codeCoverageIgnoreStart 312
@copyright, standard tags 72
@cover 312
@deprecated, standard tags 73
__DIR__, magic constants 214
{@Example}, inline tags 84
@example, standard tags 73
@expectedException annotation 314
__FILE_, magic constants 213
@filesource, standard tags 74
__FUNCTION_, magic constants 214
@global, standard tags 74
{@id}, inline tags 85
@ignore, standard tags 75
{@inheritdoc}, inline tags 87
{@internal}}, inline tags 86

@internal, standard tags 75
@license, standard tags 76
{@link}, inline tags 88
@link, standard tags 76
__METHOD__, magic constants 214
@method, standard tags 77
<name>Action() method 286, 287
__NAMESPACE__, magic constants 214
@name, standard tags 77
@package, standard tags 78
@property, standard tags 78, 79
@return, standard tags 79
@see, standard tags 79
@since, standard tags 80
--skeleton-class command line option 321
{@source}, inline tags 88, 89
@static, standard tags 80
@staticvar, standard tags 80, 81
@subpackage, standard tags 81
{@toc}, inline tags 90
@todo, standard tags 81
{@tutorial}, inline tags 91
@tutorial, standard tags 82
@uses, standard tags 82
@var, standard tags 82
@version, standard tags 83

A
Accountable interface 50
activity diagrams 369
addConfigDir() method 206
addError() method 35
aggregation, relationship 380, 381
annotating code, Subversion 147
appearances, PDT 119

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[436]

application
database schema, upgrading 334
data, upgrading 334
deployed application, verifying 335
deploying 331
deploying, requisites 330
deployment, automating 335
files, installing 333
files, upgrading 333
files, uploading 332, 333
goals 329, 330
log files, rotating 334
Phing 335
Phing, installing 336, 337
steps 331
symbolic links, updating 334
under-maintenance message, displaying

333
upgrading, requisites 330

applySettings() method 207
arrayToTable() method 226
assertEquals() assertion 308
assertions

examples 305
association, relationship 380
asynchronous

versus synchronous calls 389, 390

B
backtrace 215
behavior diagrams, UML diagrams

activity diagrams 369
communication diagrams 369
interaction overview diagrams 369
sequence diagrams 369
state machine diagrams 369
timing diagrams 369
use case diagrams 369

black box testing 292
blame, svn subcommands 149
blueprint 366
BMH algorithm

basics 300
implementing 301-304
URL 300

Bootstrap class 265

bootstrapping 265
BoyerMooreHorspool algorithm. See BMH

algorithm
BoyerMooreStringSearch class 304
branching, Subversion 145

about 174, 175
maintaining 177-180
merging 180
need for 175
steps 176
workflow 180, 182

built-in types, Phing
FileList 342
FileSet 342
Path / Classpath 342

C
CakePHP, PHP framework 259
camelCase 14
cat, svn subcommands 149
changelist, svn subcommands 149
checkout, svn subcommands 150
CI

about 395
advantages 396
commit frequency 398
guidelines 398
Phing, automation 399
PHP_CodeSniffer, coding style 401
PhpDocumentor 401
PHPUnit test 398, 399
server, need for 403
Subversion 397
tool, need for 403
version control system 397
with phpUnderControl 404
Xdebug, code coverage 402

CI, tools
about 403, 404
need for 403
phpUnderControl 404
XINC (Xinc Is Not CruiseControl) 404

CI, with phpUnderControl
about 404
Ant, replacing with Phing 428-433
CruiseControl and project layout 409-411

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[437]

CruiseControl, configuration options 420
CruiseControl, configuring 417-419
CruiseControl, installing 405
CruiseControl with phpUnderControl,

overlaying 407, 408
installation 405
phpUnderControl, installing 406, 407
process, overview 409
project, configuring 413-417
project source, getting 412

class definition 14
class diagrams

about 368
code generators 383
selements 370
example 372-378
interfaces 382
Interrogator interface 379
maxProbesExceeded() method 379
methods (operations) 371
ProbeService class 379
properties 372, 373
properties (attributes) 370, 371
relationships 380
ServiceRunner 379
static methods 372

class diagrams, methods
construct() 373
probe() 373
resolveHost() 373
tcpConnection() 373

class diagrams, properties
host 373
maxProbes 373
port 373
probeCount 373
serviceName 373

class files 20
class names 14, 16, 20
cleanup, svn subcommands 150
Cli_Options class 165
Cli_Options.php generic class 164
closing target tags 339
CodeIgniter, PHP framework 260
code-level documentation 40, 41
coding standard

cons 7

pros 6
command attribute 355
command line arguments 164, 192
command line reference

long option 67, 68
short option 67, 68

comments 23
commit command 159
commit, svn subcommands 150
committing, Subversion 148
communication diagrams 369
component diagrams 368
composite structure diagrams 368
composition, relationship 381
Concurrent Versioning System. See CVS
config options, PHP

customizing 202-208
display_errors 200
display_startup_errors 200
docref_ext 201
docref_root 201
error_append_string 201
error_log 201
error_prepend_string 201
error_reporting 200
html_errors 201
ignore_repeated_errors 201
ignore_repeated_source 201
log_errors 201
log_errors_max_len 201
PhpIni, example 208, 209
report_memleaks 201
track_errors 201
xmlrpc_error_number 201
xmlrpc_errors 201

constant names 17
constructor method 164
continuous integration 295
Continuous Integration. See CI
control structures

about 12
if-elseif-else statements 13
switch statements 13

copy, svn subcommands 150
copy task 353, 355
CopyTask 338

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[438]

core tasks
examples 338

create-skeleton target 356
create, svnadmin commands 157
CRUD (Create, Read, Update, and Delete)

278
CruiseControl

advanced options 420
and project layout 409, 411
CodeSniffer page 427
configuration 409
configuring 417-419
coverage page 425
documentation tab 426
metrics tab 424
overview page 422, 423
PHPUnit PMD tab 428
project, configuring 413-417
project source, getting 412
projects page 421
running 420
tests page 423

CruiseControl, configuration options
Bootstrappers 420
publishers 420

custom tags 92
CVS

about 140
disadvantages 141
features, over RCS 140

D
dbdeploy task 357
debug_backtrace(), PHP function 213
DebugException::errorHandler()

method 224
DebugException::exceptionHandler()

method 225
DebugException::getFormattedDebugInfo()

method 226
DebugException class

$outputFormat property 230
about 215-221
cons 232
pros 232
using 230
debugging class

DebugException 215-220
functional requirements 214, 215
writing 214

debugging, PDT 115-118
debug information

outputting 209
debug_print_backtrace(), PHP function 213
delete, svn subcommands 151
delete task 355
dependency, relationship 381
depends attribute 340
deploydb task 356
deployment diagrams 368
deriveJumpTable() method 304
description attribute 339
destructor method 170
diagrams

creation 391
use case, example 391
use cases 390

diagrams, PHP development
class diagrams 370
sequence diagrams 384

diff, svn subcommands 151
dir attribute 350
directory structures 20
display_errors option 200
display_startup_errors option 200
DocBlocks

about 44
naming conventions 47, 48
short and long descriptions 44
tags 44, 45
templates 45, 46
tutorials 46

DocBook syntax 48, 49
docref_ext option 201
docref_root option 201
dump, svnadmin commands 157, 158

E
echo(string $arg1 [, string $...] / print(string

$arg), PHP function 210
echo task 354
Eclipse

advantages 95

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[439]

installing 96
need for 94, 95
package, selecting 98
PDT plugin, adding 99, 100
requisites 96-98
Zend Studio 129, 130

Eclipse, concepts
about 100
perspectives 104, 105
views 102, 103
workspace 101, 102

Eclipse plugins
about 182-185
Mylyn Mantis Connector plugin 129
Mylyn plugin 128
Quantum DB plugin 129
subversion plugin 128

editor, PDT
actions, saving 122
code assist 110, 121
code folding 110, 121
hovers 122
indicators, overriding 112
method 112
occurrences, marking 111, 122
resource navigation 113
syntax, coloring 122
syntax, highlighting 109
tasks tags 122
typing 112, 123

error_append_string option 201
error_log option 201
error_prepend_string option 201
error_reporting option 200
escape attribute 355
exec task 355
ExecTask 350
exit([string status]) or exit (int status), PHP

function 213
expandproperties task 353
export, svn subcommands 151

F
file attribute 355
fileset tag 355
filterchain tag 342

filters, Phing 342
flattenArray() method 225-227
FlattenMapper 342
ForeachTask 338
formatting, PHP coding standard

about 8
arrays 11
class definitions 14
indenting 8
line endings 8
line length 8
method definitions 14
PHP tags 8
spacing 9
statements 9
strings 10

framework
advantages 252
code quality 254
coding standards 255
community and acceptance 252, 253
disadvantages 252, 256
documentation 254
evaluating 252
familiarity 257
feature road map 253
open source 256
project fit 255
rules 257
selecting 252
writing 251

func_get_args() function 224
func_num_args() function 224
function names 17, 18
functions, PHP

debug_backtrace() 213
debug_print_backtrace() 213
echo(string $arg1 [, string $...] /

print(string $arg) 210
exit([string status]) or exit (int status) 213
get_class_methods(mixed class_name) 212
get_class([object object]) 212
get_class_vars(string class_name) 212
get_object_vars(object object) 212
highlight_string(string str [, bool return])

and highlight_file(string filename [,
bool return]) 212

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[440]

var_dump(mixed $expression [, mixed
$expression [, $...]]) and
print_r(mixed $expression [, bool
$return= false]) 210, 211, 212

G
generalization, relationship 382
get_class_methods(mixed class_name), PHP

function 212
get_class([object object]), PHP function 212
get_class_vars(string class_name), PHP

function 212
getConfigDirs() method 206
getExcludedSniffs() method 32
getFormatted DebugInfo() method 225
getFormatted Trace() method 225
getIncludedSniffs() method 32
getIniFiles() method 206
getInstance() method 164
get_object_vars(object object), PHP function

212
getOpt() function 164
getSourceExcerpt() method 225
GlobalMapper 342
gray box testing 293

H
headScript() placeholder 271
headStyle() placeholder 271
headTitle() placeholder 271
help, svn subcommands 151
highlight_string(string str [, bool return])

and highlight_file(string filename [,
bool return]), PHP function 212

history/log, Subversion 147
hooks

about 159, 190
coding standards enforcing, pre-commit

hook used 191-193
commits developers notifying, post-commit

hook used 194
host property 373
html_errors option 201

I
IdentityMapper 342
if-elseif-else statements 13
ignore_repeated_errors option 201
ignore_repeated_source option 201
import, svn subcommands 152
indenting 8
indexAction() method 287
info, svn subcommands 152
ini_get_all() function 200
ini_set() function 235
init() method 286
inline documentation 23, 24
inline tags, tag reference

about 83
{@Example} 84
{@id} 85
{@id}, inline tags 85
{@inheritdoc} 87
{@internal}} 86
{@link} 88
{@source} 88, 89
{@toc} 90
{@tutorial} 91

InputTask 338
inputTask tag 351
insert() method 281
inspection, PDT

files 114
PHP explorer 114
projects 114
type hierarchy 115

installation, PHPUnit 298, 299
integration testing 295
interaction overview diagrams 369
interfaces 382

J
Java Runtime Environment (JRE) 96

L
line endings 8
line length 8
list, svn subcommands 152

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[441]

lock, svn subcommands 152
log_errors_max_len option 201
log_errors option 201
log files, PHP

benefits 199, 200
reviewing, need for 199, 200
uses 199, 200

loginAction() method 286
login() method 281
log, svn subcommands 153

M
magic constants

about 213
__CLASS__ 213, 214
__DIR__ 214
__FILE__ 213
__FUNCTION__ 214
__LINE__ 213
__METHOD__ 214
__NAMESPACE__ 214

mappers, Phing
about 342, 343
FlattenMapper 342
GlobalMapper 342
IdentityMapper 342
MergeMapper 342
RegexpMapper 342

markTestSkipped() 321
maxProbesExceeded() method 379
maxProbes property 373
mergeinfo, svn subcommands 153
MergeMapper 342
merge, svn subcommands 153
merging, Subversion 146
meta-model

versus notation 364, 365
method definition 14
method names 17, 18
methodology, PHP coding standard

access 21, 22
class files 20
comments 23
inline documentation 23, 24
source files 22, 23
type hinting 19
visibility 21, 22

mkdir, svn subcommands 154
mkdir task 350
Model_Users object 286
Model-View-Controller. See MVC
move, svn subcommands 154
move task 354
MVC 265
Mylyn Mantis Connector plugin 129
Mylyn plugin 128

N
name attribute 339
naming conventions, PHP coding standard

class names 14, 16
constant names 17
function names 17, 18
method names 17, 18
property names 16
variable names 16

new project layout, PDT 123
notation

versus meta-model 364, 365

O
object diagrams 369
opening target tags 339
output() method 225

P
package diagrams 369
parse_ini_file() function 207
parse_ini_files() method 207
PDT

about 96
sample project 106-109

PDT, code style
code templates 120
formatter 120

PDT, debug
installed debuggers 121
step filtering 121
workbench, options 121

PDT, features
about 109
debugging 115-118

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[442]

editor 109
inspection 114

PDT perspective 105
PDT, preferences

about 119
appearance 119
code style 119
debug 120
Eclipse plugins 127
editor 121
new project layout 123
PHP executables 124
PHP function reference 126, 127
PHP interpreter 124
PHP manual 124
PHP servers 125
templates 125

PEAR 25, 298
pear command-line utility 298
perspectives, Eclipse

PDT perspective 105
PHP Debug perspective 105

Phing
about 335
automation 399
basic syntax 337
build file, basic structure 337, 338
-buildfile [builfile] command-line option

337
filters 342
installing 336, 337
mappers 342, 343
project tag 343
properties 340, 341
property files 340, 341
targets 339, 340
tasks 338
tasks, examples 338
user-defined targets, examples 336

Phing, types
about 341
built-in types 342

PHP
config options 200-202
functions 209
log files 199
syntax check 197-199

PHP_CodeSniffer
about 25
advanced usage 27-29
code checks, automated 37
coding standard, class file 31, 32
directories, creating 30
existing sniffs, extending 36, 37
installing 25, 26
own coding standard, defining 29
sniffs, creating 32
sniff, writing 34, 35
tokenization 32-34
usage 27

PHP_CodeSniffer, CI 401
PHP_CodeSniffer_File object 35
PHP_CodeSniffer_File's addWarning()

method 35
PHP_CodeSniffer pre-commit script 192
PHP coding standard

about 7
arrays 11
class and method definitions 14
class files 20
class names 14, 16, 20
comments 23
constant names 17
controls structures 12
directory structures 20
formatting 8
function names 17, 18
indenting 8
inline documentation 23, 24
line endings 8
line length 8
method names 17, 18
methodology 19
naming conventions 14
object creation, separating from

initialization 19, 20
PHP tags 8
property names 16
source files, including 22
spacing 9
statements 9
strings 10
type hinting 19
variable names 16

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[443]

visibility 21, 22
PHP command line script 401
phpcs command line utility 415
PHP Development Tool. See PDT
phpDocumentor

about 42
custom tags 92
DocBlocks 44
DocBlocks, templates 45, 46
installing 42, 43
installing, PEAR repository used 43
online manual, URL 42
options 67
PHP4 elements 91
phpcs 27
phpcs --help 28
project, documenting 49-53
tag reference 71
tags 24, 44, 45

PhpDocumentor, CI 401
phpDocumentor command line client 430
phpDocumentor, options

about 67
browser-based interface 70
command line reference 67, 68
config files 69

PhpDocumentor support 133
PHP executables 124
PHP frameworks

CakePHP 259
CodeIgniter 260
Symfony 260
Yii 260, 261
Zend Framework 258

PHP function reference 126, 127
phpinfo() output 233
PhpIni class 207
PHP interpreter 124
PHP manual 124, 125
php_sapi_name() function 224
PHP servers 125
PHP tags 8
phpUnderControl

about 404
and CruiseControl, overlaying 407, 408
commands 407
CruiseControl, installing 405

installing 406, 407
installing, steps 405

phpUnderControl, commands
clean 407
delete 407
example 407
graph 407
install 407
merge-phpunit 407
project 407

PHPUnit
about 298
code coverage 326, 327, 328
installing 298, 299
string search project 299
TestCase, subclasses 328
unit test 294

PHPUnit2Task 338
PHPUnit_Extensions_Database_TestCase

328
PHPUnit_Extensions_OutputTestCase 328
PHPUnit_Extensions_PerformanceTestCase

328
PHPUnit_Extensions__SeleniumTestCase

328
PHPUnit_Framework_TestCase 305
PHPUnit_Framework_TestCase class 310
PHPUnit_Framework_TestCase subclasses

PHPUnit_Extensions_Database_TestCase
328

PHPUnit_Extensions_OutputTestCase 328
PHPUnit_Extensions_PerformanceTestCase

328
PHPUnit_Extensions_SeleniumTestCase

328
PHPUnit_Framework_TestSuite class 307
PHPUnit testing 132, 398, 399
port property 373
post-commit script 160
pre-commit script 159
probeCount property 373
probe() method 373
processCommandLine() method 164
process() method 34, 35
processOption() utility method 164
profile diagrams 369

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[444]

project, phpDocumentor
DocBlocks, documentation with 57-67
DocBlocks, documentation without 54-57
documenting 49-53

project tag, Phing 343
propdel, svn subcommands 154
propedit, svn subcommands 154
properties, Phing 340, 341
property files, Phing

about 340
advantages 341

property names 16
property task 351
propget, svn subcommands 155
proplist, svn subcommands 155
propset, svn subcommands 155
provider() method 314

Q
Quantum DB plugin 129

R
RCS

about 136
and CVS, differences 140
ci 137
co 137
homepage, URL 137
rcsclean 137
rcsdiff 137
rcsfile 137
rcsmerge 137
rlog 137
utilities 137

rcsdiff index.php command 139
RegexpMapper 342
register() method 34
regression testing 296
relationships, UML

aggregation 380, 381
association 380
composition 381
dependency 381
generalization 382

remote debugging, Xdebug
client configuration, debugging 242-246

remote server debug, configuration 242
remote server debug, configuration settings

241
remote server debug, configuration settings

xdebug.idekey 242
xdebug.remote_autostart 242
xdebug.remote_enable 241
xdebug.remote_handler 241
xdebug.remote_host 241
xdebug.remote_log 242
xdebug.remote_mode 242
xdebug.remote_port 241

render() method 270
report_memleaks option 201
repository, Subversion

about 144, 172
data store 172
layout 173, 174

resolved, svn subcommands 156
resolveHost() method 373
resolve, svn subcommands 155
restore_error_handler() method 225
restore_exceptions_handler() method 225
reverting, Subversion 148
revert, svn subcommands 156
Revision Control System. See RCS
revision, Subversion 146
rlog index.php command 139

S
SAPI 224
Search_Array_Quick class 306
Search_Array_QuickTest class 306
search() method 304
Search_String_BoyerMoore class 306
sendConfirmationEmail() method 286
sequence diagrams

about 369, 384, 385
conditionals 388, 389
interaction frames 388
lifelines 386
loops 388, 389
methods 387
network scanner 384
object, creating 387
object, destructing 388

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[445]

objects 386
scope 384
synchronous versus asynchronous calls

389, 390
Server Application Programming Interface.

See SAPI
serviceName property 373
setConfigDirs() method 206
setUp() method 310
signupAction() method 286
site

deploying 344
launching 358

site, deplyoing
about 344
build script, creating 345
build.xml file, creating 347, 348
Config class 352
database, backup 354, 355
database, migrations 356, 357
deploy target 349
dev.properties file 345, 346
directory, skeleton 349, 350
directory structure 344
environment 345
external dependencies, separating 345
files, building from templates 352, 353
get-env target 349
maintenance page 353, 354
prod.properties 347
properties 345-347
property task, using 351
subversion export 350
svn-export target 350
svn.password property 351
targets 349
test.properties 347

sniffs
about 29
automated code checks 37
creating 32
existing sniff, extending 36, 37
tokenization 33, 34
writing 34, 35

spacing 9
stack trace, settings

xdebug.collect_includes 239

xdebug.collect_params 239
xdebug.dump 239
xdebug.dump_globals 239
xdebug.dump_once 239
xdebug.dump_undefined 239
xdebug.show_local_vars 239

standard tags, tag reference
@author 72
@category 72
@copyright 72
@deprecated 73
@example 73
@filesource 74
@global 74
@ignore 75
@internal 75
@license 76
@link 76
@method 77
@name 77
@package 78
@property 78, 79
@return 79
@see 79
@since 80
@static 80
@staticvar 80, 81
@subpackage 81
@tutorial 82
@uses 82
@var 82
@version 83

state machine diagrams 369
statements 9
status, svn subcommands 156
strings 10, 11
StringSearchable interface 301
string search project, PHPUnit

about 299
assertions 305
BMH algorithm basics 300
BMH, implementing 301-304
Boyer-Moore-Horspool algorithm 300
classes, generating from tests 321
extended test class, features 309
organization 306, 307
PHPUnit_Framework_TestCase class 310

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[446]

setUp() method 310
tearDown() method 310
test class 305
test driven development 321, 322
test driven development, example enhanc-

ing 323-326
tests, generating from classes 317-320

structure diagrams, UML diagrams
class diagrams 368
component diagrams 368
composite structure diagrams 368
deployment diagrams 368
object diagrams 369
package diagrams 369
profile diagrams 369

Subclips
URL 185

Subversion
about 142
Apache, with mod_dav_svn 143
best practices 189
branching 175
branching, need for 175
CI 397
client installation 142
command reference 148
concepts 143
conventions 189
customizing 190
project, creating 159-167
server configuration 143
svnserve 143
UI clients 182
version control system 397
version control workflow 168-170

Subversion, concepts
annotating code 147
branches 145
committing 148
comparing, Subversion 146
history/Log 147
merging 146
repository 144
reverting 148
revisions and versions 146
tags 144
trunk 144

updating 146
working (local) copy 145

Subversion, customizing
hooks 190

subversion plugin 128
Subversion, use case

scenario 136
Subversive

URL 185
svn

about 148
blame 149
cat 149
changelist 149
checkout 150
cleanup 150
commit 150
copy 150
delete 151
diff 151
export 151
help 151
import 152
info 152
list 152
lock 152
log 153
merge 153
mergeinfo 153
mkdir 154
move 154
propdel 154
propedit 154
propget 155
proplist 155
propset 155
resolve 155
resolved 156
revert 156
status 156
switch 156
unlock 157
update 157

svnadmin
create 157
dump 157, 158

svndumpfilter 158

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[447]

svnexport task 351
SvnExportTask 338
svnlook 158
svnserve 143, 158
svnversion 158
switch statements 13
switch, svn subcommands 156
Symfony, PHP framework 260
synchronous

versus asynchronous calls 389, 390
syntax check, PHP 197-199
system testing 296

T
tag reference

about 71
inline tags 83
standard tags 71

tags 44, 45
tags, Subversion 144
targets, Phing

about 339, 340
attributes 339

target tag 340
tasks, Phing

CopyTask 338
core tasks, examples 338
examples 338
ForeachTask 338
InputTask 338
online manual, URL 339
optional tasks, examples 338
PHPUnit2Task 338
SvnExportTask 338
ZipTask / UnzipTask 338

tcpConnection() method 373
tearDown() method 310
templates 125
test class

about 305
features 309

test class, features
annotations 312
annotations, data providers 312-314
annotations, exceptions 314-317
fixtures 310, 311

testExceptions() method 316
testing

methods 291
types 294

testing, methods
about 291, 292
black box 292
gray box 293
white box 292

testing, types
integration testing 295
regression testing 296
system testing 296
unit testing 294, 295
user acceptance testing 297

testNumberOfMatches() method 308, 309,
323

timing diagrams 369
token_get_all() function 32
token_get_name() function 32
tokenization 32-34
TortoiseSVN 185
track_errors option 201
trunk, Subversion 144
tutorials, phpDocumentor 46
type hinting 19

U
UI clients, Subversion

Eclipse plug-ins 182-185
TortoiseSVN 185
WebSVN 185-188

UML
about 363
blueprint 366
code generators 383
detail, levels 365, 366
notation 364, 365
one-way tools 366, 367
program 366
sketch 365

UML diagrams
behavior diagrams 369
structure diagrams 368, 369
types 367

uninit() method 225

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[448]

unit testing 294, 295
unlock, svn subcommands 157
update, svn subcommands 157
updating, Subversion 146
use case diagrams

about 369
example 392, 393

use case, example
actors 393
background 391
relationships 393
system boundary 393
typical scenario 392

user acceptance testing 297
UsersController class 286
utility class 161

V
validate() method 281
var_dump() function, settings 238
var_dump(mixed $expression [, mixed $ex-

pression [, $...]]) and print_r(mixed
$expression [, bool $return= false]),
PHP function 210, 211

variable names 16
version control

workflow 168-172
version control system

about 397
Subversion 397

versions, Subversion 146
views, Eclipse

about 102
browser output 103
debug output 103
parameter stack 103
PHP explorer 103
PHP functions 103
HP project outline 103

visibility access 21, 22

W
WebSVN

about 185-189
features 185

white box testing 292

workspace, Eclipse
about 101, 102
switching between 101

X
Xdebug

decision coverage 402
exceptions and errors 238
function coverage 402
path coverage 402
recursive calls, limitations 240
remote debugging 240, 241
var_dump() function, settings 238

Xdebug, benefits
exceptions and errors 238
stack trace, settings 239

Xdebug, CI 402
xdebug.collect_includes 239
xdebug.collect_params 239
xdebug.dump 239
xdebug.dump_globals 239
xdebug.dump_once 239
xdebug.dump_undefined 239
xdebug.idekey 242
xdebug.remote_autostart 242
xdebug.remote_enable 241
xdebug.remote_handler 241
xdebug.remote_host 241
xdebug.remote_log 242
xdebug.remote_mode 242
xdebug.remote_port 241
xdebug.show_local_vars 239
XINC 404
Xinc Is Not CruiseControl. See XINC
xmlrpc_error_number option 201
xmlrpc_errors option 200, 201

Y
Yii, PHP framework 260, 261

Z
Zend_Action_Controller 286
Zend_Application 262
Zend_Controller module 287
Zend_Db module 278

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

[449]

Zend_Db_Table_Abstract 281
Zend_Db_Table module 281
Zend Framework application

about 261
bootstrapping 265
configuration directory 266, 267
controller directory 266
enhancememts 269
feature list 262
library directory 267
model directory 265
MVC 265
public directory 267, 268
skeleton 262, 264
structure, details 265
tests directory 268
view directory 266
Zend_Application module 262

Zend Framework application,
enhancememts

controller, adding 282-287
database, adding 276, 277
layout, adding 269, 270, 271
logging, adding 274, 275
model, adding 278-281
views, adding 271-273

Zend Framework integration 133
Zend Framework, PHP framework 258
Zend_Layout module 271

Zend_Log 275
Zend_Log module 276
Zend_Log_Writer 275
Zend_Mail module 287
Zend server integration 133
Zend Studio

code, generating 131
for Eclipse 129, 130
PhpDocumentor support 133
PHPUnit testing 132
refactoring 131
support 131
Zend Framework integration 133
Zend server integration 133

Zend_Tool_Framework 262
Zend_Tool_Project 262
Zend_View_Helper classes 271
Zend_View module 273
ZF manual page

Zend_Controller module, URL 287
Zend_Db module, URL 278
Zend_Db_Table, URL 281
Zend_Layout module, URL 271
Zend_Log module, URL 275
Zend_Mail module, URL 287
Zend_View_Helper classes, URL 271
Zend_View module, URL 273

zip task 355
ZipTask / UnzipTask 338

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

Thank you for buying
Expert PHP 5 Tools

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Expert PHP 5 Tools, Packt will have given some of the
money received to the PHP Group project.
In the long term, we see ourselves and you—customers and readers of our books—as part
of the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

PHP Team Development
ISBN: 978-1-847195-06-7 Paperback: 184 pages

Easy and effective team work using MVC, agile
development, source control, testing, bug tracking,
and more

1. Work more effectively as a team by breaking
up complex PHP projects into manageable
sub-parts

2. Develop code that is much easier to maintain
with source control, agile principles, and
project tracking

3. Apply techniques related to process models,
collaboration among team members, and
continuous long-term improvement

PHP 5 E-commerce Development
ISBN: 978-1-847199-64-5 Paperback: 356 pages

Create a flexible framework in PHP for a powerful
ecommerce solution

1. Build a flexible e-commerce framework using
PHP, which can be extended and modified
for the purposes of any e-commerce site

2. Enable customer retention and more business
by creating rich user experiences

3. Develop a suitable structure for your
framework and create a registry to store
core objects

4. Easily add exciting and powerful features

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Ottar Kvindesland on 24th September 2011

Egdevn. 23, Sandnes, Finnmark, 4307

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Coding Style and Standards
	Coding standard considerations
	Pros
	Cons

	A PHP coding standard
	Formatting
	PHP tags
	Indenting
	Line length
	Line endings
	Spacing
	Statements
	Strings
	Arrays
	Control structures
	Class and method definitions

	Naming conventions
	Class names
	Property and variable names
	Constant names
	Method and function names

	Methodology
	Type hinting
	Separating object creation from initialization
	Class files
	Class names and directory structures
	Visibility and access
	Including source files
	Comments
	Inline documentation

	Coding standard adherence and
verification
	PHP_CodeSniffer for automated checking
	Installing PHP_CodeSniffer
	Basic usage
	Slightly advanced usage
	Validating against your own coding standard

	Summary

	Chapter 2: Documentation with phpDocumentor
	Code-level documentation
	Levels of detail

	Introducing phpDocumentor
	Installing phpDocumentor
	DocBlocks
	Short and long descriptions
	Tags

	DocBlock templates
	Tutorials
	Naming conventions and how to reference tutorials
	DocBook syntax

	Documenting a project
	Documentation without DocBlocks
	Documentation with DocBlocks

	phpDocumentor options
	Command line reference
	Config files
	Browser-based interface

	Tag reference
	Standard tags
	Inline tags

	PHP4 elements
	Custom tags

	Summary

	Chapter 3: The Eclipse Integrated Development Environment
	Why Eclipse
	Introducing PDT
	Installing Eclipse
	Requirements
	Choosing a package
	Adding the PDT plugin

	Basic Eclipse concepts
	Workspace
	Views
	Perspectives

	A PDT sample project
	PDT features
	Editor
	Syntax highlighting
	Code assist
	Code folding
	Mark occurrences
	Override indicators
	Type, method, and resource navigation

	Inspection
	Projects and files
	PHP explorer
	Type hierarchy

	Debugging
	PDT preferences
	Appearance
	Code style
	Debug
	Editor
	New project layout
	PHP executables
	PHP interpreter
	PHP manual
	PHP servers
	Templates

	Other features
	PHP function reference

	Eclipse plugins

	Zend Studio for Eclipse
	Support
	Refactoring
	Code generation
	PHPUnit testing
	PhpDocumentor support
	Zend Framework integration
	Zend server integration

	Summary

	Chapter 4: Source Code and Version Control
	Common use cases
	A brief history of source code control
	CVS
	Introducing Subversion
	Client installation
	Server configuration
	Apache with mod_dav_svn

	Subversion concepts
	Repository
	Tags
	Trunk
	Branches
	Working (Local) copy
	Merging
	Revisions and versions
	Updating
	Comparing
	History/Log
	Annotating code
	Reverting
	Committing

	Subversion command reference
	svn
	svnadmin
	svnlook
	svnserve
	svndumpfilter
	svnversion

	Creating a Subversion project
	Basic version control workflow
	A closer look at the repository
	Data store
	Layout

	Branching and merging
	What is a branch?
	Why branch?
	How to branch
	Maintaining and merging a branch
	Branching workflow

	UI clients
	Eclipse plug-ins
	TortoiseSVN
	WebSVN

	Subversion conventions and best
practices
	Customizing Subversion
	Hooks
	Notifying developers of commits with a post-commit hook

	Summary

	Chapter 5: Debugging
	First line of defense: syntax check
	Logging
	Configuration options
	Customizing and controlling config options: PhpIni
	PhpIni example

	Outputting debug information
	Functions
	echo(string $arg1 [, string $...] / print(string $arg)
	var_dump(mixed $expression [, mixed $expression [, $...]]) and print_r(mixed $expression [, bool $return= false])
	highlight_string(string str [, bool return]) and highlight_file(string filename [, bool return])
	get_class([object object])
	get_object_vars(object object)
	get_class_methods(mixed class_name)
	get_class_vars(string class_name)
	debug_backtrace()
	debug_print_backtrace()
	exit([string status]) or exit (int status)

	Magic constants
	Writing our own debugging class
	Functional requirements
	DebugException

	Introducing Xdebug
	Installing Xdebug
	Configuring Xdebug
	Immediate benefits
	var_dump() improved
	var_dump() settings
	Errors and exceptions beautified
	Protection from infinite recursion

	Remote debugging
	Remote server debug configuration
	Debugging client configuration

	Summary

	Chapter 6: PHP Frameworks
	Writing your own framework
	Evaluating and choosing frameworks
	Community and acceptance
	Feature road map
	Documentation
	Code quality
	Coding standards and compliance
	Project fit
	Easy to learn and adapt
	Open source
	Familiarity
	Their rules

	Popular PHP frameworks
	Zend
	CakePHP
	CodeIgniter
	Symfony
	Yii

	Zend Framework application
	Feature list
	Application skeleton
	Important concepts
	Application structure detail

	Enhancements
	Adding a layout
	Adding views
	Adding logging
	Adding a database
	Adding a model
	Adding a controller
	Putting it all together

	Summary

	Chapter 7: Testing
	Testing methods
	Black box
	White box
	Gray box

	Types of testing
	Unit testing
	Integration testing
	Regression testing
	System testing
	User acceptance testing

	Introducing PHPUnit
	Installing PHPUnit
	String search project
	BMH algorithm basics
	Implementing BMH
	Unit testing BoyerMooreStringSearch
	The test class
	Assertions
	Organization
	Our first unit test
	Extended test class features
	Automation: generating tests from classes
	Automation: generating classes from tests
	Test-driven development

	Code coverage
	TestCase subclasses

	Summary

	Chapter 8: Deploying Applications
	Goals and requirements
	Deploying your application
	Checking out and uploading files
	Displaying an under-maintenance message
	Upgrading and installing files
	Upgrading database schema and data
	Rotating log files and updating symbolic links
	Verifying the deployed application

	Automating deployment
	Phing
	Installing Phing

	Basic syntax and file structure
	Tasks
	Targets
	Properties and property files
	Types
	Filters
	Mappers
	The project tag

	Deploying a site
	Separating external dependencies
	Creating a build script
	Directory skeleton
	Subversion export and checkout
	Building files from templates
	Maintenance page
	Database backup
	Database migrations
	Going live
	Putting it all together
	Backing out

	Summary

	Chapter 9: PHP Application Design
with UML
	Meta-model versus notation versus our approach
	Levels of detail and purpose
	Round-trip and one-way tools
	Basic types of UML diagrams
	Diagrams
	Class diagrams
	Elements of a class
	Static methods and properties
	A class diagram example
	Relationships
	Interfaces
	Example refactored
	Code generators

	Sequence diagrams
	Scope
	A sequence diagram of the network scanner

	Use cases
	Use cases—diagrams optional
	When to create use cases
	Example use case

	Summary

	Chapter 10: Continuous Integration
	The satellite systems
	Version control: Subversion
	Commit frequency

	Testing: PhpUnit
	Automation: Phing
	Coding style: PHP_CodeSniffer
	Documentation: PhpDocumentor
	Code coverage: Xdebug

	Environment setup considerations
	Do I need a dedicated CI server?
	Do I need a CI tool?

	CI tools
	XINC (Xinc Is Not CruiseControl)
	phpUnderControl

	Continuous integration with
phpUnderControl
	Installation
	Installing CruiseControl
	Installing phpUnderControl
	Overlaying CruiseControl with phpUnderControl

	CruiseControl configuration
	Overview of the CI process and components
	CruiseControl and project layout
	Getting the project source
	Configuring the project: build.xml
	Configuring CruiseControl
	Advanced options
	Running CruiseControl
	Replacing Ant with Phing

	 Summary

	Index

